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Abstract—Taking advantage of computing capabilities of-
fered by modern parallel and distributed architectures is
fundamental to run large-scale simulation models based on
the Parallel Discrete Event Simulation (PDES) paradigm.
By relying on this computing organization, it is possible to
effectively overcome both the power and the memory wall,
which are core limiting aspects to deliver high-performance
simulations. This is even more the case when relying on
the speculative Time Warp synchronization protocol, which
could be particularly memory greedy. At the same time, some
form of coordination, such as the computation of the Global
Virtual Time (GVT), is required by Time Warp Systems. These
coordination points could easily become the bottleneck of large-
scale simulations, hindering an efficient exploitation of the
computing power offered by large supercomputing facilities. In
this paper we present ORCHESTRA, a coordination algorithm
which is both wait-free and asynchronous. The nature of this
algorithm allows any computing node to carry on simulation
activities while the global agreement is reached, thus offering
an effective building block to achieve scalable PDES. We
claim that the general organization of ORCHESTRA could be
adopted by different high-performance computing applications,
thus paving the way to a more effective usage of modern
computing infrastructures.

I. INTRODUCTION

A core aspect of PDES systems [1] is synchronization,
which ensures causally-consistent (i.e. timestamp-ordered)
execution of simulation events at each Logical Process
(LP). Several synchronization protocols have been pro-
posed, among which the optimism-oriented ones—such as
Time Warp [2]—are a viable solution to tackle simulation
performance aspects. In Time Warp, events are processed
speculatively (thus exploiting parallelism significantly), and
causal consistency is guaranteed through rollback/recovery
techniques, which restore the simulation model to a correct
state upon the a-posteriori detection of consistency viola-
tions. This is done via anti-messages (carrying anti-events),
which annihilate the originally-sent events, thus possibly
causing cascading rollbacks across chains of LPs.

The high level of parallelism of the LPs in their advance-
ment in simulation time is the key to high performance and
scalability of model execution. In fact, this execution model
tries to capture time independence, without any manual inter-
vention from the simulation model developer. Nevertheless,

Time Warp has the need for a global notion of time. A
core abstraction is the Global Virtual Time (GVT), which
is defined as the smallest timestamp among events (or anti-
events) that are still unprocessed, or that are currently being
processed. The GVT allows to identify the commitment
horizon of the speculative simulation run—no LP can ever
rollback to simulation time preceding the GVT value [2].
Its value is used both to execute actions that cannot be sub-
ject to rollback, such as displaying/inspecting intermediate
simulation results [3], [4], and to reclaim memory [5] (the
fossil collection operation).

To determine the GVT value, some sort of coordination
among the computing nodes is required. This coordination
can significantly affect the simulation performance, in a
way that is directly affected by the organization of the
computing environment. In particular, in order to target the
transition from petascale to exascale simulations, the recent
architectural trend is to rely on larger clusters of parallel
computing machines. Indeed, this is the current way to
overcome the power wall [6] and the memory wall [7], which
have posed strict limitations on what can be done with off-
the-shelf computing systems.

This modern computing system organization demands
for a significant re-thinking of traditional synchronization
algorithms. In fact, in order to avoid hampering the overall
simulation’s performance, we claim that a GVT reduction
algorithm must provide two orthogonal features, at the same
time. First, it must work (at the level of a single node) in a
wait-free way [8]: no critical section must be used, among
the processors, to compute the local proposal for the GVT
value. Second, at a global scale, the distributed algorithm
to determine, among the different local proposals, the actual
GVT value must be run in a completely asynchronous way.
These properties ensure that modern computing systems
used to run simulations based on the PDES paradigm do
not suffer from possible performance bottlenecks.

To ensure the correctness of the computed value in
a general distributed setting, in-transit messages must be
taken into account. This is a non-trivial problem, as the
communication network is often such that it is not possible
to know automatically what events are still in transit across
two different nodes of the network—this is a so-called non-
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observable Time Warp system [9]. As already noted in [10],
among all the GVT protocols proposed in the literature,
those relying on explicit message acknowledgement to cope
with in-transit messages limit simulation scalability in a
non-negligible way, and must therefore be avoided in large-
scale scenarios. Similarly, protocols which do not rely on
acknowledgements but use vector clocks to account for in-
transit messages have scaling capabilities which are not well-
suited for our reference computing environment. On the
other hand, algorithms which are based on two cuts (see,
e.g., [11]), can be regarded as a viable solution.

In this paper, we propose ORCHESTRA, an algorithm
to compute the GVT value in a non-observable distributed
Time Warp system, which is at the same time wait-free
and asynchronous. Differently from many proposals in the
literature, we do not explicitly require FIFO ordering across
messages exchanged on the network. ORCHESTRA belongs
to the family of two-cuts algorithms, although this is (to
the best of our knowledge), the first algorithm to require
a single communication round to build the second cut. As
it will be shown experimentally, ORCHESTRA is able to
deliver significant performance speedups in scenarios where
the rest of the simulation environment is already very well
optimized. Moreover, the organization of ORCHESTRA is
quite general, and can be easily re-adapted to different high-
performance computing scenarios.

We have implemented our GVT algorithm into the open
source ROOT-Sim speculative PDES platform [12], exactly
based on the Time Warp paradigm, and we have also carried
out an experimental evaluation to assess the effectiveness of
the algorithm on the MareNostrum III supercomputer, using
up to 512 CPU cores hosted on 32 computing nodes.

The remainder of this article is structured as follows. Sec-
tion II discusses related work. ORCHESTRA is presented in
Section III. Section IV illustrates experimental results.

II. RELATED WORK

In the literature, a large number of algorithms to compute
the GVT value have been proposed. GVT algorithms can
be barely classified depending on the specific features of
the underlying platform (e.g. shared vs distributed memory)
hosting the Time Warp system, and/or on the way they
account for in-transit messages in distributed environments.

For shared memory platforms, there are two reference
proposals [9], [13]. The former exploits the observability
property, commonly matched by shared memory implemen-
tations of Time Warp, to provide a GVT algorithm that
does not rely on any message acknowledgment scheme.
This proposal requires synchronization across concurrent
processes, materialized in the form of critical sections. The
latter relies on the same property, but puts in place a wait-
free algorithm, which does not require any critical section
to compute the local GVT value. We rely on a variant of
this latter proposal, at the level of a single computing node,
to determine the local GVT value proposal.

In the context of distributed computing environments, sev-
eral proposals have been based on explicit message acknowl-

edgment schemes [14]–[18] to determine which messages
are still in transit, and which processes are responsible for
keeping into account their timestamps while computing the
new GVT value. Some of these algorithms (e.g., [15], [18])
acknowledge individual messages, reducing the time interval
along which a message can result as still in-transit. Other
approaches (e.g., [16]) acknowledge batches of messages
reducing the network overhead, but stretching the interval of
time along which a message still results in-transit (although
being potentially already processed at the destination). This,
in its turn, leads to worsening the approximation provided
by the algorithms on the actual GVT, given that “obsolete”
timestamps might be still considered in the global reduction
while computing the new GVT value.

An approach where explicit message acknowledgments
are not required has been provided in [11]. In this solu-
tion, messages are associated with phases (represented by
different message coloring schemes) so that it is possible
for the processes in the system to determine whether the
timestamp of any message (or anti-message) needs to be
accounted for in the current GVT computation. However,
this algorithm requires control messages to set-up the start of
a new GVT computation. Our proposal belongs to the same
family of this proposal, although requiring a smaller number
of communication steps to compute the final GVT value, and
without any need for communicating the need to start a GVT
computation, thus being completely asynchronous.

The work in [19] leverages on both the notion of phases
and acknowledgement messages, using a set of parameters
to determine the time duration of the phases and to build
a sort of “phase groups”, in the attempt to increase the
timeliness of the GVT reduction. This proposal anyhow
requires a very large amount of metadata, and incurs in a
non-minimal communication overhead, thus making it non-
viable for large-scale distributed simulations.

The need for both control messages and acknowledgments
is removed in [20], which has been tailored to distributed
memory clusters where specific bounds can be assumed
on the message delivery transfer across the nodes, and
the clocks of the different machines can be assumed to
be (perfectly) synchronized. In this proposal, new GVT
computations are triggered by specific timeouts, which occur
in synchronized way across all the nodes in the system. We
target a more general scenario, where it could be impossible
to determine such bounds.

Some proposals [10], [21] try to address a distributed
computing organization similar to our reference computing
model. The main difference with our proposal is that these
works implement a non-homogeneous GVT protocol, where
there is some master process which does not carry on any
computation, rather acts as an orchestrator of the distributed
GVT algorithm. On the other hand, ORCHESTRA is a
perfectly-uniform protocol, where there is no global notion
of a master process, and where no dedicated processor is
destined to the management of the GVT computation.



III. ORCHESTRA

A. Baseline description

ORCHESTRA targets parallel and distributed discrete-
event simulations supported by a set of (possibly non-
homogeneous) processing units, scattered across any number
of machines (i.e., computing nodes). On each computing
node, any number of simulation kernel instances can be
running. These instances are developed according to the
symmetric multi-threaded paradigm, as introduced in [22],
where shared memory is used to support intra-kernel syn-
chronization. Distributed communication is supported by
some network interconnection.

In the most general setting, our reference system model
is made up of the following elements:
• A number K of simulation kernel instances (forming

up the KernelSet), which are scattered across the
available computing nodes.

• Each simulation kernel instance k ∈ KernelSet runs
a set a concurrent worker threads, denoted as TSetk.
These worker threads rely on shared memory for their
internal communication and synchronization tasks.

• At any wall-clock time instant, a worker thread t ∈
TSetk is in charge of scheduling events to a set of
bound LPs, denoted as LPSett. As mentioned before,
one LP is managed only by one worker thread. There-
fore, LPSeti ∩ LPSetj = ∅ ∀i, j i 6= j.

The overall sequence of messages and events which
compose the ORCHESTRA algorithm is shown in Figure 11.
ORCHESTRA belongs to the family of two-cut distributed
GVT algorithms, and relies on the notion of phases to let
the global computation of the GVT value advance, without
any form of explicit synchronization. A kernel instance
can decide independently from any other to start a GVT
computation (i.e., moving from the idle phase to the start
phase), thus avoiding any initial form of communication.
Eventually, all distributed instances will move to the start
phase, collaborating to determine the new GVT value.

At the level of the single kernel instance k, ORCHESTRA
relies on phases which are governed by relying on a set of
atomic counters. In particular, during the computation of
the GVT, every worker thread in the TSetk set carries on
reduction actions on the LPs bound to it, in a way similar
to the proposal in [13]. Once a portion of the computation
is carried out, each worker thread notifies its completion by
atomically decrementing a counter in shared memory, and
enters the next phase after all the threads have concluded
the current one—this can be done by simply checking the
value of a shared counter.

Phase changes at the level of kernel instances are triggered
by some global (i.e., distributed) event. In particular, each
simulation kernel instance in KernelSet transits through a
number of kernel phases. The succession of these phases is
governed by two different factors. On the one hand, each

1This illustration has given the “ORCHESTRA” name to the algorithm,
due to it resembling a music score.

kernel instance maintains a set of counters to determine
when some global condition is met. On the other hand, the
completion of some asynchronous collective communication
primitive determines the advancement to a different phase.

As for the conditions checked by relying on counters,
ORCHESTRA inherits from the proposal in [11] the no-
tion of colored messages. In particular, worker threads in
ORCHESTRA continuously alternate their execution in a
red and a white color. Messages sent while running in
the red phase are colored red, and messages sent running
in the white phase are colored white. Each worker thread
switches from the white to the red phase independently
of each other. This means that, at the same wall-clock
time instant, two different worker threads (possibly in two
different kernel instances) can live in a completely different
phase, as depicted in Figure 1. There are only two phase-
changing points which are not allowed to be inverted. These
are marked by a purple vertical bar in Figure 1. Anyhow,
we emphasize that this behavior is not supported by any
form of explicit synchronization. In fact, these bars are
associated with the completion of asynchronous collective
communication primitives. We note that by relying on this
scheme, every worker thread on any kernel instance is
allowed to carry on simulation work while the GVT value
is being computed, thus allowing for an efficient usage of
the available computing resources.

As a last note, each kernel instance maintains a counter
to identify the current era value. This value is used to
discriminate between messages sent across two consecutive
white phases. In this way, we are able to reduce the amount
of metadata exchanged across different kernel instances.

Throughout the description of the various procedures
of ORCHESTRA, we rely extensively on the ONLYONCE
pseudo-code statement. This statement represents a block
of code that should be executed only once by any of the
worker threads which concur in the activities of a simulation
kernel instance. In practice, we propose to implement such
a statement by relying on the Compare and Swap (CAS)
construct. In particular, for each ONLYONCE statement, an
integer token variable should be declared. All token vari-
ables should be initialized to zero, and every worker thread
will try to execute a CAS(&token, 1, 0), meaning that
all threads passing through the ONLYONCE statement will
try to update the value of token to 1. By the semantics
of the CAS construct, only one thread will be able to
successfully perform the update. Therefore, by checking
if the CAS has succeeded, only one thread will actually
perform the actions associated with this statement.

B. The Algorithm
In a non-observable Time Warp system, there is a time

window along which a message associated with a send op-
eration at some LP is considered as in-transit, and therefore
it has not yet been incorporated into the recipient LP’s
message queue. To cope with in-transit messages, every
time a new event is injected into the system targeting a re-
mote LP, the sender simulation kernel tracks the boundaries
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Figure 1. Illustration of the ORCHESTRA algorithm

Algorithm 1 Register Outgoing Event
1: procedure REGISTEROUTGOING(event e)
2: if e.recipient is locally hosted then
3: return
4: if e.colour = red then
5: minRED

t ← min{e.timestamp,minRED
t } . R1

6: else
7: ATOMICINC(w counter sent[e.kern dest])

Algorithm 2 Register Incoming Event
1: procedure REGISTERINCOMING(event e)
2: if e.recipient is locally hosted then
3: return
4: if e.colour = white then
5: ATOMICINC(w counter recv[e.era % 2]) . R2

of the non-observability window of the message carrying
the event by relying on the REGISTEROUTGOING() and
REGISTERINCOMING() procedures, executed at the source
and destination simulation kernels, respectively. The pseudo-
code of these procedures is depicted in Algorithms 1 and 2.
As we have discussed, our asynchronous algorithm relies
on colored messages to differentiate among the different
execution phases of the simulation run in which there is
the need to explicitly account for in-transit messages. This
is reflected by the fact that the source kernel tracks the
minimum timestamp of events scheduled by any LP in the
LP sets of its worker threads.

Periodically, a kernel instance determines (independently
of the others) that a global agreement on the value of the
GVT is to be made, starting the flow across the different
phases, which are associated with different states of threads
and kernels. We start by illustrating the procedure which
is used to compute a local estimation of the GVT value at
a certain kernel, which we refer to as the Kernel Virtual
Time (KVT). The KVT is computed by following the same
definition of the GVT, yet by considering only correctly-
executed events and in-transit messages which are related
to the workers of the specific simulation kernel instance.

The KVT computation is carried out in a way similar to
what has been presented in [13], and the pseudo-code of the
KVT() procedure is presented in Algorithm 3. In particular,
when the simulation kernel has entered a GVT-computation
phase, it repeatedly invokes the KVT() procedure. The goal
of this procedure is to pass through all the required phases
(associated with all the worker threads) which ensure a
correct estimation of the KVT at the local kernel, returning
true only when the correct KVT value has been finally
computed (K7). Once the local KVT computation is started,
all the worker threads have been already set into the A phase.
In this phase, all threads execute the following actions: i)
messages being received from remote kernels are extracted
from the underlying communication channel; ii) the events
associated with these messages are incorporated into the
event queues; iii) the minimum LVT across all LPs bound
to each thread is found, and stored into a per-thread variable
(K1). Once the minimum has been computed, each thread
moves to the Send phase, and notifies that it has completed
its A phase via the atomic counter CA (K2). This counter
ensures that no worker thread will be ever executing the
actions associated with the Send phase, until all threads have
completed the execution of the A phase (K3). We note that
the different worker threads are fully allowed to complete the
execution of phase A at different wall-clock time instants.
This is illustrated by the skewed blue lines in Figure 1.
The vertical dotted lines illustrate that the next phase is
never started until all threads have completed the previous
phase. This algorithmic organization ensures wait-freedom
of execution across the different threads.

The steps associated with the Send phase entail the
following actions: i) messages are received from the com-
munication channel and incorporated into the event queues;
ii) the next event (in a Lowest-Timestamp First fashion)
is executed by the worker thread; iii) possibly-generated
messages/antimessages are sent. These actions ensure that if
some LP bound to a worker thread has executed a rollback



Algorithm 3 Kernel Virtual Time—KVT
1: procedure KVT( ): returns boolean
2: if th phase = A then
3: Receive messages from remote kernels
4: Incorporate messages into event queues
5: minA

t ← min
i∈LPSett

LV Ti . K1
6: th phase← Send
7: ATOMICDEC(CA) . K2
8: return false
9: if th phase = Send ∧ CA = 0 then . K3

10: Receive messages from remote kernels
11: Incorporate messages into event queues
12: Execute the next event
13: Send output messages/anti-messages
14: th phase← B
15: ATOMICDEC(CSend)
16: return false
17: if th phase = B ∧ CSend = 0 then
18: Receive messages from remote kernels
19: Incorporate messages into event queues
20: minB

t ← min
i∈LPSett

LV Ti

21: th current era← th current era+ 1 . K4
22: th colour ← white
23: mint ← min{minA

t ,minB
t ,minRED

t } . K5
24: th phase← Aware
25: ATOMICDEC(CB)
26: if CB = 0 then
27: ONLYONCE:
28: mink ← min

t∈TSetk
mint . K6

29: return true . K7
30: return false

operation due to a straggler message received during phase
A, the LVT of that LP is realigned to that of the straggler
message. For a thorough discussion on the correctness of
this approach, we refer the reader to [13]. Similarly to the
previous phase, all threads switch to the B phase, but they
do not start the actions associated with it until all threads
have actually completed the Send phase.

At this point, the KVT() procedure shows some differ-
ences from the algorithm in [13]. In particular, after having
received and incorporated the messages/events, a worker
thread can consider the red phase as concluded, switching to
the next era as well (K4), and computes again its minimum
LVT taking into account as well the minimum timestamp
of the red messages (K5). We note, that switching to the
next era does not require any synchronization among the
worker threads (as depicted as well in Figure 1), as the
correctness of the algorithm is ensured by the consecutive
flow of white/red phases. At the same time, once a thread
enters the white phase associated with the next era, this white
phase can be regarded as a completely-different phase. With
respect to Figure 1, let us consider the white message a©
sent from T0 at K1 to T0 at Kn. It crosses the “equivalent”
second cut of the algorithm in [11]. Since our algorithm
does not require FIFO network ordering, this would break
the correctness of the algorithm in [11]. Differently, in our
algorithm, the correctness is ensured by the fact that the next
era virtually bounds the white message a© to the next round
of red messages, as depicted in Algorithm 2 (R2).

All threads then enter the Aware phase, telling that they
know that their contribution to the KVT computation is over.

Algorithm 4 Global Virtual Time—GVT
1: procedure GVT( )
2: if ker phase = Start ∧ th phase = Idle then . G1
3: mint ←∞
4: minRED

t ←∞
5: th colour ← red
6: th phase← A
7: ATOMICDEC(CInit) . G2
8: if CInit = 0 then
9: ONLYONCE:

10: WMSGSREDUX( ) . G3
11: ker phase← WRedux
12: return
13: if ker phase = WRedux then
14: if WMSGSREDUXCOMPL( ) ∧ WMSGSRECV( ) then . G4
15: ONLYONCE:
16: ∀i ∈ KSet: ATOMICSET(w counter sent[i], 0)
17: ker phase← KVT
18: return
19: if ker phase = KVT ∧ th phase 6= Aware then
20: if KVT( ) then
21: GVTREDUX( ) . G5
22: ker phase← GVT
23: return
24: if ker phase = GVT ∧ GVTREDUXCOMPL( ) then . G6
25: ONLYONCE:
26: new gvt← last reduced gvt
27: ker phase← Fossil
28: return
29: if ker phase = Fossil ∧ th phase = Aware then
30: FOSSILCOLLECTION( )
31: th phase← Idle
32: ATOMICDEC(CEnd) . G7
33: if CEnd = 0 then
34: ONLYONCE:
35: ker phase← Idle

Once all the threads are in the Aware phase, the global
minimum among all the worker threads at the given kernel,
namely the KVT value, can be computed as the minimum
among the minima of each worker thread (K6).

We note that after the execution of every phase, the execu-
tion of the KVT() procedure is explicitly interrupted via a
return statement. This prevents any thread from possibly
executing two different phases consecutively. While this
would not hamper the correctness of the algorithm, we note
that this gives higher priority to the execution of simulation
events, which ensures higher performance by reducing the
overall rollback probability. The algorithm to compute the
KVT value is used in an asynchronously-coordinated manner
to compute the GVT value. As mentioned previously, once a
certain condition is met, all the simulation kernel instances
start executing at every main loop iteration the procedure
illustrated in Algorithm 4.

A simulation kernel starts its portion of the GVT com-
putation in the Start phase. Similarly, all its threads are in
the Idle phase. In this case (G1), we set to ∞ the local
mint and minRED

t values, which will be used in the KVT
algorithm to compute the minimum accounting as well for
in-transit messages. We then color the running thread red, so
that all the messages it will be sending from now on will be
colored red as well. Finally, during the initialization phase,
we move the thread currently running this procedure into
the A phase—since these are symmetric kernel instances,



all worker threads run the same code, and will eventually
all enter the A phase. As previously illustrated in Algo-
rithm 3, this phase is associated with the computation of
the local (per thread) minimum. Nevertheless, this is only
a preparation towards that phase, as it will not affect the
execution flow until the KVT() procedure is called, which
will happen in a future phase. Similarly to what we have
done in the Algorithm 3 (K2), we rely on atomic counters
(G2) to determine when all threads have finished executing
the tasks associated with this phase. At the end, by still
relying on the ONLYONCE construct, we start collecting
all white messages (G3). As mentioned before, this is an
asynchronous task: each kernel receives the total number of
white messages sent by the other kernels, and starts counting
all white messages which are received.

The completion of this asynchronous task takes place
in the WRedux phase (G4): when the total number of
white messages is received—this is checked via the WMS-
GREDUXCOMPL() call—and the counter of in-transit white
messages is zero—this is checked via the WMSGRECV()
call—the global GVT computation can advance to the next
phase. Again, only one thread will force the advancement to
the next phase, after having set the white counter to zero for
all threads in the local kernel instance. We note that after this
phase all in-transit messages have been incorporated into the
message queues (possibly causing rollbacks), and therefore
all threads can observe the relevant information for the GVT
computation locally.

Therefore, the KVT computation as depicted in Algo-
rithm 3 can be repeatedly invoked at every simulation loop.
As shown, the KVT() procedure returns true after that all the
threads on a simulation kernel instance have flown through
all the phases, and the local minimum for one simulation
kernel instance has been computed. At this point, another
asynchronous global computation can take place, namely
the global GVT reduction (G5). This phase is semantically
equivalent to computing new gvt ← mini∈KSet mini.
Again, this is done by relying on asynchronous calls, and
therefore once all kernels agree on the global minimum
(G6), one single thread will make the kernel advance to
the next phase, namely the Fossil phase.

The Fossil phase allows all the worker threads to execute
the fossil collection phase on the LPs currently bound to
them. While in theory the GVT computation might be
considered as already completed, this phase ensures that,
independently of the condition which triggers the activation
of the GVT computation, a new asynchronous wait-free
computation of the GVT value will never be started before
the fossil collection is completed. This has the benefit of sig-
nificantly simplifying the overall structure of the algorithm,
making it suitable for most simulation engines without any
need to check for critical races on data structures. This is
again done by relying on one atomic counter (G7). Once
this atomic counter is set to zero, one single thread will
set the kernel phase to Idle, thus allowing the next GVT
computation to take place, whenever the condition is met.

At this point all threads are already in the Idle phase, thus
the initial conditions of the algorithm have been restored.

To initiate the GVT computation, we restore all the atomic
counters used in the GVT() and KVT() procedures to the
number of threads locally hosted by the kernel, thus allowing
the synchronization on zero to take place. Additionally,
we set to zero the counter of white messages received
in the previous era. Finally, to actually notify all threads
in the kernel that they have to participate in the GVT
calculation, the kernel is moved to phase Start, causing the
procedure GVT() to actually perform the computation (G1
in Algorithm 4). The initialization procedure should reset as
well all token variables used to implement the ONLYONCE
statement.

IV. EXPERIMENTAL RESULTS

We have implemented ORCHESTRA within ROOT-
Sim.We have executed experiments by running our im-
plementation on the MareNostrum supercomputer, which
is overall composed of 3,056 IBM DataPlex DX360M4
compute nodes, each one equipped with 16 Intel Sandy
Bridge cores running at 2.6 GHz and 32 GB of RAM.
The operating system is SUSE Linux 11 SP3, and for the
communication across nodes we have used OpenMPI v2.1.0.

Regarding the benchmark for assessing the effectiveness
of ORCHESTRA, we have used the Personal Communi-
cation System (PCS) real-world cellular simulation model,
which has already been used as a reference benchmark
application in several other studies oriented to optimistic
PDES. Each LP models a wireless cell managing 1,000
wireless channels to provide coverage to mobile devices in
a hexagonal region. The model is high-fidelity in terms of
how interference across different channels within a same
cell and power management upon call setup/handoff is cap-
tured/actuated. Particularly, the application handles power
management simulation according to the results in [23].
The application is also highly parameterizable by allowing
the recalculation of fading coefficients and actual Signal-to-
Interference Ratio (SIR) both on the occurrence of specific
events (e.g. the startup of a call) and periodically (so as
to account for, e.g., changes of conditions in the coverage
area). Also, the inter-arrival of calls to mobile devices in the
coverage area can be configured, thus leading to different
values for the wireless channels’ utilization factor. This,
in its turn, affects both memory and CPU demand by the
simulation. The interaction across the different LPs takes
place upon a handoff of a mobile device involved in an
ongoing communication, in which case the wireless channel
at the source cell is released, and a new one in the destination
cell is attempted to be reserved.

On our experimentation we set the average residual res-
idence time in one cell to the value 5 minutes, while the
average call duration was set to 2 minutes. Both these values
have been set to follow exponential distributions. Also, we
have set the channel utilization factor to 75%, with balanced
workload on all the LPs. This settings produce simulation
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Figure 2. Execution time using 4096 LPs

event’s average CPU requirement of about 150 microsec-
onds. We have run ROOT-Sim on a different number of
MareNostrum nodes, namely from 1 node to 32. On every
node, we have always used all available 16 cores. We have
run two different families of experiments: one using 4096
LPs and running until each cell has completed the simulation
of 500,000 calls; one using 16,348 LPs and running until the
completion of 10,000 calls.

In Figure 2 we report experimental results when running
PCS configured with 4096 LPs. The y axis is logarithmic.
Three different GVT reduction algorithms are compared:
ORCHESTRA, an asynchronous algorithm where the local
computation is protected by critical sections, according to
the Fujimoto&Hybinette algorithm in [9] (referred to as
F&H in the plot), and an acknowledgement-based reduction
inspired to the work in [16] (referred to as Ack in the plot).

With respect to F&H, we observe that ORCHESTRA
allows to reduce the wall-clock-time required to complete
the run up to 25%. This phenomenon is strictly related
to the higher overhead paid by F&H on the local (intra-
kernel) computation, in terms of CPU-time required to run
tasks related to GVT computation. In fact, since on a single
node there are 16 concurrent worker threads active, the
likelihood of synchronizing on the GVT-reduction critical
section increases. This is explicitly avoided by the phase-
based wait-free nature of ORCHESTRA.

A slightly different behavior is observed with respect
to Ack. In fact, when running with a small number of
distributed nodes (namely, 1 or 2 nodes), Ack is able to
deliver a performance which is slightly better, on the order
of 12%. This is related to the fact that the communication
overhead paid to acknowledge in-transit messages is quite
reduced, while the steps required to compute the GVT value
are much simpler than in the case of ORCHESTRA. On
the other hand, when the degree of concurrency increases,
ORCHESTRA is able to deliver a performance increase
up to 70%. This is clearly related to the fact that the
communication overhead in ORCHESTRA is significantly
reduced. This phenomenon is confirmed by the results in
Figure 3, where we report the speedup obtained when
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Figure 4. Execution time using 16.348 LPs

increasing the number of distributed computing nodes, with
respect to the performance obtained when using one single
computing node. As it can be seen, when the number of
distributed nodes is higher than 2, we observe a super-linear
speedup, thanks to the increased overall size of caches across
the distributed nodes.

Figure 4 reports data related to ORCHESTRA’s scalability
when running with a much more increased workload. In
particular, the plot shows the simulation execution time when
PCS is configured to run 16,348 LPs. By the results, we
observe a maximum speedup of 35, when running with 16
nodes, and a trend which is comparable to the one shown
in Figure 2, denoting that ORCHESTRA’s performance
behavior is resilient to a non-minimal scaling up of the
workload. The plot shows as well the parallel efficiency of
the distributed execution, namely speedup/n, where n is
the number of distributed nodes. By the results, we can see
that ORCHESTRA has a strong scaling behaviour, as the
efficiency increases without the need for increasing the size
of the simulation model.

V. CONCLUSIONS

In this paper we have presented ORCHESTRA, an asyn-
chronous wait-free algorithm to compute the GVT value on
large clusters of parallel computing machines. ORCHES-



TRA has strong scaling capabilities thanks to the fact that
at the level of a single node, concurrent worker threads
synchronize in a wait-free fashion. At the same time, the
global synchronization is based on a two-cut algorithm,
implemented in a completely asynchronous way, which
requires a single round of communication to compute the
second cut. ORCHESTRA exhibits a super linear speedup,
emphasizing the importance of relying on wait-free syn-
chronization and asynchronous coordination with minimal
metadata exchange, to efficiently exploit the computing
power of modern large-scale supercomputing facilities.
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