
Cache-Aware Memory Manager for Optimistic Simulations

Roberto Vitali
vitali@dis.uniroma1.it

Alessandro Pellegrini
pellegrini@dis.uniroma1.it

Gionata Cerasuolo

Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Sapienza, Università di Roma

ABSTRACT

Parallel Discrete Event Simulation is a well known technique
for executing complex general-purpose simulations where
models are described as objects (called Logical Processes)
the interaction of which is expressed through the genera-
tion of impulsive events. In particular, Optimistic Sim-
ulation allows full exploitation of the available computa-
tional power, avoiding the need to compute safety properties
for the events to be executed. Optimistic Simulation plat-
forms internally rely on several data structures, which are
meant to support operations aimed at ensuring correctness,
inter-kernel communication and/or event scheduling. These
housekeeping and management operations access them ac-
cording to complex patterns, commonly suffering from mis-
use of memory caching architectures. In particular, oper-
ations like log/restore access data structures on a periodic
basis, producing the replacement of in-cache buffers related
to the actual working set of the application logic, producing
a non-negligible performance drop.
In this work we propose generally-applicable design prin-

ciples for a new memory management subsystem targeted at
Optimistic Simulation platforms which can face this issue by
wisely allocating memory buffers depending on their actual
future access patterns, in order to enhance event-execution
memory locality. Additionally, an application-transparent
implementation within ROOT-Sim, an open-source general-
purpose optimistic simulation platform, is presented along
with experimental results testing our proposal on a special-
purpose version of the phold synthetic benchmark.

Categories and Subject Descriptors

D.1.3 [Program-ming Techniques]: Concurrent Program-
ming—Distributed Programming, Parallel Programming ; D.2.8
[Software Engineering]: Metrics—Performance Measures;
F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Parallelism and Concurrency ; I.6.8 [Simu-
lation And Modeling]: Types of Simulation—Discrete
Event, Parallel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2012 Sirmione – Desenzano del Garda, Italy
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms

Algorithms, Performance, Measurement

Keywords

Parallel Discrete Event Simulation, State Recoverability, Dy-
namic Memory Allocation, Cache Locality, ROOT-Sim

1. INTRODUCTION
Parallel Discrete Event Simulation (PDES) techniques are

well known for being a classical means to develop simula-
tion systems featuring high performance, which is essential
in several contexts, such as symbiotic systems or simulation-
based (time-critical) decision making. The core principle is
to partition the simulation model into several distinct ob-
jects, also known as Logical Processes (LPs) [9], which con-
currently execute simulation events on clusters, SMP/multi-
core machines and/or even desktop grids [14].

The main problem in the design/development of this type
of simulation platforms is synchronization, the goal of which
is to ensure causally-consistent execution of simulation events
at each concurrent LP [8]. In literature, several synchro-
nization protocols have been proposed, among which the
optimism-oriented ones (e.g. the Time Warp protocol [11])
are highly promising. With these protocols, block-until-
safe policies for event processing are avoided, thus allowing
speculative computation, and causal consistency is guaran-
teed through rollback/recovery techniques, which restore the
system in a correct state upon the a-posteriori detection of
consistency violations. This approach has been shown to ex-
hibit a performance which is relatively independent of both
the lookahead of the simulation model and the communi-
cation latency between the concurrently running LPs. It is
therefore viable and effective for a wide spectrum of both
application-specific and infrastructure-related settings.

Rollback/recovery techniques have been supported using
two different approaches, namely reverse computation [5]
and log/restore facilities [7]. The former is based on inverse
events implementing undo operations, which allow simula-
tion platforms to recompute a previous state having not to
rely on a history. The latter periodically saves in a separate
memory area a complete (or incremental) snapshot of each
LP’s simulation state so that, whenever the simulation must
be restarted from a previous Logical Virtual Time (LVT) be-
cause of executed-event time inconsistencies, older correct
states can be retrieved from a log chain. Memory buffers
containing simulation states’ snapshots are thus necessary
for ensuring execution correctness, but the probability they
will be actually used is directly proportional to the rollback
frequency (i.e., they have a smaller locality). A standard
memory allocator would assign buffers according to some

policy the purpose of which is not to control the way they
will be handled by caching architectures, an aspect which
we consider to be important in order to enhance the overall
throughput of the system. In fact, in-cache buffers replace-
ment can happen with a uniform probability when they are
allocated according to the policies the allocators are com-
monly built upon, yet replacing an access-intensive buffer
with a less-used one can produce a non-negligible perfor-
mance drop.
At the same time, Optimistic Simulation platforms must

take into account operations meant to support efficient exe-
cution of the simulation model, like releasing buffers related
to older state logs which are no longer needed in any roll-
back operation, in order to recovery memory (namely, the
fossil collection operation). Other support operations are
needed as well, e.g. selecting the next event to be executed
according to some scheduling policy. These housekeeping
and management operations are not directly related to sim-
ulation advancement, but are nevertheless necessary in or-
der to produce correct advancing simulations. Again, they
are likely to access data structures sparsely, inducing the
in-cache replacement of access-intensive data structures by
memory buffers the access pattern of which can be, in the
worst case, one-shot.
In addition, the current architectural trend shows us that

in the upcoming future computational frameworks based on
large clusters will be available in the wide. This scale up in
the number of available processing units will produce more
efficient executions due to a tighter match between the num-
ber of Logical Processes and the number of computational
resources. At the same time, processing units are showing
an always increasing size of caching subsystems. Summing
up these two factors, Optimistic Simulation platforms can
enhance the overall throughput by exploiting the greater
amount of per-LP available cache memory, due to the growth
of cache sizes and to the working set size reduction related to
the increase in available computational resources, and this
can be further enhanced by an aware cache usage.
In this work we address optimistic simulation throughput

enhancement from a new perspective. Data structures can
be divided into two major groups — access-intensive and
access-mild — the former ones producing a throughput in-
crease if they are likely to be found in the upper levels of
the caching hierarchy. We therefore propose the design and
the implementation of a Memory Management subsystem
which is aware of the actual access patterns (i.e., if buffers
will be used as an intensively or not wrt accesses) and tries
to create a separation between the cache memory locations
where the two groups are stored. In this way, operations
involving structures which are accessed more frequently will
find them in cache with a higher probability.
The remainder of this work is structured as follows. In

Section 2 we discuss Related Work. Section 3 provides a
preliminary discussion on problem formulation, along with
generally-applicable design indications. A detailed descrip-
tion of our implementation is presented in Section 4. Finally,
experimental data to assess the validity of our solution are
presented in Section 5.

2. RELATED WORK
In optimistic simulation platforms, memory usage strongly

affects the overall performance. In particular, state logs —
which are one of the fundamental means used for supporting
recoverability — strongly rely on memory management sub-
systems. Therefore, checkpoint/restore operations has been
addressed in several ways and from different perspectives in
literature, in order to minimize memory requirements which,

in turn, can directly/indirectly affect performance.
In the context of non-incremental checkpointing, several

solutions propose methodologies to define well-suited values
for the checkpoint frequency, or to determine optimal po-
sitions in case of sparse checkpoints, aiming at optimizing
the tradeoff between the costs of checkpoint operations and
coasting forwards, the latter cost being paid when a non-
checkpointed state value must be restored [7,17,20,23], and
in [16] a study on the effects on memory locality is provided.
The work in [19] presents a software architecture which tries
to reduce single checkpoint operation’s latency via the ex-
ploitation of programmable DMA engines on COTS hard-
ware for fast and (partially) non-blocking data copy between
the LP state buffer and the checkpoint buffer.

In our solution we address an orthogonal issue. In fact,
the aforementioned works propose methodologies and tech-
niques aimed at reducing logical memory usage — which in
turn can produce a benefit on caching architectures — while
we directly address memory management trying to enhance
physical memory locality in the overall execution, indirectly
focusing at the same time both on log/restore facilities and
on housekeeping operations.

Other proposals like the ones in [15, 25] aim at support-
ing dynamic memory management through preallocation of
memory buffers. Our solution is architecturally similar to
the one there proposed, in the sense that we support the
definition of simulation states at runtime via the invoca-
tion of standard malloc/free services as well, but we ad-
ditionally serve memory requests from different memory re-
gions depending on the future buffers’ access patterns, so
that access-mild data buffers will not collide with access-
intensive ones in the caching architecture, therefore enhanc-
ing data locality of the actual working sets of simulation
platforms/application-level software.

A completely orthogonal technique for supporting consis-
tency in case of a time-causality violation is reverse compu-
tation [5,13], which is based on the concept of reverse event
codes, that are able to associate undo operations with the
ones which produced changes in the simulation states with
no (or little) history requirements. Therefore, whenever a
previous simulation state must be restored, inverse events
are executed, until the previous logical virtual time associ-
ated with the target state is reached. Although this tech-
nique directly enhance data locality, as long as no cache in-
validation is generated from allocation/usage of log buffers,
it suffers from state-restore latency — which is directly pro-
portional to the rollback length — and is not generally appli-
cable, as events are not invertible in general. Our solution is
therefore viable as well in context where log/restore facilities
cannot be left out, due to the intrinsic nature of events.

Standard allocator implementations [2, 28] usually have
minimizing-space-by-minimizing-wastage (generally due to
fragmentation) as a primary goal, but explicitly address
fragmentation in order to increase locality, meaning that
memory chunks are kept as contiguous as possible, in or-
der to reduce page faults and cache misses. We have de-
signed our proposal starting from a different and orthogonal
perspective, explicitly addressing physical memory usage in
terms of caching-architecture exploitation efficiency, focus-
ing on the in-cache permanence of working-set-related data
structures.

Kernel memory allocators [1, 4] have a similar goal, un-
less using different approaches. In fact, they allocate stripe-
aligned memory buffers, and data structures tend to avoid
false-cache sharing explicitly. This can be effectively done
given the special-purposness of kernel implementations, while
we address this problem in general-purpose simulation envi-

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

Figure 1: Reference Optimistic Simulation Architecture

ronments, where false-cache sharing is addressed through an
implicit forced logical-addresses collision on the same cache
stripes depending on buffers’ access patterns.

3. PROBLEM FORMULATION

3.1 Optimistic Simulation Systems’ Fundamen-
tals

The optimistic PDES paradigm, as presented in [11], is
based on the partitioning of the simulation model into N
LPs, uniquely identified by a numerical code in the range
[0, N − 1], which are mapped onto K simulation kernel in-
stances. LPs handle disjoint individual states — the global
simulation state just results as the union of such individual
states (i.e., no shared portions are allowed) — according to
the simulation model implemented at application level.
Beyond discussing basic principles underlying the opti-

mistic paradigm, the seminal paper in [11] also provides
a reference architectural organization for optimistic simu-
lation systems, which we schematize in Figure 1. Specifi-
cally, we detail the suited set of data structures and func-
tionalities/subsystems which should be provided in order to
implement a platform relying on the optimistic paradigm1.
Input and output message queues are used to keep track of

simulation events exchanged across LPs, or scheduled by an
LP for itself. They are typically separated for different LPs,
so to afford management costs. For the input queues, these
costs are related to both even insertions and, e.g., event
move from the past (already processed) part to the future
(not yet processed) in case of rollback of a specific LP. The
input queue is sorted by message (event) timestamps, while
the output queue is sorted by virtual send-time, which cor-
responds to the local virtual clock of the LP upon the corre-
sponding event-schedule operation. As discussed by several
works (see, e.g., [21]), the actual implementation of input
queues can be differentiated (e.g. heaps vs calendar queues),
and possibly tailored to and/or optimized for specific appli-
cation contexts, characterized by proper event-timestamp
patterns (affecting the insertion cost depending on the algo-
rithm used to manage the queue). On the other hand, out-
put queues are typically implemented as doubly-linked lists
since insertions occur only at the tail (i.e. according to non-
decreasing values of the local virtual clock). Also, deletions
from the output queues only occur either at the tail or at the
head, the former occuring upon a rollback operation which
undoes the latest computed portion of the simulation at each
LP. In particular, all the output messages (i.e. the sched-
uled events) at the tail of the output-queue with send-time

1By subsystem we just mean a logical differentiation, not an
execution by a separate thread/process.

greater than the logical time associated with the causality vi-
olation are marked, sent out towards the original destination
in the form of anti-messages — used to annihilate previously
sent message and inform the original sender of the occurred
rollback2 — and then removed from the output-queue. The
latter are related to memory recovery procedures, which we
shall detail later on in this section.

A messaging subsystem receives incoming messages from
other simulation kernel instances, the content of which will
be then reflected within the input queue of the destination
LP. Also, it notifies output messages (i.e. newly scheduled
events) to LPs hosted by other kernel instances, or the afore-
mentioned anti-messages.

The state queue is the fundamental means for allowing a
correct restore of the LP state to a previous snapshot when-
ever a causal inconsistency is detected (i.e. the LP receives
a message with timestamp lower than its current simula-
tion clock, or an anti-message that annihilates an already
processed event)3. The state queue is handled by the state
management subsystem, the role of which is to save/restore
state images. Additional tasks by this subsystem are related
to (i) performing rollback operations (i.e., determining what
is the most recent suited state which has to be restored from
the log), (ii) performing coasting forward operations (i.e.,
fictitious reprocessing of intermediate events in between the
restored log and the point of the causality violation) and
(iii) performing fossil-collection operations (i.e., memory re-
covery, by getting rid of all the events and states logs which
belong to an already committed portion of the simulation).

The Global Virtual Time (GVT) subsystem accesses the
message queues and the messaging subsystem in order to
periodically perform a global reduction aimed at comput-
ing the new value for the commit horizon of the simula-
tion, namely the time barrier currently separating the set
of committed events from the ones which can still be sub-
ject to a rollback. This barrier corresponds to the minimum
timestamp of not yet processed or in-transit events. In ad-
dition, this subsystem cares about termination detection,
by either checking whether the new GVT oversteps a given
predetermined value, or by verifying some (global) predi-
cate (evaluated over committed state snapshots) which tells
whether the conditions for termination model execution are
met. Finally, this subsystem is also in charge of starting the
aforementioned fossil collection procedure.

Additionally, a CPU-scheduling approach is used to de-
termine which among the LPs hosted on by a given kernel
instance must take control for actual event processing activ-
ities. Among several proposals [18, 24], the common choice
is represented by the Lowest-Timestamp-First (LTF) algo-
rithm [12], which selects the LP whose pending next-event
has the minimum timestamp, compared to pending next-
events of the other LPs hosted by the same kernel. Variants
for LTF exist, among which a basic (stateless) approach re-
lies on traversing the pending next-events across the input
queues of all the LPs., and a stateful approach [22], is based
on reflecting variations of the priority of the LPs into the
CPU-scheduler state, so that the LP with then highest pri-
ority can be determined via a query on the current CPU-
scheduler state.

3.2 Design Indications for a Cache-Aware Mem-
ory Manager

2Upon their arrival, chained rollback can be generated in
case the the events carried by the originally sent messages
have already been processed by the destination LPs.
3We note that in case the aforementioned reverse computa-
tion technique [5] is used, state restore is not needed.

Cache misses have a profound impact on performance: A
miss requires accessing data directly from main memory, an
operation which is at least one order of magnitude more ex-
pensive even than the last level of the cache. Misses happen
due to limited cache size, with respect to the application
working set size, the latter being dependent on application
purpose, algorithm and implementation.
Optimistic simulation platforms usually suffer from a non-

local behaviour. Many operations, although necessary, un-
load from cache the most accessed data structures, pro-
ducing a non-negligible performance drop. In particular,
log/restore operations usually allocate and use buffers for
saving the current simulation state, producing a large in-
validation of in-cache buffers, but the probability that these
buffers will be used in the near future is near-zero. In order
to increase the portion of the working set which is resident in
cache, we propose to allocate these buffers in a way such that
they will collide between each other, leaving untouched cache
areas which are meant to contain data structures which are
likely to be used more frequently.
To this purpose, we have to discriminate between mem-

ory buffers which are access-intensive and access-mild. In
order to perform this classification correctly, we have to fol-
low through our analysis in a separate way for the applica-
tion level and the simulation kernel. By the discussion in
3.1, we clearly see that the only access-intensive data struc-
ture in the simulation kernel is the input message queue. In
fact, upon receiving a new message from whichever LP in
the system (an operation which is inherently frequent) the
queue must be scanned for insertion or rebalanced, accord-
ing to its actual implementation. Any other data structure is
commonly accessed at particular positions (e.g., the output
queue, which is accessed only at head or tail) or is scanned
completely yet infrequently (e.g., structures needed for GVT
reduction or for state management), therefore giving them
the possibility to invalidate cache buffers which can be ac-
cessed in the near future can make the system suffer from
secondary effects.
As far as the application-level software is concerned, an

a-priori decision is hard, given that we want to provide the
user with complete transparency, and considering that an
Optimistic Simulation platform should be general-purpose.
Therefore, the actual access pattern of the simulation model
cannot be inferred with no additional knowledge. Neverthe-
less, common simulation scenarios show models where sim-
ulation states mostly coincide with models’ working sets.
Considering that event execution relies only on the simula-
tion state to produce advancements in the simulation, we
can assume that the whole simulation state is composed by
access-intensive buffers.
This might seem a strong assumption, but in fact it pro-

vides no performance decrease even when the application
shows a completely non-local behaviour. In fact, if we sup-
pose that a simulation model has no locality at all in its
memory accesses, then cache usage will become similar to
the one shown by an application which makes no assump-
tions at all, therefore exhibiting a performance which we
expect to be similar to the one of a simulation not using our
Memory Manager, provided that most operations in the sim-
ulation kernel have a large (sparsely/infrequently-accessed)
working set as well, and are therefore cache-miss prone.
In order to increase the in-cache resident set, we propose

a Memory Management subsystem (oriented at support-
ing log/restore facilities) which partition the cache between
access-intensive and access-mild memory buffers, trying to
embank the cache-miss phenomenon proper of Optimistic

Simulation platforms. Basically, our proposal preallocates
a cache-aligned portion of the available address space and
serves memory requests in a differentiated way depending
on their expected access rate. In particular, a cache-aligned
preallocated memory region (which we call a stock) is di-
vided into portions (which we call blocks) the size of which
corresponds to the one of the lowest-level cache available in
the system. Memory buffer requests are served from fixed-
size chunks within memory blocks, and depending on their
access patterns, they are clustered in a way such that they
will be mapped to separate cache regions. Following this
policy, whenever the execution undergoes a housekeeping
or management operation, memory accesses will not invali-
date application-level data related to the actual simulation
working set in the caching architecture, thus providing an
enhancement in event execution data locality.

In order to reduce internal fragmentation, chunk size con-
tained into a memory block is determined at runtime upon
receiving a request. In this way, a memory block can con-
tain chunks of different sizes for the application and the
kernel levels. This is important because usually kernel- and
application-level memory requirements are different, simula-
tion models requiring smaller buffers and simulation kernels
requiring larger ones. If a memory block were to contain
same-sized chunks for both layers, internal fragmentation
could arise, since blocks containing application-level chunks
of a certain size would not likely contain any kernel-level
chunk of the same size, and vice versa.

Of course, in order to enhance even more cache locality,
memory chunks should be allocated in a cache-stripe aligned
way. This choice allows the underlying hardware architec-
ture to reduce the number of cache misses and, whenever
one is encountered, the number of memory chunks replaced
in cache is minimum, as a chunk is overlapped to more than
one stripe only if its size is greater than the stripe’s. We note
that if the whole preallocated memory is cache-aligned, then
this behaviour can be easily obtained by fine tuning chunks’
sizes as powers of 2. Given that the cache is partitioned
between access-intensive and -mild buffers, we note that to
avoid interfering with the alignment, the separation between
the two regions must be stripe-aligned as well.

The last general consideration we want to point out is
concerned about the transient behaviour at the beginning
of the simulation execution, which can in turn affect the
entire simulation as well (in the context of multicore cache
sharing). In fact, considering that simulation kernels are
handling memory addresses separately (i.e., there is no run-
time agreement between different kernel instances on how
the memory should be allocated), at the beginning of the
execution, different simulation kernel instances will start al-
locating buffers which will be mapped to the same cache
locations, as long as the memory manager’s behaviour is
deterministic. If the application-level execution pattern is
likely to allocate memory during the whole execution (i.e.,
the simulation state can grow indefinitely) and operate uni-
formly at random on it, this transient behaviour will produce
an increase in cache invalidations in the initial part of the
simulation. On the other hand, if the application level is
likely to allocate the whole simulation state at simulation
startup (i.e., an operational behaviour where the simulation
state is non-growing), this cache conflict related to alloca-
tion determinism will produce a bias in cache exploitation
which will produce a performance much smaller than the one
generated by a common allocator which tries not to optimize
with respect to the caching architecture, due to different ker-
nel instances’ (i.e., processes’) buffers being conflicting dur-
ing the whole simulation, and therefore producing a large

DyMeLoR

CCGS ManagerGVT Manager

Input/Output Queues Manager

Remote Messaging Manager

Scheduler
Intermediate Buffers

Call/Callback Interfaces

ProcessEvent
ScheduleNewEvent
OnGVT

Application Level Software

function calls

to libraries

MPI, Standard Libraries and Third Party Libraries

Third Party

Library Wrappers

hook
malloc/free

Figure 2: ROOT-Sim Architecture

number of cache misses. This problem can be faced by forc-
ing the memory manager to start serving memory requests
starting from different memory addresses according to the
actual simulation kernel instance it is running within, fol-
lowing some circular allocation policy. Therefore, if mem-
ory buffers start to conflict, the application has allocated
a larger amount of memory, and thus the probability that
the working set is greater increases, producing a reduced
number of cache-miss anomalies, under the assumption of
uniformly-at-random accesses.

4. IMPLEMENTATION WITHIN ROOT-SIM
We have implemented the cache-aware memory manage-

ment subsystem within the ROme OpTimistic Simulator
(ROOT-Sim), which is an open-source, general-purpose sim-
ulation platform developed using C/POSIX technology, based
on a simulation kernel layer that ultimately relies on MPI
for data exchange across different kernel instances. The plat-
form transparently supports all the mechanisms associated
with parallelization (e.g. mapping of simulation objects on
different kernel instances) and optimistic processing. In Fig-
ure 2, the internal architecture of ROOT-Sim is sketched.
The platform API exposed to the application program-

mer is quite simple, consisting of one service — namely
ScheduleNewEvent() — and two callback services to be im-
plemented by the application layer — ProcessEvent() and
OnGVT(). Execution semantics associated with this API are
as follows:

• ScheduleNewEvent() allows injecting a new simulation
event within the system, to be destined to whichever
simulation object, either locally hosted by the same
kernel instance, or by a different kernel instance. This
service allows specifying the destination object, simply
identified via a numerical code, the timestamp for the
event to be scheduled, and the event payload (as a flat
sequence of bytes).

• ProcessEvent() supports the actual processing of sim-
ulation events. This callback is used by the kernel to
give control to the application layer, in particular to a
specific simulation object, in order to execute a single
simulation event. The identity of the dispatched object
is specified by the numerical code uniquely identifying
the object within the system, which is passed as input
parameter to the callback together with the payload of
the event, and the event timestamp.

• OnGVT() allows passing control to the application layer
by also providing a committed snapshot of the simu-
lation object. This facility can be used to support
(periodic) audit of the object state trajectory while
the simulation run goes on, giving support for dis-
tributed termination detection [6]. Each simulation
object, once dispatched via this callback, can to indi-
cate to the run-time environment that the predicate
is locally verified on a consistent committed snapshot.
The environment, in its turn, can halt the simulation
once all the objects have provided positive indications
on the predicate.

As for management and recoverability of the state of the
LPs, ROOT-Sim offer a memory management subsystem
(DyMeLoR [15, 25]) which takes into account two main ar-
chitectural approaches. First, dynamic memory allocation
and release by the application, performed via the standard
malloc library, are hooked by the kernel and redirected to
a wrapper. Second, the simulation platform is “context-
aware”, i.e., it has an internal state which allows distin-
guishing whether the current execution flow belongs to the
application-level code or the platform’s internals.

Our new memory management subsystem has been specif-
ically implemented within DyMeLoR. Nevertheless, the in-
tegration into other optimistic simulation platforms can be
straightforward: In fact, our memory manager relies on stan-
dard linking facilities for wrapping standard library mal-
loc/free services, which allow users to leave the simulation-
platform and application-level implementation mostly un-
touched. In fact, as described before, our memory manager
relies on a malloc hooking facility, which allows to deter-
mine whether an invocation is issued by the application-level
software or the simulation kernel. By the considerations in
section 3.2, the application-level software must be associ-
ated with buffers which must be regarded as access-intensive,
while simulation kernel ones must be treated as access-mild.
The intrinsic context-awareness allows to perform this dif-
ferentiation in a straightforward way. The only additional
requirement is to mark the input message queue (which
is allocated by the simulation kernel) as access-intensive.
To this purpose, we provide a new API, namely inten-
sive_buffer(int true)) which can be used to override the
invocation-context-based decision, in order to mark a par-
ticular buffer returned by a malloc call depending on its pa-
rameter, allowing the simulation kernel to make the memory
management subsystem able to specify more information on
the future access patterns of its buffers. The solution hereby
proposed provides several overall benefits: i) the application-
level user can rely on our subsystem in a completely trans-
parent way, and ii) given the flexibility of the new API,
specially-designed kernel-level data structures which are rec-
ognized by the developers as being access-intensive, can be
marked accordingly, therefore providing a performance en-
hancement at kernel level as well.

The core data structure which allows the memory man-
ager to organize data buffers and serve application/kernel re-
quests is the memory_block, the structure of which is shown
in Figure 3. A memory_block is a portion of the stock buffer
currently being used for serving memory requests. Its size is
the same as the cache one, and it is logically divided into two
different regions, one for containing access-intensive buffer
and one of containing access-mild ones. The dimensions of
these two regions depends on the separation threshold, the
position of which is tunable at compile time. We note that
the position of the separation threshold is a factor which
can impact the overall performance. In fact, constraining
memory accesses within a reduced cache region might in-

memory_block

Access-Intensive Area

memory chunk

memory chunk

Separation Threshold

use_bitmap

metadata

use_bitmap

metadata

Access-Mild Area

Figure 3: memory_block structure

crease cache-miss frequency, if an access pattern entailing
reads/writes of many buffers belonging to the smaller region
is followed. We will discuss the impact of this in Section 5,
as specific tests have been performed in order to investigate
on the impact of this choice.
Both areas in a memory_block maintains some header in-

formation, namely some metadata and a use_bitmap, the
former being structured as follows:

struct memory_block {
void *init_address;
int num_chunks;
int busy_chunks;
size_t chunk_size;
int next_chunk;

};

The init_address field is a pointer which is initially set to
NULL, meaning that the current block has not yet been ini-
tialized for serving memory requests. In this case, we say
that the block is currently not valid. As depicted in Fig-
ure 3, chunks are allocated stacked upon each other, with
opposite growing direction depending on whether they are
regarded as access-intensive or not. In particular, whenever
a memory_block is validated because of a first malloc invo-
cation belonging to that memory_block, the memory man-
ager computes the number of chunks which will be available
to serve requests within that block — this information is
stored in the num_chunks field — and makes init_address
pointing to the first allocable chunk.
The use_bitmap shown in Figure 3 is a compact data

structure which allows the memory manager to fast check
whether a memory chunk has already been used for serv-
ing a request. When a memory allocation is executed, the
field next_chunk of the involved memory_block is used to
identify the best convenient position for starting the bitmap
search in order to identify a free memory chunk. At this
point, busy_chunks counter is updated upon reservation of
the identified free chunk and the corresponding bit in the
bitmap is set. The manipulation of next_chunk is based
on the classical algorithm used by the LINUX kernel for
managing the bitmap of file descriptors associated with a
process. Specifically, next_chunk is always increased upon
chunk allocation within the block. Instead, it gets decreased
in case a chunk is released having its index being associated
with the first chunk currently available within that block
(the bit associated with the released chunk is reset within
the bitmap). This is a first-fit oriented policy (although
acting on chunks of the same size) aimed at reducing both
free-chunks and bitmap fragmentation by having allocated
chunks mostly aggregated in the initial part of the block.
Additionally, we emphasize that the seeming redundancy

coming from the duplicated metadata both in the access-
intensive and in the access-mild area of a memory_block is,
on the contrary, a solution to address internal fragmentation.

As stated in section 3.2, application-level software is likely
to issue requests for buffers the size of which is expected to
be smaller that simulation kernel ones, in the general case.
To cope with this possible scenario, considering the fact that
most of the data structure used by the simulation kernel are
access-mild, there might arise a strong internal fragmenta-
tion due to memory_blocks holding many access-intensive
buffers and other memory_blocks holding many access-mild
buffers of different sizes. Duplicating metadata allows a sin-
gle memory_block to host memory chunks of different sizes
depending on their typology, a solution which is suitable for
facing the aforementioned scenario as well as the one where
buffers’ sizes are more uniform.

We have explicitly chosen not to associate a header with
each memory chunk in order to save on space and enhance
even more locality in the access pattern, considering the
scenario where logically connected data structures are not
allocated sparsely wrt time execution. If this logical connec-
tion holds, then a single cache miss will make the caching
architecture to load a cache stripe maybe containing more
than one local data structure with a higher probability. In
addition, we have decided to place metadata within the
memory_block, as this decision allows a faster access to data
structures in case a free operation is invoked, as the meta-
data are at a fixed position which can be derived by simple
arithmetics from the address passed to the free itself, given
that a memory_stock is cache-aligned and evenly divided into
fixed-size memory_blocks. This is another point of differen-
tiation with the original malloc library, where a much more
complex header is associated with each managed chunk in
order to maximize flexibility in memory usage (e.g. by dy-
namically partitioning or aggregating chunks according to
the so called “boundary tagging” scheme [2]).

Upon startup of the simulation platform, our memory
management subsystems enters an auto-tuning phase. In
particular, as stated above, memory stocks must be cache-
aligned, and memory blocks must be cache-sized. To this
purpose, the /proc file system is accessed, in order to obtain
the actual lowest-level cache size. This information is later
used to determine which is the most suitable memory_block’s
size, so that an accurate mapping between memory buffers
and cache regions can be created. In addition, this informa-
tion is also used to fine tune the separation threshold accord-
ingly, depending on the compile-time requirements specified.
Cache-stripe size is determined as well, in order to insert
some padding within the memory_block’s metadata, which
is to reduce the possibility of cache conflicts between this
metadata and the boundary chunks. In fact, we consider
that metadata are more likely to be accessed frequently, and
their access pattern is in no way related to the boundary
chunks’ one. This choice will further reduce the data con-
flict, avoiding conflicts between chunks (be they belonging
to the same metadata’s memory_chunk or not) and meta-
data themselves. The last part of the auto-tuning phase in-
volves the computation of a per-kernel threshold which will
force memory requests to be served starting from a partic-
ular chunk, depending on the simulation kernel the request
has been issued by (we recall that, as mentioned in section
3.2, this is a solution to a possible biasing problem in shared-
cache misses). In particular, the threshold is computed as
cache size

num cores
· core, core being the numerical id of the core

hosting the kernel instance for execution.
Before returning control to the simulation kernel, the first

memory_stock is allocated4. As mentioned before, in order

4A memory_stock’s size can be tuned at compile time.

block_manager[] .
.
.

.

.

.

Separate Chaining for handling full areas

memory_stock: Preallocated Memory Buffer

memory_block

oversized

buffers

oversized

buffers

.

.

.

block_pointer

block_pointer block_pointer block_pointer

block_pointer

Figure 4: Memory Manager Architecture

to make our access optimizations possible, the stock must
be cache-aligned. We therefore rely on posix_memalign(),
a memory allocator which allows to specify an alignment
factor, which we select as being the cache stripe size derived
at startup time.
In order to maintain and manage memory_blocks, our mem-

ory manager relies on a couple of block_manager data struc-
ture — which is organized as depicted in Figure 4 — one
for access-intensive buffers and one for access-mild ones.
Each entry in these data structures is used for managing a
memory_block. The chunks within a block (associated with
one of the two block_managers) have the same size, while
different blocks host chunks with size corresponding to K
different powers of 2. As soon as a malloc call is issued,
the chunk size that best fits the request is identified. If no
previous request for that particular size was received, the
first free available memory_block is selected for serving re-
quests for that particular size, and its metadata are set up.
In particular, a bitmap accordingly sized to the number of
available chunks is setup5, and init_address is pointed to
the initial memory region used for serving requests. If the
memory_block associated to the requested size is available,
but no free chunks are left over, a new memory_block is se-
lected as before, and it is connected in the list associated
with that particular size, kept in the block_manager.
In case a memory_block area (be it access-intensive or -

mild) gets exhausted, a separate-chaining approach is used,
connecting the memory_block entry to a not-yet-used memory_
block which is setup accordingly. If no memory_block is
available, a new memory_stock is allocated, relying again on
posix_memalign().
The main issue with the so-far-explained approach is that

no memory request the size of which is larger than the whole
cache size can be served using memory_block. Although we
believe that common simulation kernels/applications do not
rely on such large data structures, we provide two solutions
to this issue. The block_manager has a special entry which,
if a large memory request is issued, is made pointing to
a special buffer which holds memory chunks according to
the standard malloc policy. Since we note that this behav-
iour can deeply affect the overall performance of our new
memory management subsystem — as long as these over-
sized buffers can produce conflicts both in access-mild and
access-intensive cache areas — the memory manager can be
configured at compile time in order to deny these oversized
requests, thus returning NULL if this condition is met. The
decision whether to rely on the conservative (more perform-

5We recall that a memory_block is fixed-size, so the number
of available chunks depends on their actual size.

ing) or on the reliable (less performing) behaviour, is left to
the user at compile time.

5. EXPERIMENTAL DATA

5.1 Test-bed Platform and Application Bench-
marks

We have implemented the proposed cache-aware memory
management subsystem within ROOT-Sim. The hardware
architecture used for testing our proposal is a 64-bit NUMA
machine, namely an HP Proliant server, equipped with four
2GHz AMD Opteron 6128 processors and 64GB of RAM.
Each processor has 8 cores (for a total of 32 cores) that
share a 10MB L3 cache (5 MB per each 4-cores set), and each
core has a 512KB private L2 cache. The operating system
is 64-bit Debian 6, with Linux Kernel version 2.6.32.5. The
compiling and linking tools used are gcc 4.3.4 and binutils
(as and ld) 2.20.0.

The benchmark we have used in this experimental study
is derived from phold [10]. In this benchmark, each sim-
ulation object executes fictitious events which only involve
the advancement of the local simulation clock to the event
timestamp. Each time an event is executed, a new fictitious
event is scheduled, destined to whatever object inside the
system, with a timestamp increment following some expo-
nential distribution. In implementations of this benchmark
(see, e.g., [19, 27]), the execution of an event has included
a busy loop (which emulates a specific CPU delay for event
processing, and hence a specific event granularity) and/or
read/write mode access to a fictitious, memory contiguous
state buffer of a given size S. Large values for S would mimic
applications with large memory requirements. On the other
hand, the spanning of read/write operations across the state
buffer determines the specific locality inside the object state,
associated with the event execution.

We have adapted this benchmark in order to mimic dif-
ferent working sets resident in dynamically allocated mem-
ory. In particular, in our implementation each LP’s state is
formed by a main data structure (state_head), containing
a set of N pointers for accessing N distinct linked lists of
varied-size buffers relying on dynamic memory allocation.
Sizes are linearly distributed in between a min and a max
value We denote as size(i) the exact size of the buffers inside
the i-th list (with 0 ≤ i ≤ (N − 1)).

At setup time, the S bytes forming the fictitious state are
allocated according to the following rule:

• S

N
bytes are destined for buffer allocation inside each

of the N lists.

• ⌈ S

N
/size(i)⌉ buffers are allocated for the i-th list, and

linked together.

In other words, there is a bias towards buffers associated
with smaller sizes. This is reasonable when thinking that the
logic used in general software contexts tends to rely on allo-
cation of large amounts of relatively small memory chunks,
and smaller amounts of relatively large chunks6.

In order to specifically account for access patterns, the
simulation is based on an event which entails access op-
erations inside the buffer lists currently belonging to the
simulation object memory layout. This will allow us to ob-
serve whether and how the access-intensive buffers are in-
deed found in the caching architecture, therefore letting us

6As an example, this is the typical layout for dynamic mem-
ory based data structures inside the LINUX kernel.

measure the actual cache-miss frequency and how it is re-
lated with overall performance.
To determine the span of access operations across the

buffers inside the object lists, we have adopted a breadth-
first visit on the lists. Specifically, we have introduced an
additional parameter x ≤ S indicating the total amount
of bytes that must be accessed during the event execution
across the dynamically allocated buffers within the object
state. Initially x represents the residual amount of bytes to
be touched. Upon event execution, we randomly select the
list of buffers from which to start the visit, and we touch
all the content inside the buffer at the head of this list, thus
also decreasing the residual amount of bytes to be touched
by subsequent access operations. Then, every other list is
accessed the same way according to a circular policy. At
each access on a given list, we move on the subsequent (un-
touched) buffer in that list (if any) and then perform the
access operation. This goes on until the residual amount of
bytes to be accessed becomes zero. Actually, the lower the
value of x, the higher the memory locality of the application.
Access operations are implemented via stdlib services, specif-
ically memcmp calls, involving data movement from memory
to CPU registers, and therefore forcing the caching architec-
ture to load data if not already present.
After the startup phase, every LP schedules for itself the

first event at timestamp t, derived according to an expo-
nential distribution. Upon event execution, the access oper-
ation is performed. Then, an LP in the system is selected
uniformly at random amongst all the LPs in the system, and
a new event is destined to it at a simulation time t + inc,
where inc is again derived according to the same exponential
distribution. The simulation halts when all the LPs in the
system have executed at least 500000 memory-access events.

5.2 Results
We have performed three main tests, which can be de-

scribed as follows:

A. The simulation-state size has been tuned in order to
completely fit the lower-level cache size (i.e. it is 2/3
of the whole cache size), and read/write accesses span
across 75% of each LP’s state. This configuration mim-
ics a scenario where simulation models rely on a re-
duced state, where most of its data are necessary to
follow through the execution. We consider this to be
the best case for our memory management architec-
ture, as we expect to find a reduced number of con-
flicts.

B. The second test case represents the most general one,
where simulation states are 3 times the cache size, and
accesses span 25% of each LP’s state. We expect that
in-cache data buffers are more frequently replaced, yet
allowing some data locality to be captured.

C. The third test case mimics a worst-case scenario, re-
lated to simulation objects which rely on growing states
which are sparsely accessed. In particular, we define
simulation states to be much larger than the cache
size (in the order of 10), and the access operations to
span 10% of the whole simulation state. We expect to
find an increased number of cache misses, nevertheless
showing a performance which should resemble the one
provided by a generic memory allocator.

The above considerations only take into account application-
level buffers, not considering the kernel read-intensive buffers
(e.g. input message queue). The presence of such buffers in
the access-intensive cache area may add some entropy to the

0.8

0.9

1.0

SMALL LARGE SPARSE

Cache Hit Frequncy

Access-Intensive Area
Access-Intensive Area (Cache-Aware)

Access-Mild Area
Access-Mild Area (Cache-Aware)

Figure 6: Cache Hit Ratios in CSS Execution

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 5 10 15 20 25 30 35 40 45

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-Clock Time (seconds)

Throughput PSS/LARGE

Cache-Aware
Cache-Unaware

Figure 7: Throughput with less Interaction

actual behaviour of our memory management subsystems,
because data structures like the input message queue can
arbitrarily grow depending on the actual application-level
events’ generation pattern, i.e. LPs interaction.

Our simulations have been executed running 32 instances
of ROOT-Sim’s simulation kernel (one process on each CPU
core) and 32 LPs (one for each kernel instance). We be-
lieve that this scenario can significantly describe the ben-
efits of our memory managements architecture when there
is a tighter match between processing resources and simula-
tion objects, a scenario which will be always more present
in the future, according to the current technological trends
described in Section 1. We note that the aforementioned
executions exhibit a large degree of parallelism, causing a
strong divergence in the logical virtual time associated with
the LPs hosted on different processors, inducing a high num-
ber of rollback operations because of out-of-order events’
execution. This is a worst-case scenario for our memory
management subsystem, as the large number of rollback op-
erations make access-mild data buffer be scanned frequently,
in order to restore a correct simulation state.

For each of the specified test cases, two different execu-
tions are provided, one taking a snapshot of the whole sim-
ulation state at each event execution (namely, a Copy State
Saving behaviour, CSS), and one which saves the state on a
periodic basis (namely, a Periodic State Saving behaviour,
PSS) with the log period is autonomically set according to

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 2 4 6 8 10 12 14 16 18 20

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-clock-time (seconds)

Throughput CSS

Small W.S. (Cache-Aware)
Small W.S.

Large W.S. (Cache-Aware)
Large W.S.

Sparse W.S. (Cache-Aware)
Sparse W.S.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25 30

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-clock-time (seconds)

Throughput PSS

Small W.S. (Cache-Aware)
Small W.S.

Large W.S. (Cache-Aware)
Large W.S.

Sparse W.S. (Cache-Aware)
Sparse W.S.

Figure 5: Throughput: High Degree of Parallelism

the proposal in [26], ensuring that the best checkpointing
interval is selected according to actual execution dynamics.
We consider the CSS an important test case, because it is sig-
nificant for non Piece-Wise-Deterministic scenarios [3], en-
tailing simulation events the re-execution of which (e.g. af-
ter a rollback operation) is likely not to regenerate the same
events’ pattern. This makes silent execution unexploitable
for rebuilding a previous state starting from a certain state
log, requiring the exact simulation state to be restored. Ad-
ditionally, the separation threshold has been set in order to
show a 1:4 ratio, meaning that the access-intensive area is
four times the access-mild one.
In order to better interpret the experimental results, in

Table 1 we present the per-LP memory occupancy (i.e. the
amount of memory requested to the system during the whole
execution) wrt access-intensive and access-mild buffer re-
quests, in the PSS execution case. In particular, we can
clearly see that the access-mild area is much larger than the
access-intensive one (on the order of 6-10 times). By the
definition of the separation threshold according to a 1:4 ra-
tio, access-mild buffers are made colliding into the smaller
cache area, exactly because due to their sparse access pat-
tern, cache utilization would be sub-optimal, and therefore
more importance must be given to the access-intensive ones,
which represent the actual working set.
In figure 6 a histogram showing the cache-hit ratio is pro-

vided for the CSS case. By the plot it can be seen that the
differentiation in the access pattern which the cache-aware
subsystem is based on is actually real. In fact, the hit rate
associated with the non-cache-aware execution clearly shows
that there is a difference in the order of 10% between the
operations’ frequency on access-intensive and -mild buffers.
Moveover, we recall that in this test case the rollback length
is less than two (i.e. a configuration that accesses with a
high probability a log buffer shortly after it has been saved)
and the rollback frequency is extremely high due to an in-
creased degree of parallelism. We note that a more general
configuration would provide a smaller cache hit for access-
mild buffers. To produce a better performance a higher
global hit rate is required. The access ratio between access-
mild (mostly kernel-related) and access-intensive (applica-
tion and some kernel structures) strongly depends on the
simulation model’s logic, but since the access-mild buffers
are typically large and sparsely accessed, a cache-hit increase
on them could be infeasible, while an access-intensive cache-
hit increase is more easily achievable due to the fact that
application-level software is more likely to be local.

Access-Mild Access-Intensive

SMALL 62,79 MB 6,10 MB
LARGE 62,86 MB 6,95 MB
SPARSE 73,84 MB 11,20 MB

Table 1: Per-LP Memory Occupancy (PSS)

In Figure 5 we present the results of the aforementioned
test executions, showing the throughput related to test A, B
and C. CSS execution exhibits a performance increase that
ranges in between 5% and 10%. This is because of the higher
availability of in-cache buffers related to the actual working
set.

In the PSS case, a different behaviour comes from the dif-
ferences in working sets. In particular, we note that because
of the high number of rollbacks related to the degree of par-
allelism in this benchmark, the coasting forward operation
is more relevant to the overall performance. In particular,
an increased number of events must be silently reprocessed
(on average) in order to reconstruct correct states. This
again entails accessing buffers within the access-intensive
area, which have been already proven to exhibit a better
performance due to in-cache residence of the actual work-
ing set. By the plots, we can see that when dealing with a
small/sparse working set, a performance increase in the or-
der of 10% is provided. This is again related to the in-cache
residence of memory buffer and the effects of the coasting
forward operations. In the case of a large working set, both
the cache-aware and -unaware executions mostly show the
same throughput. This is because housekeeping operations
become more relevant, and (at the same time) they have a
smaller cache area to rely on for accessing data.

In addition, we provide the results for an execution where
10M events are executed using the B test case configura-
tion and the PSS checkpointing scheme, as described above.
The main difference in this test lies in the fact that with a
95% probability a new event is scheduled to the same LP.
This configuration induces a lower amount of rollback oper-
ations, due to a smaller interaction between simulation ob-
jects. While the aforementioned experimental results were
referred to a worst-case scenario, in this opposite situation
the real advantages produced by a reduced non-necessary in-
cache invalidation can be shown more clearly. By the results
in Figure 7, we can see that the actual system’s speedup is
in the order of 25%. This is related to the smaller relevance

 0

 100000

 200000

 300000

 400000

 500000

 0 5 10 15 20 25

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-Clock Time (seconds)

Throughput PSS/LARGE

Access-Mild/Intensive Ratio 1:9
Access-Mild/Intensive Ratio 1:4
Access-Mild/Intensive Ratio 3:7
Access-Mild/Intensive Ratio 1:1
Access-Mild/Intensive Ratio 5:1

Cache-Aware Subsystem Disabled

Figure 8: Test with Varied Separation Threshold

of accesses on access-mild areas, therefore assessing the per-
formance increase related to the permanence of working-set-
related buffers in the caching architecture.
Finally, we provide a test case for assessing the impact of

the separation threshold on the overall performance. The
importance of the separation threshold is related with the
assumption that if we give access-intensive buffers more in-
cache space, the total amount of cache misses is expected
to be reduced because non-necessary invalidations against
the actual working set are avoided. On the other hand,
access-mild buffers are anyway accessed at some point dur-
ing the simulation. If too little in-cache space is given to
these buffers, we are unavoidably forcing an increased num-
ber of cache misses, although on a periodic basis. Fester-
ing this behaviour can, in turn, produce more secondary ef-
fects rather than avoiding them. Moreover, if little space is
given to the access-intensive buffers, then induced conflicts
on the actual working set will likely produce a performance
decrease. We have selected the B test-case using PSS state
saving as a litmus test for this possible drawback. We con-
sider this as a revealing test because the reduced number
of state saving operations invoked during the simulation al-
lows properly focusing on the effects without exacerbating
the possibile cause behind.
By the plots in Figure 8, we can see that the best per-

formance is anyway obtained when a larger in-cache space
is assigned to the access-intensive buffers. In the opposite
situation (i.e. where far more space is destined to the access-
mild buffers) the total amount of cache misses induced by
internal conflicts on the actual working set (i.e. the access-
intensive buffers) produces a performance drop in the order
of 20%. Any other configuration lies in between.

6. CONCLUSIONS AND FUTURE WORK
In this work we have presented an innovative Memory

Management subsystem for Optimistic Simulation platforms,
the purpose of which is to enhance memory locality by dif-
ferentiating memory allocation between access-intensive and
access-mild buffers, in order to increase probability of finding
them in the caching architecture. Generally-applicable de-
sign indications and an implementation relying on a simple
API allow the extension/integration of this proposal within
any optimistic simulation platform build according to the
specifications in [11].
We have provided a set of experimental results on a modi-

fied version of the phold benchmark which show the viability

of our proposal, using different working sets’ sizes and on dif-
ferent checkpointing intervals. An analysis of the impact of
the separation threshold between the access-intensive and
access-mild buffers in cache has been provided.

Future work entails the design and the implementation of
a heuristic able to autonomically tune the separation thresh-
old position in cache, in order to further enhance benefits
derived from secondary effects.

7. REFERENCES
[1] Linux kernel. http://www.kernel.org/.
[2] A memory allocator.

http://g.oswego.edu/dl/html/malloc.html, 1996.
[3] L. Alvisi, E. N. Elnozahy, S. Rao, S. A. Husain, and

A. D. Mel. An analysis of communication induced
checkpointing. In Proceedings of the 29th Annual
International Symposium on Fault-Tolerant
Computing (FTCS), pages 242–249, 1999.

[4] J. Bonwick. The slab allocator: an object-caching
kernel memory allocator. In Proceedings of the
USENIX Summer 1994 Technical Conference -
Volume 1, USTC’94, pages 6–6, Berkeley, CA, USA,
1994. USENIX Association.

[5] C. D. Carothers, K. S. Perumalla, and R. Fujimoto.
Efficient optimistic parallel simulations using reverse
computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224–253, July 1999.

[6] D. Cucuzzo, S. D’Alessio, F. Quaglia, and P. Romano.
A lightweight heuristic-based mechanism for collecting
committed consistent global states in optimistic
simulation. In Proceedings of the 11th IEEE
International Symposium on Distributed Simulation
and Real-Time Applications, pages 227–234, 2007.

[7] J. Fleischmann and P. A. Wilsey. Comparative
analysis of periodic state saving techniques in Time
Warp simulators. In Proceedings of the 9th Workshop
on Parallel and Distributed Simulation, pages 50–58.
IEEE Computer Society, June 1995.

[8] R. M. Fujimoto. Parallel discrete event simulation. In
WSC ’89: Proceedings of the 21st conference on
Winter simulation, pages 19–28. ACM Press, 1989.

[9] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, Oct. 1990.

[10] R. M. Fujimoto. Performance of Time Warp under
synthetic workloads. In Proceedings of the Multiconf.
on Distributed Simulation, pages 23–28. Society for
Computer Simulation, Jan. 1990.

[11] D. R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and System, 7(3):404–425,
July 1985.

[12] Y. B. Lin and E. D. Lazowska. Processor scheduling
for Time Warp parallel simulation. In Advances in
Parallel and Distributed Simulation, 1991.

[13] A. Naborskyy and R. M. Fujimoto. Using reversible
computation techniques in a parallel optimistic
simulation of a multi-processor computing system. In
21st International Workshop on Principles of
Advanced and Distributed Simulation, pages 179–188.
IEEE Computer Society, 2007.

[14] A. Park and R. Fujimoto. Optimistic parallel
simulation over public resource-computing
infrastructures and desktop grids. In Proc. of the 12th
IEEE International Symposium on Distributed
Simulation and Real Time Applications, 2008.

[15] A. Pellegrini, R. Vitali, and F. Quaglia. Di-dymelor:
Logging only dirty chunks for efficient management of

dynamic memory based optimistic simulation objects.
In PADS ’09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of
Advanced and Distributed Simulation, pages 45–53,
Washington, DC, USA, 2009. IEEE Computer Society.

[16] B. R. Preiss, W. M. Loucks, and I. D. MacIntyre.
Effects of the checkpoint interval on time and space in
Time Warp. ACM Transactions on Modeling and
Computer Simulation, 4(3):223–253, July 1994.

[17] F. Quaglia. A cost model for selecting checkpoint
positions in Time Warp parallel simulation. IEEE
Transactions on Parallel and Distributed Systems,
12(4):346–362, Feb. 2001.

[18] F. Quaglia and V. Cortellessa. On the processor
scheduling problem in time warp synchronization.
ACM Trans. Model. Comput. Simul., 12, July 2002.

[19] F. Quaglia and A. Santoro. Non-blocking
checkpointing for optimistic parallel simulation:
Description and an implementation. IEEE
Transactions on Parallel and Distributed Systems,
14(6):593–610, June 2003.

[20] R. Rönngren and R. Ayani. Adaptive checkpointing in
Time Warp. In Proceedings of the 8th Workshop on
Parallel and Distributed Simulation, pages 110–117.
Society for Computer Simulation, July 1994.

[21] R. Rönngren and R. Ayani. A comparative study of
parallel and sequential priority queue algorithms.
ACM Transactions on Modeling and Computer
Simulation, 7(2):157–209, 1997.

[22] T. Santoro and F. Quaglia. A low-overhead
constant-time ltf scheduler for optimistic simulation
systems. In Computers and Communications (ISCC),
2010 IEEE Symposium on, pages 948 –953, june 2010.

[23] S. Sköld and R. Rönngren. Event sensitive state
saving in time warp parallel discrete event simulations.
In WSC ’96: Proceedings of the 28th conference on
Winter simulation, pages 653–660, Washington, DC,
USA, 1996. IEEE Computer Society.

[24] T. K. Som and R. G. Sargent. A probabilistic event
scheduling policy for optimistic parallel discrete event
simulation. In Proc. of the 12th Workshop on Parallel
and Distributed Simulation, pages 56–63. IEEE
Computer Society, May 1998.

[25] R. Toccaceli and F. Quaglia. Dymelor: Dynamic
memory logger and restorer library for optimistic
simulation objects with generic memory layout. In
PADS ’08: Proceedings of the 22nd Workshop on
Principles of Advanced and Distributed Simulation,
pages 163–172, Washington, DC, USA, 2008. IEEE
Computer Society.

[26] R. Vitali, A. Pellegrini, and F. Quaglia. Autonomic
log/restore for advanced optimistic simulation
systems. International Symposium on Modeling,
Analysis, and Simulation of Computer Systems,
0:319–327, 2010.

[27] D. West and K. Panesar. Automatic incremental state
saving. In Proceedings of the 10th Workshop on
Parallel and Distributed Simulation, pages 78–85.
IEEE Computer Society, May 1996.

[28] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic storage allocation: A survey and
critical review. In Proceedings of the International
Workshop on Memory Management, IWMM ’95,
pages 1–116, London, UK, 1995. Springer-Verlag.

View publication statsView publication stats

