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ABSTRACT
Parallel Discrete Event Simulation (PDES) is based on the
partitioning of the simulation model into distinct Logical
Processes (LPs), each one modeling a portion of the en-
tire system, which are allowed to execute simulation events
concurrently. This allows exploiting parallel computing ar-
chitectures to speedup model execution, and to make very
large models tractable. In this article we cope with the opti-
mistic approach to PDES, where LPs are allowed to concur-
rently process their events in a speculative fashion, and roll-
back/recovery techniques are used to guarantee state con-
sistency in case of causality violations along the speculative
execution path. Particularly, we present an innovative load
sharing approach targeted at optimizing resource usage for
fruitful simulation work when running an optimistic PDES
environment on top of multi-processor/multi-core machines.
Beyond providing the load sharing model, we also define a
load sharing oriented architectural scheme, based on a sym-
metric multi-threaded organization of the simulation plat-
form. Finally, we present a real implementation of the load
sharing architecture within the open source ROme OpTi-
mistic Simulator (ROOT-Sim) package. Experimental data
for an assessment of both viability and effectiveness of our
proposal are presented as well.

1. INTRODUCTION
Parallel Discrete Event Simulation (PDES) is well known

for being a classical means to develop simulation systems
featuring high performance. This can be relevant for dif-
ferentiated contexts, such as when virtual and real worlds
interact for either training purposes (see, e.g., [24]), or for
system prediction/audit in scenarios where components are
still under design/development, thus externalizing their be-
havior via simulation of corresponding models (see, e.g., [3]).

The idea underlying PDES techniques is to partition the
simulation model into several distinct objects, also known
as Logical Processes (LPs) [9], which concurrently execute
simulation events, thus allowing for exploitation of paral-
lelism in the underlying hardware architecture. The main
problem in the design/development of this type of simula-
tion platforms is synchronization, the goal of which is to
ensure causally-consistent (e.g. timestamp-ordered) execu-
tion of simulation events at each concurrent LP. In litera-
ture, several synchronization protocols have been proposed,
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among which the optimism-oriented ones (e.g. the Time
Warp protocol [13]) are highly promising. With these proto-
cols, block-until-safe policies for event processing at the LPs
are avoided, thus allowing speculative computation, which
is reflected into great exploitation of parallelism. At the
same time, causal consistency is guaranteed through roll-
back/recovery techniques, which restore the system to a cor-
rect state upon the a-posteriori detection of consistency vi-
olations. These are originated when LPa schedules a new
event destined to LPb having a timestamp lower than the
one of some event already processed by LPb.

The traditional approach to the design and actual im-
plementation of optimistic simulation platforms consists in
having multiple LPs being run within a same single-threaded
simulation-kernel process (see, e.g., [6]). As a consequence,
the LPs hosted by this process are dispatched and run on
top of an individual CPU-core, according to a classical time-
interleaved mode. By this organization, the typical litera-
ture approach aimed at achieving effective simulation runs,
by optimizing the exploitation of the available computing
resources, is load balancing. This technique is based on mi-
grating the application load (i.e. LPs) amongst different
simulation-kernel processes while the run is in progress. No
other means to dynamically re-balance the load can be em-
ployed since each simulation-kernel process has fixed com-
puting power allocated to it, namely one CPU-core.

Clearly, this approach needs to rely on a distributed pro-
tocol in order to determine whether a re-balance action is
required. This typically maps onto a master/slave protocol,
with O(k) message complexity, where the master simulation-
kernel process gathers statistics on the current load profile
from the other k − 1 processes, and then notifies the new
configuration to be adopted, if any. Computing the current
load profile typically requires to sort the LPs according to
some reward metric (e.g. the percentage of non-rolled back
work) so to be able to determine which LPs need to be mi-
grated. This can be achieved with O(n · log n) complexity,
where n expresses the number of LPs.

However, beyond the above costs, actual re-balance ad-
ditionally requires reinstalling onto the destination process’
address space the image of any migrated LP. This operation
has per-LP latency ∆m whose lower bound is:

Ω(∆m) = δt ·

2
4Sstate +

NPX

i=1

Sievt

3
5 (1)

where we denote with: δt the average per-byte transfer time
between source and destination simulation-kernel processes;
Sstate the migrating LP’s state size; NP the number of pend-
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ing events for the migrating LP; Sievt the size of the i-th
pending event for the migrating LP.

With the above lower bound, we do not intend to capture
aspects associated with, e.g., event-queue implementation
and related scan/update costs. We do not even include the
latency for transferring data needed to support correct re-
covery in case of rollback1. Anyway, by Equation (1), there
is a clear dependency between the actual cost for support-
ing re-balance and the complexity of the simulation model,
in terms of both size of the state of individual LPs to be
migrated and event density along the simulation time axis.

We hereby propose an orthogonal approach targeted at
optimistic PDES systems run on top of multi-core machines,
which is based on computing power (expressed in terms of
CPU-cores) dynamic reallocation over time towards the dif-
ferent active simulation-kernel processes. This is achieved
by scaling up/down the number of worker threads operating
within each kernel instance, depending on whether locally
hosted LPs increase/decrease their computing power de-
mand. Overall, we put in place a load sharing approach that
ultimately redistributes the whole simulation load across the
whole set of available computing resources, without the need
for actual migration of the LPs across the different kernel
instances. The redistribution rule is based in our proposal
on an innovative algorithm/model specifically targeted at
capturing resource productive usage in the context of opti-
mistically synchronized simulators.

Although this approach requires a distributed protocol
similar in complexity to the aforementioned master/slave
one, plus some local sorting of LPs’ related information, for
determining whether and how to reconfigure the system, it
does not pay any LP transfer cost upon system’s reconfigura-
tion. In fact, the only additional paid costs relate to worker-
thread suspension/reactivation (and associated cache refill),
which are anyhow not directly dependent on the aforemen-
tioned complexity of the simulation model (e.g. in terms of
event density along the simulation time axis).

Obviously, the final effectiveness of such an approach de-
pends on how well the worker threads can concurrently op-
erate within a same simulation-kernel process during nor-
mal execution phases. To this end, we also provide a refer-
ence architectural organization, based on a symmetric multi-
threading paradigm, which makes inter-thread synchroniza-
tion costs affordable. Further, we present and evaluate a
real implementation of our proposal within the open source
ROme OpTimistic Simulator (ROOT-Sim) package. By the
evaluation we demonstrate both the viability of the sym-
metric multi-threading paradigm, when actuated according
to our architectural indications, and the effectiveness of load
sharing, when supported via the proposed methodology.

The remainder of this article is structured as follows. In
Section 2 we provide the reader with an overview of core
aspects related to optimistic simulation. Work related to
our proposal is discussed in Section 3. The load sharing
methodology is presented in Section 4. The architectural
organization based on symmetric multi-threading is depicted
in Section 5. Experimental results are reported in Section
6.

1This data includes, e.g., already processed but uncommit-
ted events (which might be required to be reprocessed in
case of rollback of the LP after the migration phase) and
state log information to correctly reconstruct past LP’s state
snapshots onto the destination kernel-process.
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Figure 1: Reference architectural organization.

2. OPTIMISTIC SIMULATION OVERVIEW
The seminal paper in [13] provides basic principles un-

derlying the optimistic paradigm, including a reference ar-
chitectural organization, which we schematize in Figure 1.
Input and output message queues are used to keep track of
simulation events exchanged across LPs, or scheduled by
an LP for itself. They are typically separated for different
LPs, so to afford management costs. For the input queues,
these costs are related to both event insertions and, e.g.,
event move from the past (already processed) to the future
(not yet processed) in case of rollback. The input queue
is sorted by message (event) timestamps, while the output
queue is sorted by virtual send-time, which corresponds to
the local virtual clock of the LP upon the corresponding
event-schedule operation. The actual implementation of in-
put queues can be differentiated (e.g. heaps vs calendar
queues [5]), and possibly tailored to and/or optimized for
specific application contexts, characterized by proper event-
timestamp patterns (affecting the insertion cost depending
on the algorithm used to manage the queue). On the other
hand, insertions in the output queues occur only at the tail,
hence these queues are typically implemented as doubly-
linked lists, providing O(1) complexity for insertion opera-
tions. Also, deletions from output queues occur either at
the tail or at the head (again in O(1) time for the case of
double-linked lists). The former occur upon a rollback op-
eration. In particular, the output messages at the tail of the
output-queue with send-time greater than the logical time
associated with the causality violation are marked, sent out
towards the original destination in the form of anti-messages
— used to annihilate previously sent messages and inform
the original receiver of the occurred rollback2 — and then
removed from the output-queue. The latter are related to
memory recovery procedures, which we shall detail later on.

A messaging subsystem receives incoming messages from
other simulation kernel instances, the content of which will
be then reflected within the input queue of the destination
LP, locally hosted by the recipient kernel instance. Also,
this subsystem is used to notify output messages (i.e. newly
scheduled events) to LPs hosted by other kernel instances,
or the aforementioned anti-messages.

The state queue is the fundamental means for allowing a
correct restore of the LP state to a previous snapshot when-
ever a causality inconsistency is detected. The state queue
is handled by the state management subsystem, the role of
which is to save/restore state images. Additional tasks by

2Chained rollback can arise if the events to be annihilated
have already been processed by the destination LPs.
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this subsystem are related to (i) performing rollback opera-
tions (i.e. determining what is the most recent state which
has to be restored from the log), (ii) performing coasting
forward operations (i.e. fictitious reprocessing of interme-
diate events in between the restored log and the point of
the causality violation) and (iii) performing fossil-collection
operations (i.e. memory recovery, by getting rid of all the
events and state logs which belong to an already committed
portion of the simulation).

The Global Virtual Time (GVT) subsystem accesses the
message queues and the messaging subsystem in order to
periodically perform a global reduction aimed at comput-
ing the new value for the commit horizon of the simulation,
namely the time barrier currently separating the set of com-
mitted events from the ones which can still be subject to
rollback. This barrier corresponds to the minimum times-
tamp of not yet processed or in-transit events/antievents.
In addition, this subsystem cares about termination detec-
tion, typically by checking whether the new GVT oversteps
a given value, and is also in charge of triggering the fossil
collection procedure.

Finally, a CPU-scheduling approach is used to determine
which among the LPs hosted by a given simulation-kernel
instance must take control for actual event processing ac-
tivities. Among several proposals [22], the common choice
is represented by the Lowest-Timestamp-First (LTF) algo-
rithm [15], which selects the LP whose pending next-event
has the minimum timestamp, compared to pending next-
events of the other LPs hosted by the same kernel.

3. RELATED WORK
Given that we aim at optimizing the use of computing

resources in face of dynamism and fluctuations of the work-
load associated with the LPs, our work is naturally related
to literature solutions that have presented policies for load
balancing in the context of either conservative (e.g. [4]) or
optimistic simulation (e.g. [10]). As already hinted, the main
difference between our proposal and these works is that we
reassign computing power, instead of workload, across the
active simulation-kernel instances. Hence, our proposal can
be considered as orthogonal and complementary to the above
results, when considering that we target multi/many-core
machines, while the aforementioned load-balancing schemes
can be used for load-redistribution on distributed memory
systems (e.g. clusters).

Since we rely on an innovative architectural organization
based on symmetric multi-threading, our proposals has also
relations with proposals explicitly targeted at improving per-
formance of simulation systems by relying on concurrent
threads operating within a same process. As for HLA-based
simulation platforms (see, e.g., [17]), multi-threading has
been used to implement non-blocking interoperability ser-
vices across federations of simulators. The clear difference
from our approach is that multi-threading has been used
to implement sector-specific functionalities, while we use it
as a means to overtake differentiated operations (including
event processing), depending on dynamic variations of the
application level workload. In addition, to the best of our
knowledge, changes in the number of worker threads within
a process has never been used to perform dynamic optimiza-
tion in response to workload’s variations. It has only been
employed in master-slave simulation architectures to cope
with dynamic increase/decrease of the amount of available

computing resources (e.g. for simulation platforms running
on top of desktop grids [19]). However, in such a context,
concurrent threads operate on inherently partitioned data,
while we approach multi-threading in the presence of shared
data structures within the simulation-kernel process.

When considering solutions specifically oriented to im-
prove the performance of simulation platforms on multi-
core machines, one approach having relations with our pro-
posal can be found in [16]. However, this approach is tar-
geted at a specific architecture, namely the IBM cell pro-
cessor, while our proposal is general, thus being suited for
differentiated multi-core platforms. Also, the work in [16]
is oriented to optimize the simulation via task paralleliza-
tion schemes that are orthogonal to the power reallocation
scheme we present in this article. Similar considerations
can be made for other works which address the issue of im-
proving the performance of simulation systems via the ex-
ploitation of hardware parallelism offered by GPU architec-
tures (see, e.g., [11]). These approaches are mostly suited for
data parallelism while we deal with more general parallelism
schemes, which are proper of the PDES paradigm. Also, dy-
namic power reallocation across different simulation-kernel
instances is not targeted by those works.

The work in [7] has recently presented an approach for
improving optimistic simulations on multi-core machines via
the employment of a global schedule mechanism relying on
a distributed event queue. This proposal has been evaluated
with a multi-core machine comprising 8 cores. Differently
from this work, our proposal targets the traditional case
of local schedule, characterized by higher scalability thanks
to the avoidance of cross-kernel synchronization operations
while handling scheduling tasks, as we also show via experi-
mentation on a multi-core server equipped with a total of 32
cores. Similar considerations can be made when considering
simulation architectures like ThreadedWarped [18], which
uses a global priority queue.

4. THE LOAD SHARING APPROACH
Let us denote with Ctot the amount of available CPU-

cores, and let us assume that we have a set of Ktot ac-
tive simulation-kernel instances in the simulation run, with
Ktot < Ctot. Our first objective is to determine the amount
of CPU-cores Ci to be assigned to each kernel instance ki
(with i ∈ [1,Ktot]) for a given wall-clock-time window, so to
improve resource exploitation for fruitful processing.

In our proposal, the re-evaluation of Ci values is carried
out periodically, upon computing a new GVT value (or af-
ter a set of subsequent GVT computations) since it exploits
information on the event rate (committed events per wall-
clock-time unit) achieved by each kernel instance ki, which
we denote as evri. This quantity is a measure for the fruit-
ful (non-rolled back) amount of simulation work carried out
by each kernel instance. In an ideal scenario where the effi-
ciency is maximized (i.e. where the undone computation is
negligible), each kernel instance ki should use an amount of
computing power that suffices to execute exactly evri events
per wall-clock-time unit. In fact, an excess of computing
power could lead to over-optimism and hence to rolled back
computation, thus moving run-time dynamics far from the
above depicted ideal case. So the idea behind the determi-
nation of Ci values is to dynamically assign an amount of
CPU-cores to kernel ki which is proportional to the actual
requirements of ki for the achievement of its relative event
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rate, compared to the one by the other kernel instances. To
also take into account possible differences in the event gran-
ularity across the LPs hosted by different kernel instances,
which is the indicator of the real usage of computing power
for committing the events, the evri metric can be refined
by weighting it via the average CPU time required for pro-
cessing the committed events on a specific kernel instance
ki, which we denote as ∆i. Hence we express the weighted
event rate as wevri = evri ×∆i.

In other words, wevri values observed during the last wall-
clock-time period express the relative CPU requirements of
each kernel instance in order to carry out productive simu-
lation work, in relation to the activities of the other kernels
and to actual synchronization dynamics. Hence, assigning
a computing power proportional to the relative weighted
event rate would tend to lead to the situation where each
kernel instance allows advancing its LPs in simulation time
in a “synchronization suited” manner according to what the
other kernels are able to do on their own. This part of the
dynamic reallocation scheme would therefore tend to avoid
significant presence of overoptimistic kernel instances during
the various phases of the run.

It is anyway typical that performance can be further en-
hanced even in cases where the efficiency is already max-
imized (or optimized), for example by further reassigning
the computing power depending on the real weight of the
workload associated with the hosted LPs. As an exam-
ple, for loosely synchronized models, we may have two or
more groups of LPs that do not interact, or stop interacting
during the run (hence eventually not directly impacting syn-
chronization and efficiency), exhibiting different speed of ad-
vancement in simulation time due to, e.g., different weights
of the corresponding events in terms of CPU requirements.
In such a case, the completion of the simulation would be de-
layed by the slowest group. Therefore, within the dynamic
scheme for resource assignment, an increase of computing
power should also be envisaged for all those kernel instances
exhibiting larger CPU requirements to advance in simulation
time. To this end we include in our scheme the parameter
wctai, which indicates the wall-clock-time required by kernel
ki to advance a single simulation time unit.

Finally, the amount of cores Ci to be assigned to ker-
nel ki should anyway be bounded by the maximum degree
of parallelism that can be accomplished by ki, which is a
function of the amount of locally hosted LPs. In fact, each
LP is an intrinsically sequential entity, which is not further
parallelized, thus not being allowed to simultaneously use
multiple CPU-cores for its execution.

Overall, we devise the following rules for dynamically defin-
ing the amount of CPU-cores to be reassigned to each kernel
instance ki in order to optimize the usage of the available
computing power:

1. For each simulation-kernel instance ki we compute the

parameter αi =
wevriP

j∈[1,Ktot]
wevrj

.

2. A first estimation of Ci is then evaluated as bCi = max(bαi·
Ctotc, 1).

3. For each kernel instance ki for which the condition bCi ≥
Ni is verified (where Ni identifies the number of LPs
hosted by ki), then Ci is definitively set to Ni. In fact,
additional CPU-cores could not be effectively exploited
for parallelization of the locally hosted LPs.

4. At this point, there could be some CPU-cores left to be

assigned, which we decide to assign on the basis of (A)
the request for allocation remainder of kernel ki, namely

ri = max([(αi · Ctot) − bCi], 0) and (B) the parameter
wctai. In particular, we order the kernels for which the
finalization of Ci values still needs to be performed (so the
ones already finalized in point 3 are excluded) according
to decreasing values of the product ri ·wctai, and we as-
sign the remaining CPU-cores according to a round-robin
rule following the priority defined by such an ordering.

Each of the above steps is an implementation of the ra-
tionales discussed above in terms of suited CPU-core as-
signment vs specific performance aspects. However, once
selected final Ci values, we need to determine how to opti-
mize the usage of the assigned CPU-cores within each single
simulation-kernel instance ki. This problem translates into
defining which LPs locally hosted by ki needs to be assigned
to each of the Ci worker threads running in parallel within
kernel instance ki. We will refer to the assigned LPs as be-
ing affine to the worker thread, and still scheduled for event
execution along this thread according to LTF.

For the j-th LP hosted by kernel ki, which we denote as
LP jki , we compute the total amount of CPU-time required
for committing its events during the last observation period.
We refer to this metric as cpuj

ki
. The maximum cpujki value

across all the locally hosted LPs represents in our scheme a
reference knapsack, and the corresponding LP jki is assigned
to a given worker thread. Then we exploit the greedy ap-
proximation approach proposed by George Dantzig in [8]
which allows a maximum “overflow” of about 30% over the
reference knapsack, in order to build the other knapsacks of
LPs (hence knapsacks characterized by sums of cpu∗ki val-
ues) to be assigned to the remaining worker threads. We
can do this by applying a variant of the original scheme,
where the knapsacks are filled according to a round-robin
approach. The procedure is then iterated until no more LP
needs to be further bind to any worker thread within ki.

As a preliminary note to the complexity analysis presented
in the subsequent section, the computation of wevri and
cpujki values can be embedded within the fossil collection
algorithm. In particular, while scanning the input queues of
the LPs for releasing the buffers related to the already com-
mitted portion of the simulation, per-event execution costs
(typical logged while processing the events within the same
buffers as a form of audit) can be accessed and accumulated
to determine the actual values of the parameters wevri and
cpujki . Hence, these values can be made available to the al-
gorithm supporting the above described load sharing policy
with no variation of the asymptotic cost of fossil collection.

4.1 Asymptotic Costs Analysis
Solving the load sharing model can ultimately rely on a

distributed master/slave protocol were every kernel instance
ki sends to the master kernel a message containing the values
of the parameters wevri and wctai, and the master kernel
sends to ki a message notifying the newly computed value of
Ci. This entails O(Ktot) message complexity, namely linear
complexity vs the number of kernel instances.

The local execution cost at the master kernel for the deter-
mination of Ci values, associated with steps 1–4 described
above, relates to performing per-kernel analysis of the statis-
tics collected during the master/slave communication phase,
and to sorting the kernel instances on the basis of ri ·wctai
values (see step 4). This leads to an asymptotic O(Ktot ·
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log Ktot) complexity.
Once received the notification of the computed Ci value

from the master, every kernel instance ki must sort the lo-
cally hosted LPs on the basis of cpujki values, which entails

O(Ni · log Ni) time, and must then solve a 0-1 Knapsack’s
problem, which can be done in pseudo-polynomial time in
the number Ni of locally hosted LPs. Hence we get an over-
all cost of O(Ni · log Ni) for local operations to be executed
on each simulation kernel instance ki.

Given that Ni ≥ 1, we get
P
i∈[1,Ktot]

Ni ≥ Ktot, hence

O(Ktot · log Ktot) is bounded by O(Ntot · log Ntot), where
Ntot represents the sum of individual Ni values, namely the
total amount of LPs within the run.

In the end, we get that the determination of the new con-
figuration can be achieved with linear message complexity,
vs the number of kernel instances, and O(n · log n) local
processing complexity vs the number n of LPs within the
simulation model. This is the same complexity as for typ-
ical load balancing schemes, whose asymptotic costs have
been discussed in Section 1. However, as already pointed
out in the same section, our load sharing approach does
not entail actual LP transfer operations, but only activa-
tion/deactivation of worker threads within the different ker-
nel instances. We remark again that the cost of this op-
eration does not directly depend on the complexity of the
simulation model, in terms of state size of the LPs and event
density in simulation time, as instead it occurs for LP trans-
fer operations proper of load balancing approaches.

5. ARCHITECTURAL ASPECTS
The core requirement for the effectiveness of the load

sharing approach, is related to how efficiently the different
worker threads running within the same simulation-kernel
process (hence within the same address space) can synchro-
nize with each other. Specifically, while different worker
threads inherently execute according to data partitioning
paradigms once entered application mode (since, in accor-
dance with what specified in [13], each LP handles its own
application-level data structures), care must be taken to
avoid excessive synchronization costs when running house-
keeping tasks involving shared data structures.

Most notably, the shared data structures requiring fre-
quent updates, to be performed coherently via proper syn-
chronization mechanisms, are the input queues of the LPs.
Essentially, these data structures represent the core of cross-
LP dependencies, thus involving update operations caused
not only by the activities executed by the worker thread cur-
rently taking care of running the “queue-owner LP”, but also
by the activities carried out by worker threads taking care of
running other LPs. Synchronizing the access to these data
structures via a conventional locking mechanism would give
rise to scalability problems, exactly due to such a strict cou-
pling. Further, it would give rise to critical sections whose
duration would depend on the actual time-complexity of the
queue-update operation3.

3The access to the LPs’ state queues (either for saving or
restoring a state image) does not induce thread synchroniza-
tion issues since the need for state log/restore operations is
only an indirect reflection of cross-LP coupling, caused by
events scheduled across the LPs. In other words, a sin-
gle worker thread is allowed to safely operate on the state
queues of its affine LPs at any time, since it is the only
worker thread that can take care of dispatching those LP for

The architectural organization we propose in this paper
to cope with the reduction of synchronization costs borrows
from the design principles proper of multi-processor/multi-
core Operating Systems. Specifically, all the worker threads
that are active within the same kernel instance operate sym-
metrically, by having access to any housekeeping function-
ality. On the other hand, any housekeeping task potentially
crossing the boundaries of individual LPs’ data structures is
dispatched according to the same rules employed to struc-
ture modern Operating System drivers, by organizing it ac-
cording to top/bottom-half activities. Hence, whenever the
need for the execution of such a task arises, it (logically)
takes place as an interrupt to be eventually finalized within
a bottom-half module. More in details, upon the interrupt
occurrence, we do not immediately finalize the task, thus not
immediately locking (or waiting for the lock) on the target
data structure. Instead we simply execute a light top-half
module which registers the bottom-half function (and its pa-
rameters) associated with the interrupt finalization within a
per-LP bottom-half queue, resembling the Linux task queue.
The critical section accessing the bottom-half queue takes
constant-time since each new bottom-half associated with
the LP is recorded at the tail of the queue. Also, when the
bottom-half tasks currently registered for a given LP are
flushed, the corresponding chain of records is initially un-
linked from the corresponding bottom-half queue, which is
again done in constant time by unlinking the head element
within the chain from its base pointer4. Given that the
access to the LP bottom-half queue represents in our archi-
tectural organization the only frequently occurring synchro-
nization point, constant-time for the corresponding critical
sections directly leads to minimizing synchronization costs.

The schematization of our proposal is presented in Fig-
ure 2. Basically, our approach can be supported by rely-
ing on a spin-lock array, named LP LOCKS, having one entry
for each LP hosted by the multi-threaded simulation-kernel.
LP LOCKS[j] is used to implement the critical section for the
access to the bottom-half queue associated with the j-th LP
hosted by any kernel ki, namely LP jki , either for inserting
a new bottom-half task to be eventually flushed, or for tak-
ing care of unlinking the current chain, in order to flush the
pending bottom-halves.

Let us now depict when (logical) interrupts to be handled
via this type of organization occur. Basically, an interrupt
occurs as soon as any worker thread currently active within
kernel ki becomes aware of a new message/antimessage des-
tined to some locally hosted LP jki . In such a case, the worker
thread needs to accesses the j-th bottom-half queue within
a critical section that performs the insertion of the corre-
sponding message/antimessage delivery task. To provide
additional details, awareness by a worker thread of a new
message/antimessage destined to a locally hosted LP arises

either forward or rollback execution. Similar considerations
can be made for the output queues, which are essentially
used for auditing the messages sent out by the LPs in order
to undo them via antimessages in case of rollback. On the
other hand, the rollback operation and the generation of an-
timessages, via consultation of audit information within the
output queue, are performed (if requested) by the unique
worker thread for which a specific LP is currently affine.
4Actual data structure updates can be safely performed out
of the critical section, provided that a single worker-thread
at any time is in charge of flushing the bottom-halves of any
LP that is affine to it.
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Figure 2: The top/bottom-halves architecture.

in three different circumstances:
(i) The worker thread is currently running LP jki in forward

mode, and this LP produces a new event to be scheduled
for the locally hosted LP tki . Thus the worker thread enters
housekeeping for actuating the delivery of the correspond-
ing message to LP tki ’s input-queue. (Note that j might be
equal to t, in which case sender and receiver coincide.)

(ii) The worker thread is currently running the locally hosted
LP jki in rollback mode (hence it is performing housekeep-

ing operations associated with revealed causality errors),
which gives rise to the production of an antimessage des-
tined to LP tki , which again requires access to LP tki ’s input
queue for annihilating the original message. (Also in this
case we might have j = t.)

(iii) The message passing layer notifies the worker thread (e.g.
via an explicit message receive operation executed by this
thread according to a traditional polling scheme) about
a new message/antimessage incoming from some remote
kernel instance, which is destined to a locally hosted LP.
As shown in Figure 2, we logically mark all the above three

circumstances as interrupts, which will be treated homoge-
neously, and whose associated message/antimessage delivery
operation will be finalized via the bottom-half mechanism.

We note that spin-locks may anyhow exhibit non-minimal
costs since they require the corresponding operations to be
performed via sequences of atomic instructions (e.g. via
the LOCK prefix for the IA-32 instruction set). Addition-
ally, since they are shared and accessed by different threads,
cross-cache invalidation effects can be induced as soon as
one worker thread gains control on the spin-lock. To reduce
these effects, we devise the presence of an additional array of
flags LP FLAGS (see again Figure 2), where LP FLAGS[j] indi-
cates whether the corresponding bottom-half queue, namely
the one associated with the j-th locally hosted LP, is not
empty. LP FLAGS[j] gets updated within the critical section
protected by LP LOCKS[j], either when a new bottom-half
is inserted within the corresponding queue (in this case the
flag is raised), or when the queue is flushed (in this case
the flag is reset). However, LP FLAGS[j] is also accessed be-
fore trying to lock the bottom-half queue in order to avoid
spin-lock operations in all the cases where the queue would
reveal empty once accessed within the critical section lead-
ing to flush operations. The exact scheme is:

TOP-HALF: BOTTOM-HALF:
lock(&LP_LOCKS[j]); if (LP_FLAGS[j])
<log bottom-half>; if (try_lock(&LP_LOCKS[j])){
LP_FLAGS[j] = TRUE; <unlink bottom-halves>;
unlock(&LP_LOCKS[j]); LP_FLAGS[j] = FALSE;

unlock(&LP_LOCKS[j]);
<perform bottom-halves>;}

Being LP FLAGS[j] checked non-atomically wrt lock acqui-
sition when attempting to perform bottom-halves, we might
experience false negatives in case the top-half finalizes the in-
sertion of the bottom-half task concurrently with the check.
However, this does not represent a safety problem since the
flag will be rechecked periodically in subsequent attempts to
flush the corresponding bottom-half queue, thus eventually
falling in the case where the bottom-half queue is correctly
reflected into the state of the input queue of the destination
LP. Such a reflection might therefore experience only a de-
lay, which resembles delays introduced by traditional single-
threaded kernels while reflecting the content of cross-kernel
messages into the system state, which is typically affected by
the polling period according to which the messaging layer is
accessed for acquiring not yet delivered messages. Further,
as hinted in footnote 4, when allowing a single worker thread
at a time to manage flush operations for its affine LPs, no
false positives will ever be experienced.

6. EXPERIMENTAL RESULTS

6.1 Test-bed Platform
We have implemented the load sharing approach within

ROOT-Sim, an open source C/MPI-based simulation pack-
age targeted at POSIX systems [12], which implements a
general-purpose parallel/distributed simulation environment
relying on the optimistic synchronization paradigm. ROOT-
Sim offers a very simple programming model based on the
classical notion of simulation-event handlers to be imple-
mented according to the ANSI-C standard, which represent
application entry points for providing control to the LPs.
Also, it transparently supports all the services required to
parallelize the execution and offers a set of optimized pro-
tocols aimed at minimizing the run-time overhead by the
platform, thus allowing for high performance and scalabil-
ity. Among them we can mention an autonomic protocol for
application transparent and performance optimized manage-
ment of state log/restore operations [23].

The single threaded version of ROOT-Sim has been re-
cently enhanced with innovative transparent supports for
LP migration and load balancing [20]. This has been done
via the integration of a global memory manager, allowing to
manage virtual addressing on a global scale across different
simulation-kernel instances. This allows allocating memory
buffers belonging to the state of each individual LP such in
a way to be re-mappable onto the address space of remote
kernel instances, while correctly maintaining pointer-based
references. Further, this architecture also offers optimized
pack/unpack protocols for actual transfer operations of LPs’
information across different kernels upon migrations. Over-
all, this is a fully featured load balancing implementation
that we will consider as a reference for a comparative as-
sessment of our current load sharing proposal.

Integration of load sharing within ROOT-Sim, according
to the architectural indications provided in Section 5, has
been based on pthread technology, and on the reorgani-
zation of housekeeping data structures in order to (i) pro-
vide per-thread private data, and (ii) cache aligned memory
buffers, so to avoid false cache sharing across the worker
threads within the same kernel instance. The latter objec-
tive has been achieved by exploiting the posix memalign
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API, plus the usage of proper padding schemes allowing
cache alignment for sequences of records, such as arrays of
values. As for the accesses to the MPI layer, in our architec-
ture they can be symmetrically issued by any of the worker
threads operating within a given kernel instance. Given that
the MPI does not natively support multi-threading, we have
included a wrapper that synchronizes these accesses trans-
parently to the worker threads via the embedding of critical
sections protected by spin-locks.

As far as GVT computation and fossil collection are con-
cerned, we implemented a symmetric scheme in which the
worker threads operating within a same kernel instance run
a race. The race winner computes the local reduction and
interacts with the master kernel in order to determine the
globally reduced value representing the new GVT. However,
once defined the new GVT value, all the worker threads op-
erating within the same kernel instance are allowed to per-
form fossil collection operations in parallel, each one fossil
collecting obsolete information for its affine LPs.

Finally, the hardware architecture used for testing our
proposal is a 64-bit NUMA machine, namely an HP Pro-
Liant server, equipped with four 2GHz AMD Opteron 6128
processors and 64GB of RAM. Each processor has 8 CPU-
cores (for a total of 32 CPU-cores) that share a 10MB L3
cache (5118KB per each 4-cores set), and each core has a
512KB private L2 cache. The operating system is 64-bit
Debian 6, with Linux kernel version 2.6.32.5.

6.2 Application Benchmarks
To evaluate different aspects of the proposed load sharing

approach, and of the associated symmetric multi-threaded
architecture, we have conducted experiments on two differ-
ent application benchmarks, namely Personal Communica-
tion System (PCS) and Traffic, which are hereby described.

The PCS Benchmark. PCS implements a simulation
model of wireless communication systems adhering to GSM
technology, where communication channels are modeled in a
high fidelity fashion via explicit simulation of power regula-
tion/usage and interference/fading phenomena. The power
regulation model has been implemented according to [14].
Also, the evolution of the state of a cell has been modeled
by an individual LP.

Upon the start of a call destined to a mobile device, a
call-setup record is instantiated and linked to a list of al-
ready active records within that same cell. A record is re-
leased when the corresponding call ends or is handed-off. In
the latter case, a similar call-setup procedure is executed at
the destination cell. Upon call setup, power regulation is
performed, which involves scanning the aforementioned list
to compute the minimum transmission power allowing the
current call to achieve the threshold-level SIR value. Data
structures keeping track of fading coefficients are also up-
dated while scanning the list, according to a meteorological
model defining climatic conditions, accounting for climatic
variations with a minimum time granularity of ten seconds.

With this benchmark, we have performed a set of exper-
iments where each wireless cell (hence each LP) sustains
the same workload of incoming calls. Therefore this bench-
mark application has been used essentially to measure the
overhead imposed by the symmetric multi-threaded orga-
nization, while not taking advantages from its ability to
reallocate CPU-cores according to the load sharing policy
depicted in Section 4, just given the constancy of the work-

load insisting on each LP. We have run experiments with
1024 wireless cells, modeled as hexagons covering a square
region, each one managing 1000 wireless channels. Hence,
1024 LPs were included in each simulation run.

The Traffic Benchmark. Traffic implements a simulation
model for a complex highway system (at a single-car gran-
ularity), with topology expressed as a generic graph, where
nodes represent cities or junctions, and edges represent the
actual highways. Every node is described in terms of car
inter-arrival time and car leaving probability, while edges
are described in terms of their length. Every LP is in charge
of simulating a node or a portion of a segment, the length
of which depends on the total highway’s length and the se-
lected number of LPs.

Cars enter the system according to an Erlang probabil-
ity distribution, they can join the highway starting from
cities/junctions only, and are later directed towards high-
way segments with uniform probability. Whenever a car is
received, it is enqueued in the LP’s list of traversing cars,
and its speed is updated according to a Gaussian probabil-
ity distribution. Then, the model computes the time the
car will need to traverse the node, considering traffic slow-
downs and accidents which are again computed according
to a Gaussian distribution on the number of cars which are
currently passing through the node/segment. When an ac-
cident occurs, the cars are not allowed to leave the LP, until
the road is freed (the duration of the accident phase is de-
rived from a Gaussian probability distribution).

We have simulated the whole Italian highway network on
top of 1024 LPs. We have discarded the highways segments
in the islands in order to simulate an undirected connected
graph, which allows to have the actual workload migrating
overall the highway. The topology has been derived from [1],
and the traffic parameters have been tuned according to the
measurements provided in [21]. The average speed has been
set to 110 Km/h, with variance of 20 Km/h, and accident
durations have been set to 1 hour, with 30 minutes variance.
This model has provided results which are statistically close
to the real measurements reported in [2].

6.3 Results
For the PCS benchmark we have measured the cumulated

event rate, expressed as the amount of cumulated committed
events per wall-clock-time unit, for the case of different con-
figurations of the multi-threaded kernel. In particular, exe-
cutions with 4, 8, 16, 32 simulation kernels, each one starting
with 8, 4, 2, 1 worker thread(s) respectively, have been car-
ried out. As hinted, for PCS the workload is constant and
evenly distributed. Hence this benchmark has been adopted
to only assess the overhead by the load-sharing architecture
(not its ability to cope with dynamic workloads). We have
initially set the frequency of call inter-arrival to each cell
to the value τA = 0.8, which gave rise to average channel
utilization factor on the order of 30% and to average event
granularity on the order of 30 microseconds. This is rela-
tively fine, thus being a good test case for the evaluation of
the overhead by the load-sharing approach.

The results are shown in Figure 3, where all the samples
have been obtained as the average over 10 runs all done
with different pseudo-random seeds. One reported curve is
related to a classical single-threaded execution of the ROOT-
Sim simulation-kernel process, where load balancing is ex-
cluded, in which case we always have 32 kernel instances,
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Figure 3: Cumulated event rate for PCS.

each one running on top of a different CPU-core and man-
aging 32 out of 1024 LPs. This curve is used as the baseline
for the assessment of the overhead by the symmetric multi-
threaded organization, denoted as SMT in the plots.

The SMT configuration with 4 kernels (4k) shows the
maximal overhead (expressed by an increase in the wall-
clock-time required for committing the same amount of events
as for the single-threaded case), which is in the order of 20%.
Increasing the number of simulation kernels provides a re-
duction in the overhead, which looks about 13-15%. We
recall that these data have been achieved for relatively fine
event granularity, thus further supporting the viability of our
proposal, since applications exhibiting coarser grain events
would absorb better the actual overhead by the load-sharing
architecture, when implemented according to the proposed
symmetric multi-threading paradigm. Also, we note that
the parallel approaches provide super-linear speedup with
respect to a serial run of the same identical application level
code, relying on the calendar-queue [5]. This indicates how
our experimentation has been carried out in the context of
competitive parallel runs, thus being significant.

To further investigate on sources for the overhead, and to
more deeply assess dynamics associated with the symmet-
ric multi-threaded organization supporting load-sharing, we
report additional measurements. Specifically, in order to
provide quantitative data related to potential variations of
the execution locality and its effects, we focused on three
parameters: (a) The latency for taking a checkpoint of the
LP state; (b) The latency for reloading a previously taken
checkpoint in case of rollback; (c) The event execution la-
tency. The first two parameters are associated with memory
intensive operations, since each log or restore operation en-
tails spanning across the LP state or the log buffer in read
mode. They represent therefore a good test case for deter-
mining how efficiently these read operations are supported
thanks to the effects of the caching hierarchy. On the other
hand, the event execution latency is a reflection of the lo-
cality expressed by the application, and of how well such
a locality is supported via the caching system. These data
have been gathered by further expanding the set of values for
independent parameters. Specifically, the call inter-arrival
time τA has been varied between 0.4 and 1.2, thus gener-
ating application-level configurations with coarser and finer
event granularity, compared to the case τA = 0.8. Also,
we have performed experiments with multi-threaded kernel
configurations entailing up to 32 worker threads (in which
case a single kernel instance is active, constantly hosting
the 32 worker threads operating on top of the 32 CPU-cores

available within the architecture).
By the results, shown in Figure 4, we see how the event

processing cost does not show significant variations in any of
the considered configurations. At the same time, the cost for
taking or reloading a checkpoint provided by the symmetric
multi-threaded architecture is fairly comparable to the one
achieved by the single-threaded architecture for a number
of kernel instances greater than or equal to 8. On the other
hand, a more significant increase of the latency for taking or
reloading a checkpoint is noted for SMT configurations en-
tailing 4 or less kernel instances, where an increased number
of worker threads operate within each instance. This denotes
a slightly reduced locality and/or, for the case of checkpoint-
taking, an increase of thread contention while accessing the
malloc library for allocating buffers (whose internal syn-
chronization for thread-safeness relies on futexes). How-
ever, taking checkpoints is typically executed infrequently
(by properly optimizing the tradeoff between checkpointing
and restore overheads [23]), thus leading the associated in-
creased latency to be likely affordable. On the other hand,
the frequency of the checkpoint-reload operation depends on
the rollback pattern. Hence the increase of the checkpoint-
reload latency is expected to acquire some relevance only
in sub-optimal configurations, which may lead to frequent
rollbacks.

In relation to the latter metric, we report in Figure 5 the
observed values for the efficiency, namely the percentage of
non-rolled back events, for all the investigated configura-
tions. By these data we see how SMT configurations lead
to efficiency values quite close to those achieved with the
single-threaded architecture, except for the case where the
number of kernel instances is set to 2 or 1, having initial
number of worker threads set, respectively, to 16 or 32. From
these and the previously shown data, we get that one major
source for the overhead increase, when increasing the num-
ber of per-kernel worker threads over some threshold, resides
in the (slightly) increased delay in the delivery of messages
that are temporarily buffered into bottom-half queues. This
produces an execution scenario where the LPs advance in
a less closely related manner in simulation time (especially
when the level of concurrency within any kernel instance
gets increased, via increase of the number of worker threads
within that kernel instance), which in turn gives rise to an
increase of the likelihood of performing useless work to be
eventually rolled back due to out of timestamp order pro-
cessing, given the additional delay for incorporating events
into the event queues. This phenomenon is clearly more ev-
ident for the case of finer grain events (namely τA set to
1.2), since more events are allowed to be over-optimistically
processed while in transit messages are still buffered within
bottom-half queues. We note anyway that this drawback
could be addressed by complementary schemes that could
flush bottom-half tasks on the basis of, e.g., ad-hoc tem-
poral triggers (rather than exclusively relying on a polling
scheme, as in our current implementation), so to not induce
excessive delay in the final delivery of events/antievents. We
plan to investigate along this direction as future work.

Always in relation to the management of the top/bottom-
half scheme within the symmetric multi-threaded architec-
ture, we report in Figure 6 the observed per-event latency
for executing top/bottom-half code blocks (excluding the
final update of the input queues, which is independent of
synchronization dynamics proper of top/bottom-half man-
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Figure 4: Costs of log/restore operations and event processing for PCS.

agement). As hinted, whenever a top/bottom-half opera-
tion must be performed by some worker thread, a lock on
the bottom-half queue associated with the destination LP
must be taken (although in the case of bottom-halves pro-
cessing, the lock is only needed for de-queueing the events’
chain currently registered within the queue). If the number
of concurrent worker threads within a kernel instance grows,
the contention on the queues is increased, since the worker
threads synchronizing on this resource must wait for the lock
to be granted to them. At the same time, since a higher
number of available worker threads entails a higher number
of handled LPs per-kernel instance, this statistically reduces
contention on per-LP queues, so that this latency is expected
to grow, but up to a certain (not large) extent. This is con-
firmed by the experimental results, since we see that when
the number of per-kernel worker threads increases (i.e. the
number of kernel instances decreases), the top/bottom-half
cost increases just linearly and moderately.

The last set of data for PCS is reported in Figure 7, and
is related to the latency for the management of GVT op-
erations. As illustrated, in our symmetric multi-threading
paradigms, a single worker thread (the race winner) is al-
lowed to perform the local reduction operations on each
kernel instance. This is reflected in an increase of the GVT
latency when the number of worker threads per-kernel in-
stance gets increased (i.e. when the number of kernel in-
stances gets decreased). The only exception is for the SMT
configuration with 1 kernel, in which case, exchanges of
MPI-messages is avoided at all (given that a single kernel
instance is active, with 32 worker threads running on the 32
available CPU-cores), which leads to avoid message passing
overhead while supporting the global reduction (the GVT
latency does not exhibit significant reduction for τa = 0.4
due to the impact of the increased event granularity on the
latency of the race, observable especially with higher lev-
els of intra-kernel concurrency). Anyway, we note that the
absolute values for the latency of GVT operations is quite
limited, and does not represent a major source of overhead
especially when considering that GVT is typically computed
relatively infrequently (each 1 second in our experiments).

Concerning the results for the Traffic benchmark, which
are shown in Figure 8, we have compared the cumulated
event rate achieved by SMT configurations offering load
sharing facilities, with the one by classical single-threaded
operating mode of ROOT-Sim, with and without load bal-
ancing facilities activated, and with the one related to serial
execution of the same application-level software running on
top of a calendar-queue scheduler. Unlike PCS, Traffic has a
highly variable load profile across the LPs, hence taking real
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advantages from dynamic resource-optimization schemes.
Again, the parallel runs provide super-linear speedup. Fur-

ther, compared to the single-threaded run with no load bal-
ancing, all SMT configurations provide speedup ranging be-
tween 40% (for the 4 kernels configuration) and 55% (for the
8 and 16 kernels configuration). The execution with 4 kernel
instances shows a reduced speedup due to several reasons:
(i) CPU-core re-assignment is more likely to map a worker
thread on a core which is not actually sharing any level of
cache; (ii) a worker thread can access remote memory on
the underlying NUMA machine with higher probability.

As for the execution with 32 symmetric multi-threaded
kernels, the speed down is in the order of 15%. In this con-
figuration no CPU-core re-assignment is possible (in fact,
each simulation kernel must have at least one worker thread
in order to proceed in the simulation run). Therefore, we
are again measuring the architecture’s overhead, which is
indeed comparable to the one shown when running the PCS
(balanced) benchmark. As for the single threaded operating
mode of ROOT-Sim, with load balancing facilities activated,
it provides a speedup in the order of 40% wrt the single-
threaded approach without load balancing. However, while
its cumulated event rate is comparable with the 4 kernels
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SMT configuration, the 8 and 16 kernels SMT configura-
tions, thanks to the offered load sharing facilities, are still
30% faster than the single-threaded configuration with load
balancing. This is a clear experimental support of the effec-
tiveness of our load sharing proposal.

7. CONCLUSIONS
In this article we have provided an innovative load sharing

approach for optimizing the usage of computing resources in
optimistic PDES systems run on top of multi-core machines.
We have defined a load sharing model suited for dynamically
determining the amount of CPU-cores to be assigned to each
instance of the simulation-kernel process, in order to sustain
the whole workload associated with the locally hosted LPs.
A symmetric multi-threaded architectural organization has
been also devised as a means for supporting load sharing in
practical contexts. Further, a real implementation has been
provided and experimentally assessed.
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