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ABSTRACT
The advent of multi-core machines has lead to the need for revising the architecture of modern simulation
platforms. Specifically, recent proposals attempted to explore the viability of load-sharing for optimistic
simulators run on top of these types of machines. In this article, we provide an extensive experimental
study for an assessment of the effects on run-time dynamics provided by a load-sharing architecture that
has been implemented within the ROOT-Sim package, namely an open source simulation platform adhering
the optimistic synchronization paradigm. The experimental study, which is essentially aimed at evaluating
possible overheads by the load sharing architecture, has been based on differentiated workloads allowing
us to generate different execution profiles in terms of, e.g. granularity/locality of the simulation events.

1 INTRODUCTION
Multicore/multiprocessor machines have become a wide-spread reality, and the possibility to get access to
these platforms at low costs is growing up to a greater extent, placing the need for a systematic approach
concerning computational power usage, which is a key factor in high performance simulations. This has
posed the need for re-evaluating the design and the architectural organization of high performance simulation
platforms.

These platforms have historically been based on the partitioning of the simulation model into several
distinct objects, handled by Logical Processes (LPs) (Fujimoto 1990), which are allowed to concurrently
execute simulation events on, e.g., clusters of machines. On the other hand, the typical organization of
the underlying simulation-kernel layer has been based on a multi-process paradigm, where each process
runs in single-threaded mode and schedules its locally hosted LPs for event execution according to a
time-interleaved scheme, resembling CPU-scheduling schemes typical of operating systems’ technology
targeted at single-core machines. For this type of organization, (dynamic) unbalance of the workload,
associated with (dynamic) changes of the computational power demand across the LPs, has been tackled
via load-balancing approaches targeted at migrating LPs from the overloaded simulation-kernel instances to
the underloaded ones. Examples of this type of approaches, showing differentiated levels of transparency
towards the application-level software, can be found in (D’Angelo and Bracuto 2009, Glazer and Tropper
1993, Carothers and Fujimoto 2000, Peluso, Didona, and Quaglia 2011)

On the other hand, the multicore/multiprocessor organization characterizing modern hardware plat-
forms offers new potentialities that could be fully exploited by abandoning the (simple) single-threaded
programming approach in favor of multi-threaded programming paradigms. Along this direction, a recent
achievement presented in (Jagtap, Abu-Ghazaleh, and Ponomarev 2012) has shown how the reshuffle of
multi-process optimistic simulation platforms to multi-threaded versions (particularly for the case of the
ROSS open source platform (Carothers, Bauer, and Pearce 2000)), can provide noticeable benefits in terms
of performance thanks to the optimization of cross simulation-kernel communication. In particular, the
conjunction of (a) the usage of shared-memory to support message passing and (b) the reliance on a coherent
view of virtual-addressing across the threads operating within a same process (each one implementing an
instance of the simulation-kernel), has lead to a significant reduction of the amount of data to be copied
when transmitting/receiving a message. However, the architectural organization proposed in (Jagtap, Abu-
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Ghazaleh, and Ponomarev 2012) still relies on the traditional view according to which one instance of the
simulation kernel runs as a single thread, thus having (at most) a single CPU-core as the computational
power assigned to it. Another attempt has been presented in (Li-li, Ya-shuai, Yi-ping, Shao-liang, and
Ling-da 2011) where a global scheduling mechanism (based on a centralized event queue) is exploited in
order to assign simulation work (i.e., event processing on different LPs) to different active threads within
the same platform. However, this approach may suffer from reduced scalability, thus being suited for
contexts where a reduced number of CPU-cores is available (it has been evaluated with no more than 8
CPU-cores).

A more recent advance we have proposed in (Vitali, Pellegrini, and Quaglia 2012a) introduces a paradigm
shift in the design of optimistic simulation kernels by providing a reference architecture based on a symmetric
multi-threaded approach. Here, each instance of the optimistic simulation-kernel is able to run multiple
worker threads, which can take care of the execution of whichever locally hosted LP. According to this
organization, the number of worker threads within each kernel instance can be dynamically scaled up/down
in a seamless manner, which opens the possibility for a new approach to the usage of the computational
power. Specifically, for dynamically changing computational requirements across the LPs, re-balanced
runs can be achieved by scaling down the amount of worker threads operating within under-loaded kernel
instances and scaling up the number of worker threads operating within over-loaded instances. Hence,
load-sharing policies are actually pursued, meaning that the whole computational load is shared across all
the available CPU-cores which are dynamically bind to one kernel instance or the other depending on the
aforementioned changes in the application requirements (and associated amounts of worker threads per
kernel instance). Overall, with this approach LPs’ migration facilities are no more mandatorily required
in order to optimize resource usage in multicore/multiprocessor contexts, since the load-sharing approach
exploits the orthogonal concept of computational power migration at the simulation-kernel level. This
can not only provide different (hopefully better) tradeoffs between housekeeping overhead and resource
exploitation for productive work, but can also help application transparency since the application programmer
will be no longer requested to provide application level modules for, e.g., relocating the LPs across different
simulation-kernel processes (hence across different address spaces), which is generally not transparently
supported except for a few advanced state management architectures (Peluso, Didona, and Quaglia 2011).

Early experimental data have shown how the load-sharing architecture depicted in (Vitali, Pellegrini,
and Quaglia 2012a), and implemented within the ROme OpTimistic Simulator (ROOT-Sim) package
(Quaglia, Pellegrini, and Vitali 2011), namely an open source general purpose simulation platform adhering
to the optimistic synchronization paradigm, can provide low overhead (e.g. for synchronizing worker
threads executed within a same simulation-kernel instance) while allowing performance optimizations for
dynamically changing workloads.

In this article we complement such an early study by providing an extensive experimental characterization
of the effects of the load-sharing architecture when considering differentiated application-level settings,
which are essenitally aimed at determining potential sources of ovehrheads by the load sharing organization.
In particular, we report a set of measures that, in a complementary manner to the coarse grain measures
reported in (Vitali, Pellegrini, and Quaglia 2012a), allow a fine grain comparative analysis of the actual
run-time dynamics of the load-sharing architecture and of those achievable with a traditional multi-process
organization of the simulation platform.

The remainder of this paper is organized as follows. In Section 2 we provide an overview of the
organization of the load-sharing architecture. A discussion on the structure of the experimental assessment,
and on related target parameters to be observed, is provided in Section 3. The results of the experimental
study are presented in Section 4.

2 OVERVIEW OF THE LOAD-SHARING ARCHITECTURE
As hinted, the load-sharing architecture we have presented is based on a symmetric multi-threaded approach
where each worker thread running within each single simulation-kernel instance has the ability to execute
both in application- and kernel-mode, and can control and take care of the execution of whichever
locally hosted LP. This type of approach has relations with what happens in operating systems targeted at
multicore/multiprocessor machines, where the CPU-scheduler controlling a specific CPU-core is generally
allowed to dispatch whichever ready-to-run thread. On the other hand, different LPs may mutually issue
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Figure 1: Outline of the Top/Bottom-Halves Architecture.

interactions, e.g., via event scheduling services, that are actually supported by entering the kernel mode
along the thread taking care of running the LP that issues the interaction.

However, while the execution in user mode intrinsically relies on data partitioning, since, in compliance
with the original specification of the optimistic synchronization protocol, namely the Time Warp protocol
(Jefferson 1985), each LP operates on private (per-LP) data structures implementing its current state within
the simulation run, this is not the same when worker threads operate in kernel mode. In particular, kernel-
mode execution may require that a worker thread taking care of running LPa needs to access the kernel
level meta-data associated with whichever locally hosted LPb, e.g., the event-queue associated with LPb,
given that LPb may figure out as the recipient of an issued interaction, namely a newly scheduled event
from LPa. Depending on whether a different worker thread is allowed to concurrently operating in kernel
mode exactly on that queue, which is the case for the symmetric organization, a critical section must be
guaranteed, requiring some form of synchronization. We note that, depending on proper dynamics related to
the specific simulation model, such a situation may occur frequently, thus imposing the need for a properly
tailored management of synchronization aspects within the symmetric multi-threaded organization.

In order to prevent kernel-level synchronization phases from becoming a bottleneck, in our load-sharing
proposal we have devised that each cross-LP interaction logically represents an interrupt-event, which does
not get atomically finalized upon its acceptance, hence avoiding the need for acquiring locks in target data
structures according to a possibly adverse timing (e.g. when the data structure is already locked for the
finalization of a concurrently issued interaction). Instead, the finalization of the interaction takes place by
adhering to a top/bottom-half scheme, resembling the scheme typically used for the implementation of
interrupt-drivers in operating systems targeted at multicore/multiprocessor machines.

A graphical representation of the outcoming architecture is provided in Figure 1. When an interaction
is issued, a lightweight top-half module is executed which only inserts a bottom-half task into a queue
associated with the destination LP, in order to allow finalization at a later instant of time, more conveniently
wrt synchronization. We note that an interaction to be treated according to the top/bottom-half scheme
may be issued in three different scenarios:

• When an LP runs in forward mode and produces events to be destined to other locally-hosted LPs.
• When an LP runs in rollback mode (i.e., the kernel layer is currently recovering its state due to the

occurrence of a causality violation). In this case an interaction associated with an anti-event might
be destined to some locally hosted LP (1).

• When the messaging layer locally notifies an interaction, namely an event or an anti-event, whose
source LP is hosted by a different simulation-kernel instance.

Basically, our approach can be supported by relying on a spin-lock array, named LP LOCKS, having
one entry for each LP hosted by the multi-threaded simulation-kernel. LP LOCKS[i] is used to implement
a fast critical section for the access to the bottom-half queue associated with the i-th LP hosted by the
kernel, either for inserting a new bottom-half task to be eventually flushed, or for taking care of unlinking
the current chain, in order to flush the pending bottom-halves.

With this organization, each worker thread can (in principle) take care of flushing the pending interactions
currently recorded within the bottom-half queue of any LP, which can be done at convenient time instants,
namely when no other worker thread is already doing this same job. In this way, wait-phases for exclusive

1An anti-event, also known as anti-message, is a negative copy used to annihilate a previously issued interaction, namely
an already scheduled event. Anti-events are used to propagate the effects of causality errors across the LPs by retracting events
scheduled during the causal inconsistent portion of the simulation.
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accesses/updates to the kernel-level data structures associated with whichever LP get eliminated. The
support for this type of operation would simply consist in an additional per-LP spin-lock, accessible in
non-blocking mode. Successful non-blocking access would give rise to the possibility for the worker thread
to operate the flush of the bottom-half queue for that LP. On the other hand, unsuccessful non-blocking
access would simply tell the worker thread to skip taking care of that LP.

Additionally, in order to improve the efficiency of the caching hierarchy, we have proposed a temporary
binding mechanism that assigns each worker thread the responsibility to flush the bottom-half queues of
only a subset of the locally hosted LPs. Such a thread also has the responsibility to dispatch its bound
LPs for event execution in time-interleaved mode. In this way, direct cache contention while handling
user level or kernel level execution of the LPs may only occur for LPs bound to the same worker thread
(hence operating on top of the same CPU-core), depending on the interleave of the operations performed
by the worker thread (e.g., forward execution operations) related to one or the other of these LPs. In other
words, cache contention across different worker threads (e.g., mutual cache invalidation) may only occur in
relation to the access/manipulation of kernel-level synchronization data structures, such as the bottom-half
queues. In (Vitali, Pellegrini, and Quaglia 2012a), rules for periodically selecting the LPs to be bind to a
specific worker thread are defined, together with some rules adopted to reassign the computational power
(i.e., the CPU-cores) to the different simulation-kernel instances by scaling up/down the amount of worker
threads per instance. These are particularly suited for the case of dynamic workloads.

3 OVERVIEW OF THE EXPERIMENTAL ASSESSMENT
In this section we provide an overview of the experimental assessment we have performed of the load-sharing
architecture. Actually, what we will present are data related to a specific implementation of this architecture
which has been integrated within the ROOT-Sim package (Quaglia, Pellegrini, and Vitali 2011). As a
consequence, beyond the evaluation of the general mechanisms at the base of the load-sharing approach,
we will also focus on specific effects due to the integration of load-sharing within ROOT-Sim since, as we
will show, this imposes some constraints on run-time dynamics properly related to specific ROOT-Sim’s
subsystems.

Anyway, all the parameters that will be object of experimental assessment will be discussed in this
section, by also motivating why they have been selected in the analysis. To this end, a brief recall on the
structure and capabilities of ROOT-Sim are presented, so to provide the basis for easing the comprehension of
the discussion. As a final preliminary note, our reference architecture for the assessment will be represented
by the original multi-process version of ROOT-Sim.

3.1 The architecture of ROOT-Sim
ROOT-Sim is an open source C/MPI-based simulation package targeted at POSIX systems, which implements
a general-purpose parallel/distributed simulation environment relying on the optimistic (i.e., rollback-based)
synchronization paradigm. It offers a very simple programming model based on the classical notion
of simulation-event handlers (both for processing events and for accessing a committed and globally
consistent state image upon GVT (2) calculations), to be implemented according to the ANSI-C standard,
and transparently supports all the services required to parallelize the execution.

As for management and recoverability of LPs’ state, which are crucial aspects for the design of effective
optimistically synchronized environments, two main architectural approaches have been adopted. First,
dynamic memory allocation/release by the application, performed via the standard malloc library, are hooked
by the kernel and redirected to a wrapper. Second, the simulation platform is “context-aware”, i.e., it has an
internal state which distinguishes whether the current execution flow belongs to the application-level code
or the platform’s internals. In the former case, the hooked calls are redirected via the wrapper to an internal
Memory Map Manager (called DyMeLoR), which handles per-LP allocation/deallocation operations by
maximizing memory locality of the state layout for each single LP, and by maintaining meta-data identifying
the state memory map and making it correctly recoverable to past values (Toccaceli and Quaglia 2008).

2GVT - Global Virtual Time - represents the commitment horizon. No causality violation can even occur for processed
events whose timestamp falls before the current GVT value. GVT updates typically trigger memory recovery procedures, e.g.,
of obsolete state logs.
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Concerning GVT calculation, ROOT-Sim relies on an optimized asynchronous approach based on
a message acknowledgment scheme to solve the well-known transient message problem. Within this
scheme, each kernel instance keeps track of all the messages sent to the other instances in an aggregate
manner (i.e., via counters). Also, to reduce the communication overhead, each instance sends cumulative
acknowledgment messages according to a window-based approach. Finally, to overcome the simultaneous
reporting problem, each kernel instance temporarily stops sending acknowledgment messages during the
execution of the GVT protocol.

ROOT-Sim also supports a very peculiar service that, once a new GVT value is available, transparently
rebuilds a Committed and Consistent Global Snapshot (CCGS), formed by a collection of individual LPs’
states (Cucuzzo, D’Alessio, Quaglia, and Romano 2007). This occurs via update operations applied to local
committed checkpoints of individual LPs so to eliminate mutual dependencies among the final-achieved
state values. Once the CCGS is built, each LP gains control via an ad-hoc callback within the API, by
also having access to the copy of its state image belonging to the CCGS. Such a service can support, e.g.,
termination detection schemes based on global predicates evaluated on a committed and consistent global
snapshot.

3.2 Evaluating the effects on caching and memory accesses
It is clear that the different internal organization of the load-sharing architecture can impact locality, which
may give rise to variations of the effectiveness of the caching hierarchy. This may occur, e.g., due to
the presence of kernel-level data structures shared across multiple threads, which are instead avoided in
traditional multi-process platforms. In addition, we note that concurrent accesses can produce a strong
impact on bus contention, due to locking operations needed for synchronizing threads’ execution in critical
sections. In order to provide quantitative data related to potential variations of the execution locality and
its effects, we have decided to focus on three parameters:

• The latency for taking a checkpoint of the LP state.
• The latency for reloading a previously taken checkpoint in case of rollback.
• The event execution latency.

The first two parameters are associated with memory intensive operations, since each log or restore
operation entails spanning across the LP’s state or the log buffer in read mode. They represent therefore a
good test case for determining how efficiently these read operations are supported thanks to the effects of
the caching hierarchy.

On the other hand, the event execution latency is a reflection of the locality expressed by the application,
and of how well such a locality is supported via the caching system. Hence we have decided to include
also this parameter in the assessment of the effects of the load-sharing architecture.

In addition, we have decided to measure scheduling operations’ latency in order to assess the effects of
multithreading on data structures which are sparsely accessed during the simulation’s execution. We have
explicitly decided to rely on a O(n) Shortest Timestamp First (STF) scheduler, which determines which is
the next event to be processed by going over every LP’s input queue for selecting the event associated with
the minimum LVT among the pending events for all the LPs currently hosted by the simulation kernel. We
consider this to be a significant measure for a large set of operations which are essential in a simulation
platform, such as message queues scanning, log chains traversing, and other ones which rely on many data
structures, thus providing a viable study to assess optimistic simulation platform’s access pattern operations’
dynamics.

3.3 Evaluating the impact on MPI operations
If LPs’ interaction is related to those hosted by different kernels, instead of relying on the top/bottom-half
scheme, a message is presented to the MPI layer. Given that MPI does not support multi-threading, accesses
have been serialized by exploiting again critical sections supported via spin-locking. The same has been
done for probing MPI and issuing message receive operations by the worker threads, which are ultimately
reflected in the execution of a top-half module (see again Figure 1).
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Clearly this approach may induce delays on the worker threads when compared to the multi-process
scheme. However we note that when the kernel is organized according to the multi-threaded scheme,
we expect a reduced amount of interactions to be handled via MPI. This is because, once fixed the total
amount of threads (and hence of CPU-cores) running the simulation platform, in either multi-process or
multi-threaded mode, there is a non zero likelihood that two LPs hosted by different kernel instances within
the multi-process organization are hosted by the same kernel instance when running in multi-threaded
mode. Hence the mutual interactions between these LPs will not require passing via MPI, instead they will
be handled via the top/bottom-half architecture.

Overall, to account for the above effects we have decided to evaluate:

• The time spent while interacting with the MPI layer.
• The time spent while managing the data structures supporting interactions via the top/bottom-half

architecture, which, we recall, might include the time spent while synchronizing concurrent worker
threads within the access to bottom-half queues.

A joint analysis of the two above parameters would allow understanding dynamics related to the actual
handling of the interactions across the LPs involved within the simulation model.

We note that a possible approach to reduce the synchronization costs in the load-sharing architecture
while interacting with the MPI layer would be represented by message aggregation. In fact, messages
(namely events and anti-events) destined to remote multi-threaded kernel instances could be aggregate
into local buffers and only periodically sent towards the destination. This can reduce the frequency of
interactions with the MPI layer, thus favoring a reduction of the overhead when considering the case of
synchronized accesses to MPI by multiple worker threads. Given that we have not yet adopted a similar
approach, for what concerns the interaction with MPI, the assessment we will provide can be related to a
kind of worst case architectural configuration.

3.4 Evaluating the impact on GVT and global snapshot operations
As for the computation of GVT, in the symmetric multi-threaded version of ROOT-Sim the GVT subsystem
has been modified in order to account, within the global reduction determining the new GVT value, for the
timestamps of events/anti-events that have not yet been reflected into the event queues of the recipient LPs
due to the fact that they are still pending within bottom-half queues. These events/anti-events represent a sort
of in-transit information, exhibiting similarities (and hence requiring similar management approaches) with
traditional in-transit messages travelling via the messaging subsystem (MPI in our case) across different
kernel instances.

Beyond the above issue, another aspect that required relatively significant intervention while integrating
the load-sharing approach within ROOT-Sim is related to the CCGS subsystem. As hinted, this subsystem
is in charge of reconstructing, upon GVT calculations, committed and consistent global states, formed by
collections of individual LPs’ states. These individual states are then passed in input to an application level
callback where the programmer is allowed to inspect the committed computation results and to perform
unrecoverable actions/operations, such as I/O.

In the original multi-process version of ROOT-Sim, each active thread, individually representing an
active kernel instance, is allowed to process those callbacks since they are intrinsically sequentialized along
the execution of that same thread. Instead, for the symmetric multi-threaded organization, the active worker
threads are not all allowed to do this same job since this would lead to inconsistencies on the content of
the (default) file used for tracing the output on each kernel instance. As a consequence, we have decided
to synchronize all the worker threads operating within the same kernel instance in such a way to allow
a single worker thread to run CCGS facilities. This reduces the computational power of the load-sharing
architecture during the phases where the CCGS protocol is run. Hence we have decided to report in the
assessment the latency observed when running GVT plus CCGS protocols upon committing a new portion
of the simulation in order to quantify this phenomenon.
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3.5 Evaluating the effects on the overall rollback pattern
The proposed approach for sharing the load in terms of computational resources reassignment among
the various instances of simulation kernels being run might affect rollback patterns. In fact, since a
rollback operation happens upon receiving an out-of-order event to be executed, we note that load-sharing
architectures can benefit from the fact that usually the gap between different LPs’ local clocks is due to a
different workload being processed. Therefore, if the workload is dynamically redistributed evenly among
the various simulation kernel instances being run, since events’ scheduling is performed according to a
STF policy, local clocks are expected to diverge less, and in case a rollback operation must be performed,
the rollback length (i.e., the amount of executed events which must be undone in order to reach the correct
LVT to restart the execution from) is expected to be reduced.

In order to evaluate the secondary effects by our architecture on the rollback pattern, we have explicitly
measured:

• Rollback probability, measured as the ratio between rollback operations and executed events.
• Rollback length, expressed in average number of undone events
• Efficiency, which is measured as the ratio between committed and executed events.

4 EXPERIMENTAL RESULTS

4.1 Benchmark Applications and Setting
In order to significantly benchmark our load-sharing architecture and to show the actual costs of internal
operations and data structures accesses supporting our load-sharing simulation kernel, we have relied on
the PCS (Personal Communication Service) simulation model, thoroughly described in (Vitali, Pellegrini,
and Quaglia 2012b)), a parameterizable GSM communication model — explicitly modeling cells’ response
upon different call arrival rate — which produces a workload relatively uniform across the various LPs,
with a communication pattern which involves sending messages only to each LP’s neighbours.

Calls inter-arrival time (τA) is exponentially distributed, and average duration is set to 2 minutes.
Three different configurations of the model have been executed, namely with τA set to 0.4, 0.8, and 1.2
respectively, to achieve channel utilization factor on the order of 35%, 15%, and 10% respectively, while
the residence time of an active device within a cell has been set a mean value of 5 min and follows the
exponential distribution.

For the above scenario, we have run experiments with 1024 wireless cells, modeled as hexagons
covering a square region, each one hosting 1000 wireless channels. The checkpointing interval χ has been
set to a value of 20, in order to avoid fluctuations in the resulting assessment, due to self-adjusting policies,
e.g., autonomic ones. In order to clearly show the actual overhead due to the load-sharing architecture,
we have run our experiments in a static fashion, i.e. by forcing the power reassignment procedure within
our kernel not to modify the initial even allocation of worker threads to kernel instances. This allows us
to check what is the overhead associated with monitoring, managing, and reassignment operations without
any benefit from the actual load sharing approach.

We have run our set of experiments on a HP ProLiant 64-bit NUMA server equipped with four 2GHz
AMD Opteron 6128 processors and 64GB of RAM. Each processor has 8 cores (for a total of 32 cores)
that share a 10MB L3 cache (5 MB per each 4-cores set), and each core has a 512KB private L2 cache.
The operating system is 64-bit Debian 6, with Linux Kernel version 2.6.32.5.

4.2 Results

4.2.1 Assessing Operation Costs
Top/Bottom Halves Processing Recalling that a higher number of worker threads is related to a

lower number of concurrent kernel instances, since the number of LPs handled by the simulation system
is constant, the logical contention on data structures increases.

In order to ensure correctness, whenever a top/bottom half operation must be performed by some worker
thread, a lock on the per-LPs queue must be taken (although in the case of bottom-halves processing, the
lock is only needed for dequeueing an event from the list). If the number of concurrent worker threads
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grows, the contention on the queues is increased, since the worker threads synchronizing on this resource
must wait for the lock to be granted to them. At the same time, since a higher number of available
worker threads entails a higher number of handled LPs, this statistically reduces contention on per-LP
queues, so that this latency is expected to grow, but up to a certain (not large) extent. Additionally, in our
implementation we explicitly relied on pre-allocation for reserving buffers used to keep track of bottom
halves. This choice is guided by the fact that relying on the malloc library to allocate nodes can result in
a costly operation when executed in a multi-threaded environment, since its internal synchronization relies
on futexes. If the size of the pre-allocated buffer is well-tuned, the contention on top-half registration is
reduced to the minimum.

In Figure 2 we show the per-event latency related to the management of the top/bottom halves. By the
plots we see that when the number of per-kernel worker threads increases, the related cost increases just
linearly and moderately, given the above considerations.

Scheduling In Figure 3, the per-event latency related to scheduling operations is provided. By the
plots, we can see that the non-multithreaded implementation (which we refer to as ”Single“) shows a latency
which is smaller than the load-sharing one on the order of 15%. This small overhead is related to the fact
that the load-sharing architecture implements a mapping between LPs handled by a certain worker thread
and the actual thread. In order to access data structures related to LPs to perform scheduling operations,
a worker thread must first check which are the LPs it is currently handling. This is an operation which
is not executed in the non-multithreaded implementation. Nevertheless, this difference is not enough to
justify a 15% latency increase: In fact, we note that a significant additional difference between the two
implementation relies in the fact that the load-sharing architecture has a large use of locking primitives for
ensuring correctness. This entails a higher number of in-memory accesses for trying to acquire spinlocks,
which in turn increases memory bus contention3 and can affect procedures which access large data structures
sparsely, as the scheduling operation does.

Log/Restore In Figure 5(a) we present the single log operation cost. By the plots, we can see that,
independently of the workload, a higher number of worker threads (i.e., a smaller number of concurrent

3We note that this result is expected to be different on hardware architectures which rely on cache locking, i.e., a
cache-coherence protocol which ensures atomicity of in-cache operations by relegating accesses to the highest available levels,
therefore avoiding bus contention if data accessed by other threads is not related at all.
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kernel instances) presents a higher latency. In particular, the cost starts growing when running with 4
kernel instances, each one handling 8 worker threads, with the greatest difference on the order of 30% (15
µs). As mentioned before, we note that this latency increase wrt the number of available worker threads
is influenced to the aforementioned internal synchronization at malloc library’s level.

In Figure 5(b) the single restore operation latency is shown. Fluctuations between different workloads
are on the order of 25%, which is due to the fact that a higher number of threads entails a higher number
of in-cache buffers invalidations.

GVT and CCGS Computation Figure 4 shows the plots related to the GVT and CCGS execution
latency. As hinted in section 3.4, the load-sharing version of our simulation kernel allows one single worker
thread to perform CCGS operations, due to critical races on output which is allowed on the reconstructed
committed state.

At the same time, during the GVT operations a procedure for computing the actual workload which
the various kernel instances are following through is executed. This can be seen as a distributed agreement
among the kernels to determine which is the best number of worker threads active on each instance to
evenly share the current workload. Again, this procedure is based on MPI message exchanging.

By the plots, we can see that when running with a small number of worker threads the latency is
comparable with the one presented by the single-threated one. On the other hand, a larger number of available
worker threads entails a higher latency. This is related to the serialization required for consistently accessing
even queues which are needed to compute the GVT reduction and to evaluate the future (expected) LPs’
workload. Additionally, inter-kernel (MPI-based) communication is exploited to correctly follow through
the distributed agreement on the best-suited number of worker threads. We additionally note that when
running with 32 worker threads, the latency is reduced, since in this configuration there is no actual need
to rely on MPI for executing the agreement procedure, since data structures are already locally available.

Inter-Kernel Communication As for Inter-Kernel Communications, by the plots in Figure 6 we
note that the executions relying on 32 and 16 worker threads have a latency which is almost two and one
orders of magnitude greater than other configurations, respectively. This produces a smaller throughput,
as depicted in Figure 9. This is related to the fact that these configurations process a larger number of
committed and uncommitted events (as reported in Figure 14), since most of them are rolled back. In fact,
in Figure 12 we can see that these configuration show, among the others, the higher rollback probability,
along with a non-minimal rollback length. This produces a low efficiency (which is reported in Figure 13).

Therefore, the high Inter-Kernel communication exhibited by these configurations is related to the high
contention on the MPI component due to the large amount of message exchange which is related to a larger
number of events and anti-events generated (for the 16 threads configuration), to a higher number of GVT
phases as described in Section 4.2.1 (for both configurations), and for the higher number of MPI Probing
(for both configurations).

Events’ Execution In Figure 7 we show per-event execution latency. Although different values
of the τA parameter produce different events granularities (due to the different simulation model’s load,
which produces a higher amount of data to be processed for power allocation computation and SIR ratio
regulation), different configurations do not affect significantly the event’s latency, with small differences
in the order of 3-5%.
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This emphasizes the fact that the load-sharing architecture does not affects locality more significantly
than the non-multithreaded one, as far as events’ execution is concerned.

Residual Cost To complete the punctual assessment of our load-sharing architecture, in Figure 8
we present the plots for the residual cost, i.e. all the per-committed-event costs which do not appear in the
above measurements. Above all, the residual cost shows which is the time spent for scanning/processing
input/output-queues, and all other housekeeping operations needed to let the simulation correctly advance.
These operations are performed by worker threads on a per-LP basis, but entail accessing memory sparsely,
being subjected to secondary effects related to memory contention, as depicted in the previous analysis.

Among the housekeeping operations, the input queue management and the ack-handling subsystem
have a great importance. As described before, the former entails a call to the malloc library for reserving
memory buffers which are used to store messages destined to locally handled LPs. Concurrently requesting
memory buffers to the malloc library involves synchronization mechanisms based on futexes, which are
likely to increase the overhead related to the registration of messages. The latter is a subsystem which is
in charge of facing the well-known transient message issue for GVT computation, a window-based ack
mechanism has been adopted. The implementation relies on a lock for each time window (one per kernel),
which is acquired during an update operation. As can be seen by the plot, the highest latency is associated
with the two-worker-threads configuration. In fact, in this case there is a small contention wrt the number
of threads, but since there are 16 kernel instances running, there is a higher message passing which entails
trying to acquire the lock more frequently. The one-threaded configuration does not show this contention
effect, while increasing the number of threads reduces the need to update the window, thus reducing the
contention as well.

4.2.2 Operation Weights
To show how the so-far described costs impact on the overall performance of the load-sharing platform’s
execution, in Figure 11 we present an aggregation showing the percentage of time spent in the various
operations, normalized on committed event’s execution. By the plots we can see that the non-multithreaded
execution, independently of the workload, spends almost 70% of the time in events’ processing, as the
load-sharing configured with one worker thread does. This measure enforces the idea that the load-sharing
adds a minimal overhead wrt the non-multithreaded architecture.
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In addition, we can see that as the number of worker threads increases (i.e., we move towards a more
parallel configuration) the amount of time spent in the top/bottom halves processing decreases, due to the
fact that a larger number of LPs is handled by a single kernel instance. At the same time, inter-kernel
communication decreases since a higher number of events can be delivered to local LPs. The 32-worker-
threads configuration shows an amount of time spent in MPI operations which reduces to the minimum
the time spent for event processing, as was already clearly illustrated in Section 4.2.1.

The high residual time’s relevance in the load-sharing architecture running with more than one thread
is again related to the window-based ack mechanism, as was depicted in the previous section.

4.2.3 Global Assessment
To assess our proposed architecture globally, we have measured the cumulated event rate (expressed as the
amount of cumulated committed events per Wall-Clock-Time unit), which is a classical indicator of the
speed of the optimistic simulation run.

In particular, Figures 9 and 10 show the throughput for the benchmark configurations related to the τA
parameter set to 0.4 and 0.8, respectively. By Figure 10 we can see how the so-far discussed overheads
produce a decreasing throughput when the number of worker threads is increased (we remind that in this
configuration, the workload is constant and evenly distributed, and the rebalancing procedure is forced
not to reassign worker threads to kernel instances, in order to evaluate which are the intrinsic costs of the
presented architecture). As was explained before, the configurations associated with 16 and 32 threads
do not scale, particularly because of the high costs related to MPI operations, due to a large amount of
executed events which get discarded.

Figure 9 shows the configuration with a different (higher) workload. We note that some load-sharing
configurations present a throughput slightly higher than the non-multithreaded version. This is related to
benefits derived from a better exploitation of the caching architecture. Additionally, this is reflected in a
higher efficiency, as depicted in Figure 13. As hinted, in this paper our focus is on the overhead analysis
for the laod sharing arhitecure in balanced contexts. Experimental data related to the benefits from load
sharing with dynamically varying workloads can be found in (Vitali, Pellegrini, and Quaglia 2012a).

5 CONCLUSIONS AND FUTURE WORK
In this work we have presented a deep study on runtime dynamics related to a symmetric multithreaded
architecture for optimistic simulation kernels. In particular, the most typical issues related to concurrency
have emerged, along with some secondary effects which can significantly effect overall performance.

By our experimental results, we proved that the overhead associated with the hereby-proposed symmetric
architecture scales well wrt the number of worker threads used during the simulation, except for particular
aspects like MPI communication. Nevertheless, this particular overhead can be faced with complementary
techniques, like the one proposed in (Jagtap, Abu-Ghazaleh, and Ponomarev 2012).

Future work entails studying an ad-hoc rollback management in the multi-threaded environment, since
bottom-halves management can produce a delay in message delivery, thus entailing an efficiency reduction.
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