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Abstract—OpenMP has become a reference standard for the design of parallel applications. This standard is evolving quickly, thus
offering new opportunities to the application programmers. However, OpenMP runtime environments are often not fully aligned with the
actual requirements imposed by the evolution of such a standard. Among the main lacks, we find: (a) a limited capability to effectively
cope with task priorities, and (b) the inadequacy in guaranteeing core properties while processing tasks such as the so-called work
conservativeness—the ability of the OpenMP runtime environment to fully exploit the underlying multi-processor/multi-core machine
through the avoidance of thread-blocking phases. In this article, we present the design of extensions to the GNU OpenMP (GOMP)
implementation, integrated into gcc, which allow the effective management of tasks and their priorities. Our proposal is based on a
user-space library—modularly combined with the one already offered by GOMP—and an external kernel-level Linux module—offering
the opportunity to exploit raising hardware facilities for task/priority management. We also provide experimental results showing the
effectiveness of our proposal, achieved by running either OpenMP common benchmarks or a new benchmark application
(HASHTAG-TEXT) that we explicitly devised to stress the runtime environment in relation to the above-mentioned task/priority
management aspects.

Index Terms—Multi-core computing, task parallelism, operating system support.
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1 INTRODUCTION

IN order to help programmers to structure their parallel
applications, several paradigms have emerged. Among

them, OpenMP [1] plays a central role and is widely consid-
ered a de-facto standard.

The OpenMP programming model has evolved over the
years to support fine-grain and irregular parallelism, which
is achieved by making the concept of task central [2]. In
fact, programmers can use simple pragmas and an API
supported by the runtime environment to schedule tasks,
to define their dependency constraints and, as in recent
developments of the OpenMP specification, to devise their
priorities [3].

In this article we focus on the GNU OpenMP (GOMP)
project, which has some limitations that are common to cur-
rent implementations of OpenMP runtime environments.
The main one stands in the impossibility to asynchronously
preempt a running task in order to assign the computing
power offered by some CPU-core to another task. In fact,
task switching is allowed only if the running task spon-
taneously yields the CPU-core. This may happen either
upon task completion, or when the running task reaches
a Task Scheduling Point (TSP). This is used to explicitly
include into the code a directive, like taskyield, which allows
returning control to the runtime environment. One of the
main reasons for the inclusion of TSPs is to let tasks safely
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access Thread Local Storage (TLS) in between two task
scheduling points. However, when TLS is not used, the first
drawback is that we may observe scenarios where a newly-
scheduled higher-priority task is delayed by a lower-priority
one that has already gained control of the CPU-core. This is
somehow in contrast to the objective that higher priorities
should be directly translated by the runtime environment
into better timeliness and more prompt CPU-dispatching
of task execution. This problem is exacerbated by the fact
that a task in OpenMP simply corresponds to the execution
of a function specified by the programmer, whose duration
(namely, CPU demand) can be arbitrary. Also, the function
might even interact with blocking services of the underlying
Operating System (OS), so that its turnaround time (or the
time to reach a TSP) can be further stretched. All these
aspects can delay excessively the activation of some higher-
priority task that is already standing.

Another drawback that we observe with GOMP is that
joining a task with one it depends on (e.g. via the taskwait
directive) makes heavy usage of blocking synchronization
services like OS futexes. Hence, a thread T currently run-
ning task A blocks when A needs to join the execution of
a child task B that has already been CPU-dispatched along
another concurrent thread T ′1. This scenario is somehow
critical in terms of the capability of the GOMP runtime
environment to exploit the underlying hardware resources.
The latter aspect is also related to the default settings of

1. The take-off of task A with no actual block of thread T can take
place only under the scenario where task B is not currently taken
in charge by, or has been bound to, another thread. Limited to this
scenario, T can immediately—hence with no blocking phase—take task
B, thus temporarily suspending task A. We recall that the default for
OpenMP is to have tied tasks, which once taken by some thread cannot
be migrated to another thread.
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several OpenMP runtime environments, which limit the
number of used threads to the number of available CPU-
cores in the used machine—a choice that appears reasonable
to avoid cross-thread competition for CPU resources. There-
fore, having thread T blocked because of a dependency
constraint with a child task bound to another thread leads
in practice to renouncing to the computing power of a CPU-
core. Furthermore, according to OpenMP Task Scheduling
Constraints (TSCs), a ready tied task is admitted to be
executed by whichever thread. However, a thread T that
is processing tied ancestors of a generic tied task A cannot
take any other tied task different fromA until the thread that
started processing A finishes its job. Such an issue is of high
interest for the research community since it leads OpenMP
applications to be challenging to be formally analyzed in
terms of their capabilities to match deadlines in the presence
of tied tasks [4]. Additionally, in GOMP thread T is simply
blocked in this scenario, not allowing it to pick standing
tasks, not even the untied ones.

Clearly, the presence of thread-blocking phases in sit-
uations where standing tasks could be ideally picked and
processed—with no violation of TSCs—makes the run-
time environment unable to guarantee the so-called work-
conservativeness property. In fact, if we cannot guarantee
that the computing power usage is preserved—since we
renounce to some CPU-core at some point in time because
of thread blocks—then proving that OpenMP applications
can match specific deadlines becomes a hard job [5].

While a similar problem has already been addressed by
lower-level technologies—as an example, OS-kernels do not
renounce to using CPU-cores to dispatch threads at any
point in time, or even provide mechanisms for enabling
the spawning of additional threads when others are blocked
[6]—it is still present in GOMP.

In this article, we present the design and the implemen-
tation of extensions to the GOMP runtime environment for
Linux and x86-64 processors, which address all the above
raised problems. In particular, our software modules, which
are available as open-source2, allow:

1) Prompt switch to any higher-priority task that is sched-
uled while a thread is processing a lower-priority one—
promptness means having delays of at most the order
of a few tens of microseconds on x86-64 chipsets; this
provides better execution timeliness of higher-priority
tasks;

2) The avoidance of thread blocking phases caused by
dependencies across tasks bound to different threads—
this allows us to better exploit the available CPU-cores,
sliding towards work-conservativeness in the runtime
environment.

The above two objectives are met in our design while
still guaranteeing all the properties that are demanded from
OpenMP runtime environments, such as the avoidance of
moving tied tasks across threads and the avoidance of
task dependency constraint violations. Further, we preserve
the properties that programmers expect to be guaranteed
when the coded tasks interact with common libraries—as an
example, we preserve deadlock avoidance when multiple

2. https://github.com/HPDCS/ULMT-OpenMP-GCC

tasks tied to a same thread manage synchronization con-
structs such as spinlocks or mutexes/semaphores. Similarly,
we still enable TLS to be correctly used by the application.

In this article, we focus on AMD x86-64 processors, al-
though the design principles of our solution can be mapped
to other hardware architectures. Also, our implementation is
essentially a library that can be linked to the GOMP runtime
environment and the application code, thus working with
no need for particular intervention by the programmer or
application code adaption. At the same time, the facilities
that our proposal requires to nest into the Linux kernel
are all supported by an external module only exploiting
module-exposed programming facilities, thus not requiring
any kernel recompilation. Such kernel side software is also
available as open-source3.

To assess our proposal, we run experiments with the
Barcelona OpenMP Task Suite (BOTS) [7] and a new bench-
mark application we designed, called HASHTAG-TEXT. The
latter has been devised to compensate for the lack of liter-
ature benchmarks in relation to our assessment objectives.
Indeed, our search for OpenMP benchmarks found no so-
lution explicitly including and exploiting task priorities,
which (as hinted) have recently become of interest in the
OpenMP specification. The source code of our new bench-
mark application is available as open source too4, thus being
released for usage to the community.

The remainder of this article is structured as follows. In
Section 2, we discuss related work. The innovative OpenMP
runtime system is presented in Section 3. Experimental data
are provided in Section 4. Finally, conclusions are reported
in Section 5.

2 RELATED WORK

Our proposal introduces a new run-time support for con-
trolling the program flow along threads in a parallel appli-
cation with (potential) dependencies of the activities among
threads. These environments have been thoroughly studied
in the literature, and several solutions have been presented
to achieve efficiency while carrying out the activities (the
tasks) to be executed. A few proposals—such as Converse
Threads [8] and Argobots [9]—are based on User-Level
Thread (ULT) technology and on performing execution flow
variations along threads at specific execution points—via
an explicit synchronous invocation of an API that switches
control between ULTs, each one encapsulating a task to
be executed. The proposal in [9] integrates deferred-work
concepts, such as tasklets, which have been historically
used in OS-kernel technology to finalize—with an explicit
synchronous call to a tasklet-processing routine—some pre-
vious request for task execution. Similarly, [8] integrates
the notion of messages as a form of deferred work to be
processed after that a poll operation by a thread identi-
fies the presence of an incoming message. Differently, our
solution is based on both asynchronous and synchronous
switches of the execution flow used in combination, where
the asynchronous switching capability is achieved thanks
to the exploitation of rising hardware features in modern

3. https://github.com/HPDCS/IBS-Support-ULMT
4. https://github.com/HPDCS/OpenMP-Task-Suite
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CPUs. Further, we focus our design on GNU OpenMP, while
the proposal in [8] supports an alternative programming
model, such as Charm++.

Asynchronous switch of the execution flow is a clas-
sical target for OS technology—for both time-sharing and
processing of signals/events (see, e.g. [10]). However, the
granularity according to which a conventional OS induces
control flow variations is unsuited for making a thread
extremely reactive to the need for changing its execution
flow. To make an example, the implementation of an asyn-
chronous switch bringing a thread to run a higher-priority
task via Posix signals would make the activation of the
higher priority task delayed up to the end of the current
tick assigned to the thread by the OS. In fact, the delivery of
signals, with the associated control flow variation, mostly
occurs when returning to user mode, e.g. after a timer
interrupt (or a system call). In modern OS configurations,
the tick can range from a few to several milliseconds, in
order not to make the OS too “noisy” because of more fre-
quent scheduler activations. In fact, these activations have
an inner cost even in the scenario where the next-to-be-run
thread coincides with the currently-running one. Classical
Linux configurations are based on a tick ranging from 1
millisecond—as for the case of lower degree of parallelism
in the hardware (2/4 CPU-cores)—to 4 milliseconds—as for
the case of off-the-shelf machines with more CPU-cores,
where CPU reassignment is less critical due to the larger
amount of computing resources. A delay in the order of
1 to 4 milliseconds to switch the thread execution flow
to a higher-priority OpenMP task is clearly non-adequate,
especially when the higher-priority task is fine-grain, so that
its waiting time for taking control under these settings can
definitely overstep its running time5. Overall, the classical
OS support for asynchronous (preemptive) execution-flow
variations is extremely valid in scenarios where priorities
are associated with threads to be processed in time-sharing
mode, not with specific functions (the tasks) to be pro-
cessed by each individual thread. This problem is directly
tackled by our solution, which allows the asynchronous
switch of the execution flow along a thread with very fine
granularity—of the order of tens of microseconds—still with
no intervention by the programmer.

Extremely reactive variation of the execution flow of
threads has been dealt with in software-level speculative
processing [11], [12]. In this context, fine-grain asynchronous
execution flow variations enable detecting if the current
speculation path of a thread is still consistent and can lead
to early squashing it in the negative case. However, the
proposed solutions rely on OS-kernel patching of the man-
agement of the hardware-timer interrupt logic with non-
minimal intrusiveness. To better clarify this point, the Linux
kernel has implementations of the timer-interrupt handler
that vary across the various kernel releases. Our work
provides an alternative way of exploiting modern CPUs
for asynchronous execution flow variations, which requires

5. We also note that high-resolution timers—used in Linux for
deferred-work associated with very fine-grain delays—have their han-
dlers processed along specific daemons, thus not enabling custom
threads—those running the OpenMP application in our case—to di-
rectly receive periodic fine-grain interrupts enabling asynchronous
control flow variations.

minimal intervention at the OS-kernel level. In particular,
our software architecture can be embedded within the Linux
kernel by simply relying on loading an external module
that does not patch the currently-running kernel logic. In
our solution, instead of relying on hardware timers (and
their kernel-specific management logic), we rely on common
hardware profiling supports, which can be activated or
deactivated by simply writing on specific (pseudo-)registers
of the CPU. In more detail, our solution is founded on
hardware facilities like the IBS (Instruction Based Sampling)
support by AMD, or PEBS (Precise Event-Based Sampling)
on the Intel counterpart.

This type of support has been exploited in the litera-
ture to build tools that allow understanding what are the
actual dynamics of the hardware (cache misses, dominating
executed-instruction types etc.) depending on the overlying
running software. Among them, we can mention the well
known Perf tool [13]. However, none of these tools has been
exploited for directly driving the application execution flow.
Instead, we use the support from the hardware profiler to
proactively change the execution flow of the application
threads in GOMP.

As for works specifically tailored to OpenMP runtime
environments, the literature offers several proposals based
on experimental and/or theoretical studies [4], [14]. One
of the core objectives of these works is to determine
whether OpenMP can be fruitfully exploited in the con-
text of real-time applications and under what conditions,
e.g. in terms of application design patterns. Our work is
orthogonal to these studies since our objective is to in-
clude in the OpenMP runtime environment—particularly
the GOMP implementation—innovative features for efficient
processing of tasks. Clearly, such new features can trigger
additional (formal) analysis in terms of achieving real-time
capabilities in OpenMP applications. However, as noted in
Section 1, the works in [4], [5] have already shown how real-
time capabilities in OpenMP applications are strictly linked
to the ability of the runtime environment to guarantee
the work-conservativeness property. In our design, work-
conservativeness is one of the core objectives, in combina-
tion with adequate support for reflecting task priorities into
actual runtime dynamics.

The work in [15] presents an experimental study where
different task scheduling policies, ranging from breadth-first
[16] to work-first with work-stealing [17], are comparatively
assessed. However, this study is still based on a runtime
environment—which is called NANOS and is partially
compliant with the OpenMP specification, although having
influenced the definition of this specification along time—
where task-switch operations occur synchronously with re-
spect to the execution of threads, again via synchronous
invocation of the ULT API. As an example, they occur
when a task is terminated and another one needs to be
picked by a thread, or when the creation of a new task
is requested along a thread—in which case work-stealing
can lead to processing the newly born task immediately
along that thread. Contrarily, our runtime environment also
includes the support for asynchronous (and preemptive)
task switch operations. This is mandatory for the effective
management of task priorities, which is an emerging aspect
of the OpenMP specification.
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Fig. 1: A thread timeline with TC switches.

We also note that other environments for parallel (or
distributed) computing, like those for the MPI (Message
Passing Interface) specification [18], still lack native mech-
anisms for handling asynchronous switch of the control
flow across different tasks along a same thread. Indeed,
even though asynchronous messaging is supported, it is
anyhow based on explicit calls to services that enable a
thread to understand whether some specific communication
has been asynchronously delivered to it—this may indicate
that some different task needs to be processed by the thread.
Instead, our solution is based on interrupting the thread
execution flow, with no need for calls to services of the
runtime environment (e.g. the check of an asynchronous
receipt finalization) for handling task switch operations.

3 THE RUNTIME ENVIRONMENT

3.1 Task Contexts
To reach the two core objectives listed in Section 1, namely
fine-grain control of task priorities and better satisfaction of
work-conservativeness, we introduced the notion of Task-
Contexts (TCs). A TC is essentially a CPU context—made
up of general-purpose registers, stack pointer, instruction
pointer, etc.—which at any time instant can be either run-
ning on some CPU-core along a thread or can be saved into
a gomp_task_context data structure.

TCs might resemble contexts managed by libraries im-
plementing User-Level Threads (ULTs). However, we could
not base our design on reusing ULT implementations be-
cause, as hinted, they cannot support asynchronous passage
of control between a context TCa and another context TCb.
As noted, ULTs allow switching between contexts—hence
between the execution of two different functions along a
thread—in a safe manner only under the assumption that
all the switches are implemented via synchronous calls to a
switch-supporting API (such as setjmp/longjmp).

Overall, TCs keep CPU-register values that might be
otherwise clobbered when asynchronously transitioning the
execution flow of the same thread to another context, with-
out an explicit call observed at compile time.

In our implementation, the runtime system can create an
arbitrary number of these TCs by reserving a different stack
area for each of them. Each time the application uses the
GOMP_task API to activate a task, the runtime environment
intercepts it and links a fresh gomp_task_context data
structure to the original task-management data structure.

In Figure 1, we show an example thread-execution time-
line in our runtime environment. The thread execution
flow can be asynchronously switched across three different
task contexts, TCa, TCb, and TCc, with no modification
of the tick assigned by the underlying OS to the thread

traversing these contexts, as well as no intervention by
the programmer. Hence our solution is oblivious to how
the OS decides to assign the CPU capacity to the hosted
applications. At each switch, a higher priority task that has
been injected in the system—or has become schedulable in
the meanwhile since its task-dependency constraints have
been satisfied—can promptly take control of the CPU-core.
How to enable this kind of preemptive control flow variation,
with a granularity of the order of a few tens of microseconds
is discussed in the next section.

3.2 Implementation of the Preemption Support

The preemption support leading a thread to slide out of
its control flow graph—as defined at application compile-
time—must be based on some hardware support driving
an asynchronous variation of the thread execution flow. As
hinted, we do not exploit classical timer interrupts since
moving to a custom management of them would make the
solution intrusive at the OS-kernel level.

To reach our goal, we decided to exploit the rising
hardware capabilities of modern CPUs, which have been not
specifically devised for managing time-sharing and cross-
context passage of control but rather for low-level mon-
itoring of the hardware state. A few of these monitoring
capabilities can generate interrupts, which are not exploited
by the OS to do core work. In most cases, the usage of
these interrupts is even not configured, depending on the
OS version and on the users’ needs.

In more detail, modern CPUs enable software to inspect
their state at very fine grain. To achieve this objective,
they generate programmable interrupts that asynchronously
bring control to custom handlers. These handlers can do
whatever action, and the typical action consists of ac-
cessing flushed shadow copies of CPU registers or non-
programmable registers to inspect the state of the CPU upon
their occurrence. The important aspect is that the interrupt
handler runs on an interrupt stack where the original value
of the instruction pointer—the one to be reinstalled upon the
return of the handler—is readable and writable. Writing that
value from inside the interrupt-handler allows generating
a control flow variation along the thread, which can bring
control to whatever instruction in the address space seen by
the thread.

On x86-64 processors, this hardware support is imple-
mented according to different flavors depending on the
processor manufacturer. As hinted, on AMD processors,
which we target in this work, we have the IBS (Instruction
Based Sampling) support. Hence, we can program the CPU-
core to send an interrupt on a given line after a number of
machine instructions have been executed and committed by
the pipeline, or after a given number of clock cycles. This
feature can be exploited to build periodic interrupts hitting
a given target thread (one running the GOMP application in
our case) which stand aside from the ones associated with
hardware timers. In our preemptive version of the GOMP
environment, we exploit this hardware support in Linux
in a lightweight and highly modular fashion. Rather than
using the NMI (Non-Maskable-Interrupt) line for managing
these interrupts, as it typically occurs in common OS drivers
tailored to the exploitation of these hardware capabilities
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Fig. 2: A timeline with hardware-profiler interrupt and
passage of control to OMPPC.

exclusively for hardware profiling (see, e.g., [13]), we have
selected a generic regular line that is not currently used by
the Linux kernel. On that line, we install our kernel-level
interrupt handler via an external loadable module6.

To take advantage of the installed hardware-profiler
interrupt handler when running GOMP threads, a few addi-
tional features are provided by the loadable Linux module.
First, by relying on the Linux kernel kprobe infrastructure,
we install a hook on the kernel schedule() function,
which determines whether a thread running the GOMP ap-
plication has been (re-)scheduled on CPU. In the positive
case, the hardware profiler is activated to generate fine-
grain interrupts along the time-quantum of that thread. To
determine what threads of what processes need to undergo
these fine-grain interrupts, the loadable module includes
a special device file, whose ioctl commands allow to
post the corresponding information (e.g. the pid of the
process running the OpenMP application) to kernel-level
data structures so as to make it accessible by the hook of
the schedule() function.

In our architecture, the kernel-level handler of the
hardware-profiler interrupt manipulates the CPU-context
to be restored upon its return to bring control to a user-
mode additional context, which we call OpenMP Platform
Context (OMPPC). Passing through this context, our GOMP
runtime environment allows the thread to execute the (asyn-
chronously triggered) task-to-CPU reassignment algorithm
aimed at the effective management of the priorities of stand-
ing tasks. The actual scheduling algorithm we embedded in
our runtime environment and the data structures it relies
on, will be presented in Section 3.3.

A timeline schematizing the evolution of a thread run-
ning the OpenMP application is shown in Figure 2. Initially,
the thread might be running within the TCa context. Ear-
lier, upon its reschedule on CPU, the hook of the kernel
scheduler activated the hardware profiler generating the
fine-grain interrupts. As soon as one of these interrupts
occurs, control bounces to OMPPC, and after running the
task-to-CPU reassignment algorithm, the thread decides to
switch to the context TCb associated with another task,
thus temporarily suspending the execution of the task with
context TCa.

Clearly, a few additional points need to be considered.
First, the hardware-profiler interrupt handler cannot really
change the current execution flow of the thread for bringing
control to OMPPC if we were already running in OS-kernel

6. Since we exploit a trap-handler trampoline that is already available
in the kernel image, our solution is compliant with the Page-Table-
Isolation service.

TCa TCa

THE KERNEL-LEVEL HANDLER OF THE HARDWARE-
PROFILER INTERRUPT BRINGS CONTROL TO A PLATFORM-
LEVEL HANDLER THAT SWITCHES THE THREAD TO OMPPC

INCREMENT COUNTER AND 
GET RESOURCE

COUNTER NOT ZERO, CONTROL 
RETURNS TO THE INTERRUPTED 
TASK

A TASK WITH THE EXCLUSIVE USAGE OF AT LEAST ONE RESOURCE IS NEVER SWITCHED-OFF 
THE CPU BY OUR RUNTIME SYSTEM

RELEASE RESOURCE AND 
DECREMENT COUNTER

OMPPC

Fig. 3: A timeline with preserved execution of a resource
holding task upon the hardware-profiler interrupt arrival.

mode. In fact, admitting the change would imply that a user-
space portion of code could preempt the kernel level execu-
tion, a scenario that would break the overall kernel software
design. To avoid this scenario, before any modification is put
in place on the CPU-context to be restored upon returning
from the hardware-profiler interrupt handler, a check is
done whether the interrupted context was a kernel-level
one. In the positive case, no execution flow variation is ac-
tuated. In other words, we are simply renouncing to exploit
the received fine-grain interrupt—for possible asynchronous
switch between GOMP tasks—in favor of coherent kernel-
level operations. This also has the advantage of avoiding
any risk of deadlocks when the thread has already entered
kernel mode upon the arrival of the interrupt.

The same aspect of preemption avoidance needs to be
considered for the execution of a task that has acquired
exclusive usage of user-space resources, such as a spinlock.
Otherwise, we might generate a scenario where the timing
expectations for releasing the resource would be completely
altered. Further, we might even incur deadlocks—as for the
case of an access request by a task to a user-space resource
held by another task that has been context-switched off the
CPU. To avoid all these problems, we have followed an
approach where any API that the programmer can use to
acquire resources exclusively is transparently wrapped—at
application link-time—by another API that before acquir-
ing the resource puts the thread in a “non-preemptable
state” (clearly, the thread can still be preempted by the
operating system). In our solution, this wrapping is carried
out fully transparently by the compile/link infrastructure,
with no need for any intervention by the programmer of
the GOMP application. In our implementation, this is not
done by switching off the hardware-profiler interrupt that
leads to the activation of the OMPPC, rather via a cheaper
solution where we use a per-task atomic counter stored in
the gomp_task structure. The counter is atomically incre-
mented by one unit when we enter the wrapper of the target
function invoked to acquire the resource and is atomically
decremented when we leave the function releasing the
resource. Therefore, the counter cannot be zero along any
execution frame where some resource is locked in favor of a
task. When switching to OMPPC due to a hardware-profiler
interrupt delivery, the first action is to check the counter
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Algorithm 1 Case of Resource Acquisition
1: procedure WRAP ORIG RESOURE GET FUNCTION NAME( ):

2: ATOMIC INCREMENT( )

3: ret← ORIG RESOURCE GET FUNCTION NAME( )

4: if ret == FAILURE then ATOMIC DECREMENT( )

5: return ret

Algorithm 2 Case of Resource Release
1: procedure WRAP ORIG RESOURCE RELEASE FUNCTION NAME( ):

2: ret← ORIG RESOURCE RELEASE FUNCTION NAME( )

3: if ret == SUCCESS then ATOMIC DECREMENT( )

4: return ret

value, and if it is not zero, OMPPC simply switches back to
the context of the task that was already running along the
thread7. We also note that the counter value is incremented
and decremented when entering or exiting OMPPC so that,
if an interrupt was received but not yet fully processed
(e.g. the thread was CPU-descheduled by the OS), then the
receipt of other successive interrupts (e.g. after the thread
has been CPU-rescheduled by the OS) leads to no action
by the side of control flow management. Again, we note
that this solution leads to no possibility of changing the
execution flow of a thread when it has entered a software
routine that needs to execute in a non-preemptable manner
along the thread. This avoids any possibility of anomalies
(like deadlocks) related to our mechanism. In Figure 3, we
depict a timeline related to preemption avoidance given a
previous acquisition of the exclusive usage of a resource.
The structure of our wrappers for accessing and releasing
user-space resources is shown in Algorithm 1 and Algo-
rithm 2.

A similar approach, still based on wrapping, is used
for non-reentrant user-space libraries (like, e.g., strtok), for
which we cannot admit another task (along the same thread)
to issue a call while a previous call is still being processed.
For these libraries, we apply a small variation of the man-
agement of atomic counters where we simply increment the
counter upon entering the wrapper of the application func-
tion exploiting these libraries, and we decrement the counter
right before leaving the function, hence while executing the
tail of the wrapper. In this way, the lifetime of the function
execution always sees a counter with at least one unit, which
avoids the actual preemption of the running task during the
execution of that function.

This solution is also feasible for managing application
functions that make use of TLS. As pointed out before,
these cannot be interrupted asynchronously since we might
give rise to interference on the usage of the same TLS
instance if the thread starts running another task that needs
to access this storage—this scenario would violate atomicity
in the management of this storage. Our solution based on
wrapping and atomic counters resolves this aspect.

7. This solution is similar in spirit to the one offered by the Linux
kernel in order to manage preemptability of threads running in kernel
mode. However, in that solution the check on the counter value is
purely synchronous (e.g. it is carried out upon returning from some
kernel level function along the thread to be possibly preempted, like
for example the printk function). Rather, in our solution the check is
carried out asynchronously when transiting into OMPPC.

As a final aspect, upon resuming the OMPPC context,
the asynchronously interrupted thread does only a non-
blocking attempt to acquire a GOMP internal mutex before it
is allowed to execute the task-to-CPU reassignment, which
is actually executed only if the mutex try-lock succeeds.
Otherwise, the thread simply resumes the TC context of the
task it was carrying on prior to being interrupted by the
hardware profiler. This strategy makes interrupted threads
not hang whenever another thread is already executing
GOMP activities related to shared data structures. Hence,
it provides minimal intrusiveness in terms of wait-access
to the mutex-protected critical section by concurrent inter-
rupted threads.

3.3 The Task Scheduling Architecture
The new task scheduling facilities that we added to the
GOMP implementation are fully transparently activated via
wrappers nested at compile/link time. In the rest of this
section, we will illustrate the steps through which our
innovative facilities have been built, thus posing attention
to all the architectural updates/integrations that we paired
with the original structure of GOMP. We again remark that
our updates/integrations do not overwrite the original func-
tionalities, rather they offer to the programmers (or end-
users) the possibility to activate or not the functionalities
we devised when running their applications. This can sim-
ply occur by configuring a GOMP environment variable—
or invoking the newly offered routines of the run time
environment as an alternative. Clearly, our re-engineered
environment can exploit the loadable Linux module—and
the associated user-space facilities—supporting task pre-
emption, which we described in Section 3.2. This still occurs
fully transparently to the native GOMP implementation and
the overlying applications.

3.3.1 Basic control structures
When a #pragma omp parallel directive is encountered,
which sets up the parallel region for the applica-
tion execution, the actual executable code invokes the
gomp_team_star function to setup the team of worker
threads. We transparently injected within this function—via
wrapping—a call to the gomp_state_pool_init function
just before creating other threads. This function is part of
a group of functionalities that manage activities related to
a dynamic pool of gomp_task_state structures. These
structures will be assigned to tasks (via a pointer in the
gomp_task structure) upon their activation and will be
released upon completion. They enclose both a pointer to
the alternate stack memory area over which a task executes
independently from the others and a gomp_task_context
structure—which implements the TC—maintaining the con-
tent of the registers at the time of task preemption.

Before the worker threads reach the barrier preceding the
work-sharing region, we check (again via a wrapper) if they
can register themselves for exploiting the IBS hardware-
profiler support offered by AMD processors. Registering
will allow them to receive periodic interrupts that will
be handled by our Linux kernel module supporting task
preemption, as illustrated in Section 3.2.

When one of these interrupts is received, control is
bounced to an “early logic” associated with the context
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OMPPC, which implements the preamble of our preemp-
tive task scheduling logic. In our design, this preamble
verifies if the task currently executed by this thread may
effectively be preempted in favor of another one8, then
saves the task’s state at the time at which the thread was
interrupted by storing the content of CPU-core registers into
the corresponding gomp_task_context data structure. At
this point, we can give control to the ULMT (User-Level-
Micro-Thread) scheduler (to be described in Section 3.3.2).

The passage of control to the scheduler in our re-
engineered environment is not only due to the occurrence
of asynchronous events—namely, the hardware-profiler in-
terrupts leading to the restoration of OMPPC and enabling
the possibility to reevaluate the CPU assignment based
on priorities. Rather, the environment also embeds a form
of synchronous invocation of the task scheduler. More in
detail, while executing a task, a thread may encounter
different kinds of directives—executable and stand-alone
directives to be more precise—corresponding to the invo-
cation of the associated library functions. These function
calls match the TSPs at which the runtime environment
may or may not renew the scheduling decisions (namely,
the assignment of tasks to threads). Nevertheless, the ex-
ecution of some of these functions in GOMP can block the
running thread—via futexes—because of the need to respect
the dependency constraints among tasks imposed by the
programmer whenever they are not found to be directly
satisfied upon reaching the TSP. This is the scenario where
task A executed along thread T1 needs to wait for the
finalization of a tied taskB which has already been activated
for processing along some other thread T2. In this case,
thread T1 can no longer take care of passing control to
B at the TSP to resolve the dependency—since this task
has been already definitely tied to thread T2—and in the
original GOMP environment has no opportunity to rely on
per-task contexts to pass control to another standing task.
We refer to the #pragma omp taskwait directive, which finds
its implementation in the GOMP_taskwait function, or the
gomp_task_maybe_wait_for_dependencies. Overall,
in GOMP these functions are implemented in a way prevent-
ing the environment to behave work-conservatively despite
the possible presence of pending tasks whose execution
along thread T1 would not not violate TSCs. In our ULMT
re-engineered environment we avoid this problem since we
enable the passage of control to another task via a syn-
chronous invocation to the ULMT scheduler upon reaching
a TSP if the associated constraints are not currently satisfied.
This is again achieved fully transparently since the syn-
chronous call to the ULMT scheduler is embedded within a
wrapper nested in the API functions GOMP_taskwait and
gomp_task_maybe_wait_for_dependencies at link-
ing time. In Figure 4, we depict the execution flows that
can occur in the ULMT runtime environment, highlighting
which of them cannot occur in the native GOMP implemen-
tation.

As a final note, GOMP also supports the #pragma omp
critical directive that maps to the GOMP_critical_start

8. As hinted in Section 3.2 we avoid preemption of tasks that acquired
resources exclusively or are executing some non-reentrant function or
some function exploiting thread-local-storage.

TASK 
SCHEDULER

OMPPC

ASYNCHRONOUS 

HARDWARE-

PROFILER INTERRUPT
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TSP INVOCATION
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SUPPORT FOR WORK 
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Fig. 4: Novel execution paths admitted in ULMT.

function. This function allows tasks to rely on a global lock
for executing critical sections. In ULMT, we have trans-
parently wrapped this function to let it perform—beyond
the management of the per-task atomic counters used for
avoiding preemption based on asynchronous interrupts—
a try-lock operation (rather than a blocking one), whose
failure will lead the wrapper to invoke the ULMT task
scheduler so as to switch off the CPU the task that needs to
access the busy lock. Similarly, we wrapped those functions
associated with the set of general-purpose locking routines
that rely on the omp_lock_t structure for synchronization
purposes. This again enables the execution to slide towards
work-conservativeness by enabling a thread, which would
otherwise be blocked while running a task that needs to
access a busy critical section, to take care of processing other
standing tasks.

3.3.2 The ULMT scheduler

In this section, we present all the mechanisms at the base
of the ULMT scheduler. As a first important note, while
the original GOMP implementation only manages a single
queue of standing tasks that are runnable, in ULMT we have
introduced multiple queues because of the need to correctly
satisfy OpenMP constraints in the more sophisticated task
management environment entailing differentiated contexts
for the different tasks. As noted, the last aspect is absent
in GOMP since the arrival to a TSP never leads to switch to
a different context—in fact, even under the scenario where
the task reaching the TSP has unsatisfied constraints that
lead the thread to run another task (e.g. a child task), this
happens on the same stack, via synchronous invocation
of the function associated with this task by the thread.
Overall, the list of the task queues exploited in ULMT is
the following one:
• GRQ (Global-Runnable-Queue), which is the original
GOMP queue. It contains all the tasks that can be run
by any thread. When a new tied/untied task is created,
it is inserted into this queue. We kept this behavior
operative in our version since it enables the task to
be promptly taken by any thread accessing this global
queue.

• GBQ (Global-Blocked-Queue), which is a new ULMT
queue that keeps all the currently blocked untied tasks
(so their contexts have been descheduled by the ULMT
scheduler).

• LRQ (Local-Runnable-Queue), which is a new ULMT
queue, with an instance per-thread, that keeps all the
tied tasks that are currently runnable—possibly after
a block phase—and must be finalized by the specific



IEEE TRANSACTIONS ON COMPUTERS 8

GRQ GBQ

LRQ LBQ

UNTIED TASK REACHES TSP

UNTIED TASK IS UNBLOCKED

TIED TASK REACHES TSP

TIED TASK IS UNBLOCKED

T
IE

D
 T

A
S

K
 

IN
T

E
R

R
U

P
T

E
D

UNTIED TASK INTERRUPTED

NEW TIED/UNTIED 

TASK CREATION

Fig. 5: Task-state diagram in ULMT.

thread given that they have been originally picked from
the GRQ by that thread.

• LBQ (Local-Blocked-Queue), which is a new ULMT
queue, with an instance per thread, that keeps all the
currently blocked tied tasks, which must be finalized
by the specific thread along which they have started
their execution.

GRQ and LRQ are implemented as splay trees—this is
the data structure originally exploited in GOMP for GRQ—so
as to associate a different node to the sublist of tasks with
a given priority. GBQ and LBQ have been implemented as
simple doubly linked lists, allowing constant-time removal
of an element once we have the pointer to the struct
gomp_task representing the task to be removed from the
queue. GBQ and LBQ keep tasks that are blocked because
their scheduling constraints are not currently met and those
that are blocked since they need to access some busy re-
source (e.g. a busy lock).

The moving of tasks among the queues, caused by the
hardware-profiler interrupt (which is asynchronous with
respect to the execution of the task) or by the invocation of a
TSP (which is instead synchronous), is depicted in Figure 5.
A task kept in GRQ can be moved to LRQ if it is tied, it has
been picked by the thread—thus starting its execution—and
is then interrupted because of the passage of control to some
higher priority task. It will run again only along the thread
that has picked it when it will become the highest priority
task observed among GRQ and LRQ by that thread upon
running the ULMT scheduler. The transit towards GBQ
is only admitted for untied tasks that are CPU-dispatched
along a thread and then trap into a TSP with non-satisfied
constraints (or try to access some busy lock). On the other
hand, tied tasks that are eventually CPU-dispatched either
from GRQ or LRQ are always put into LBQ when a TSP
with non-satisfied constraints is met (or the access to a busy
lock is attempted). Overall, by the state diagram, we have
that a tied task is never allowed to bounce back to GRQ or
GBQ once picked by a given thread, thus always residing
in the per-thread queues along its lifetime. This satisfies the
OpenMP constraint that tied tasks cannot migrate to other
threads once started up along a given thread.

Clearly, when a task is moved back to GRQ from GBQ—
or to LRQ from LBQ—it is inserted at the priority level spec-
ified upon task creation. However, given that in the original
implementation of GOMP no move back to a “runnable
queue” from a “blocked queue” was in place—in fact, as
hinted, “blocked queues” were even not present at all—
a decision must be taken on the actual position to select

for queuing the task into the corresponding priority level.
As for this point, we decided to adopt different queuing
policies of unblocked tasks into GRQ and LRQ. For LRQ,
we adopted a classical tail insertion. On the contrary, for
GRQ rather than inserting the task at the tail of the sublist
corresponding to the correct priority level, we decided to
take the opposite choice of queuing it at the head. In
other words, within the same priority class of GRQ, a task
being currently unblocked will be CPU-dispatched before
other runnable ones already standing at the same priority
level. The motivation for this choice is illustrated with the
help of Figure 6. Specifically, the GRQ may contain both
not yet CPU-dispatched tasks—in fact, by the task state-
diagram, any task is inserted into GRQ upon its creation—
and tasks that have already been dispatched at some point
in the past and then were either: (A) interrupted in favor
of some higher priority task by the hardware-profiler-based
task preemption support; (B) blocked upon meeting non-
satisfied TSCs or attempting the access to some busy lock
along their execution—with consequent context switch to
another task context—and then moved back to GRQ as
soon as the constraints became satisfied or the needed lock
becomes free.

Tasks that were not yet CPU-dispatched can be seen
as “cold ones” (they are represented in blue in Figure 6),
meaning that no resources (memory buffers, I/O channels,
etc.) were yet committed for their execution. Instead, the
ones that were already CPU-dispatched at some point in
time can be seen as “hot ones” (they are represented in red
in Figure 6) given the commitment of some resources for
their partial execution. The insertion of unblocked tasks—
the ones in point (B)—at the head of the per-priority level
in GRQ when moving them back from GBQ can favor a
more prompt execution of hot tasks, with the advantage
of more timely release of the corresponding committed
resources—this, in turn, can favor aspects such as locality.
Clearly, all the tasks that stand on the per-thread LRQ are
hot given that they where all CPU-dispatched at least one
time in the past (see again the diagram in Figure 5), which
is the reason for not applying the head insertion rule when
moving tasks back from LBQ to LRQ. In the literature, some
solutions discriminate classes of tasks (hot/cold) associated
with a thread, like Cilk [19]. However, our solution also
provides the integrated management of multiple queues, in
combination with synchronous and asynchronous switch of
the task contexts along thread execution.
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Fig. 6: Hot and cold task zones into GRQ.

An additional optimization we integrated within the
ULMT task scheduler applies to GRQ and each individual
LRQ associated with the different threads. This optimization
is based on the idea of further favoring—within a same
priority level—the tasks that more recently used the CPU.
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This can additionally favor aspects such as locality, espe-
cially in scenarios of fine-grain tasks where the tasks that
used a CPU-core after that others were context switched off
the CPU may have only partially invalidated cached data
that will be re-accessed by those same tasks when CPU-
dispatched again. We note that this can be relevant even
in scenarios where a task is untied and is moved across
different threads along its lifetime, given the sharing of
lower-level caches among the CPU-cores on top of which
the threads may run—the same argument applies to top-
level caches for, e.g. hyper-threaded CPUs.

This optimization is based on keeping for each task A
a reference (a pointer) to the task B, which released the
CPU in favor of A. Overall, each task keeps a reference
to the “last running” task observed upon its CPU-dispatch
operation. When the ULMT scheduler is invoked along a
thread, the thread identifies the GRQ or LRQ sublist with
the highest priority having runnable tasks and—instead of
passing control to the task at the head of the sublist—it
checks whether the last running task (B in our example)
is on the same priority level and is now runnable. In the
positive case, control goes to this task. Clearly, if such
last running task B is currently blocked, we can exploit
a reference it may keep to a second last running task C ,
thus favoring C in the schedule if it is runnable and stands
at the highest priority level. This approach can iterate, but
we can anyhow impose a bound on the iterations—falling
back to CPU-dispatching the head task of the non-empty
sublist at the highest priority level—to make the schedule
operation executable in constant time. We also note that,
since the “last running” referenced tasks have been CPU-
dispatched at least one time—so they are hot tasks in our
representation—then this optimization still prevents that a
cold task kept by the GRQ is CPU-dispatched before some
other hot task at the same priority level exists. Clearly, this
optimization may result very useful in scenarios where a
task A loses control of the CPU because of a hardware-
profiler interrupt in favor of a higher priority task B, and
then when B terminates—and the ULMT scheduler is again
invoked, A stands at the highest non-empty priority level
together with other runnable tasks. In this scenario, A is
favored over the other tasks, thus hopefully finding again
cached data to exploit along its execution.

4 EXPERIMENTAL DATA

4.1 Platform
We assessed our ULMT proposal on top of two machines,
whose configuration details are reported below:

Machine CPU Total
cores

Clock
frequency

Memory
access
model

Memory
size

M1 2xAMD Opteron 6174 24 2.2 GHz NUMA 32 GB
M2 1xAMD EPYC 7402P 24 2.8 GHz UMA 64 GB

We assessed ULMT by comparing the values of per-
formance indexes with the corresponding ones achieved
by running the native version of GOMP. The comparison is
carried out while scaling up the number of threads up to the
maximum number of physical CPU-cores in the underlying
machine. Also, we prevent the runtime from employing
task throttling heuristics—which serialize the execution of

tasks along threads when specific thresholds of standing
tasks are met—since they have been proved to be harm-
ful [20] for some application classes. However, we allow the
applications to control the overhead for task creation and
management by relying on the cut-off strategies provided
by the same benchmarks. As a final note, on machine M1
we used kernel version 4.12, while on machine M2 we used
kernel version 4.9. Also, gcc version 7.2 has been used as
the compilation tool-chain.

4.2 Benchmarks
As benchmarks, we used various applications from BOTS
(the Barcelona OpenMP Task Suite) [7]. This benchmark
suite has been devised to bypass the limitations of previous
benchmarks in terms of their capability to generate irregular
and fine grain workloads with task dependencies. On the
other hand, one limitation of BOTS, which has not yet been
resolved by more recent proposals like KASTORS [21], is the
lack of the definition of OpenMP applications specifically
devised to stress the runtime system in the presence of
task priorities. The motivation for this lack is related to the
recent inclusion of priorities in the OpenMP specification—
i.e. OpenMP 4.5. Given that the effective management of
priorities is one of the central targets for our innovative
ULMT proposal, we designed and implemented an innova-
tive open-source benchmark application named HASHTAG-
TEXT, entailing the possibility to configure different priority
levels for OpenMP tasks. As pointed out in the introduction,
this benchmark is already available for download9. Nev-
ertheless, we still used applications from BOTS to assess
the overhead produced by our re-engineered GOMP runtime,
as well as the benefits that can be provided thanks to its
orientation to work-conservativeness.

TABLE 1: Applications selected from BOTS

Name Brief description Domain Nested tasks Cut-Off Worksharing Taskwait

ALIGNMENT
Protein alignment with
the Myers and Miller
algorithm [22]

Dynamic
programming no none

for
no

single

FLOORPLAN
Computation of the
minimum area size
including all cells

Optimization yes
none

single yes
depth-based

SPARSELU
LU matrix
factorization over
sparse matrices

Sparse linear
algebra

no
none

for no

yes single yes

STRASSEN

Hierarchical
decomposition for
multiplication of
large matrices [23]

Dense linear
algebra yes

none
single yes

depth-based

In Table 1 we report the set of applications we selected
from BOTS, together with a few of their most relevant
characteristics (the reader can refer to the original speci-
fication of these applications for further details). With the
exception of ALIGNMENT and SPARSELU in its configura-
tion based on for work-sharing, the selected applications
have nested tasks, which may lead to taskwait dependencies
along the execution of the parent tasks. Hence, they can
represent good test cases to determine whether our design
can provide advantages through the avoidance of thread
blocks upon a taskwait—this is where the orientation to
work-conservativeness stands. On the other hand, all the
selected benchmarks, except FLOORPLAN and SPARSELU

9. https://github.com/HPDCS/OpenMP-Task-Suite
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in its configuration based on single work-sharing, are em-
barrassingly parallel (no thread ever blocks because of task
dependency constraints) and have no particular scalability
issues. Therefore, they are helpful especially for the de-
termination of the overhead of our proposal in a scenario
where work-conservativeness—as well as priorities—is not
a real concern. Also, they cover a set of different important
domains, ranging from dynamic programming to optimiza-
tion, passing through both sparse and dense linear algebra
applications10.

As for our new HASHTAG-TEXT benchmark, it has been
conceived to handle a large dataset of 〈hashtag, text〉 pairs
to serve requests coming from users with different priority
levels who wish to retrieve all texts associated with a given
hashtag passed in input. This is the classical case of access
to posts in scenarios like social networking. The benchmark
uses a collection of tweets (captured during one day of
listening on the Twitter’s streaming channel) to populate
the structures allocated at service startup. In more detail,
the service relies on one or more hash tables to handle
partitions of uniformly distributed data extracted from the
same dataset, each one having a fixed but configurable
number of buckets where colliding 〈hashtag, text〉 pairs are
kept in a list. Since no data is ever replicated across different
hash-table instances, relying on the functional parallelism
offered by the OpenMP tasking model appears to be a good
choice for accomplishing the application objectives. In fact,
we can search for texts associated with a given hashtag
in parallel across the different hash tables, also exploiting
the advantages of reduced impact of scanning the list of
conflicting items (since they are split into different hash
tables, leading their size to be reduced compared to the case
of a single hash table) and enabling fully parallel search
on the same hashtag key. On the other hand, making a
hash table maintain a subset of hashtags as its indexing
keys (namely, partitioning the dataset on the basis of the
hashtag) would not allow for embarrassingly parallel search
in that same hash-table instance. The service is in charge of
mapping requests arriving with a given priority to OpenMP
tasks with corresponding priority levels. These tasks do not
do any particular computation but spawn as many child
’text-search’ tasks as hash tables before synchronizing with
them through the taskwait directive. In our experiments,
the application has been configured to generate requests
with three different priority levels, namely 1, 2, and 3 (with
higher levels having higher priority), according to a mixture
of 60%, 30% and 10%, respectively. This mimics a scenario
with a majority of regular users, a good percentage of
”silver” users, and a minority of ”gold” users11. Request
arrivals to the HASHTAG-TEXTS service can be configured
with average arrival rate λ, to which it corresponds an
inter-arrival time period 1/λ. This allows us to observe the

10. Early data gathered for the other BOTS applications have show
execution profiles well represented by the four benchmark applications
we focus on in the analysis.

11. In the case where users would in their turn represent exter-
nal services accessing the HASHTAG-TEXT service on behalf of their
customers, the possible adoption of data caching at the level of the
external services is not a concern for the validity of our benchmark
configuration. In fact, in that case, thee load towards the HASHTAG-
TEXTS service would simply represent the fraction of the volume of
customers’ requests not actually served through cached data.

outcomes of the service execution with different workload
levels. We have set to 4 the number of hash tables keeping
the data partitions, each one provided with 100 buckets of
collision lists. We selected these values since we observed
that they provide good load balancing even with the lowest
workload level, while they do not impair parallelism with
higher arrival rates of requests. Although the HASHTAG-
TEXTS benchmark is designed to work correctly with both
tied and untied tasks, we decreed the latter to best apply
to the actual semantic of the application. Additionally, they
stress the ULMT runtime more because of the expensive
management required to handle this kind of task—e.g.
caused by the need for concurrent accesses by multiple
threads to the GBQ global task queue. This overhead would
tend to reduce the actual performance gain we can achieve
through our ULMT solution—since it represents a baseline
execution cost to be anyhow spent—compared to what we
may expect when porting this solution to runtime systems
based on separated per-thread tasks queues and work-
stealing across the different threads (like the Intel OpenMP
environment [24]). Therefore, the selected configuration can
help determining a sort of baseline expectation on the out-
comes achievable through our proposal.

4.3 Results with BOTS

In this section, we focus on the experimental results ob-
tained with BOTS applications. Given that they do not entail
differentiated priority levels, there is no need to exploit the
hardware-profiler periodic interrupts for promptly passing
control to higher priority tasks. On the other hand, the
management of different contexts performed by ULMT is
still useful to block/unblock tasks depending on their de-
pendency constraints. Hence, these experiments focus on
assessing the trade-off between the overhead for separate
contexts management—carried out according to the solu-
tions proposed in Section 3—and the advantage thanks to
more flexible management of tasks (and their time-shared
execution) along threads. In Table 2, we report the execution
times of the selected BOTS applications (averaged over 8
runs). We show the execution times with the original GOMP
and with ULMT, and the relative speed-up values (i.e. the
ratio between the two execution times).

As for ALIGNMENT, we observe almost negligible pos-
itive speed-up values by the ULMT runtime, with both
machines M1 and M2. This is because the benchmark does
not use nested tasks, thus it does not need to rely on the
taskwait construct to accomplish synchronization between
parent and child tasks. In this scenario managing separate
task contexts to avoid thread-block caused by task depen-
dency constraints, does not offer advantages. However, the
overhead introduced by ULMT is essentially negligible, also
motivated by the fact that a large fraction of the execution
time is spent within code not included in the GOMP library.
This phenomenon is linked to the relatively large granu-
larity of ALIGNMENT tasks, which is about 14 milliseconds
on M1 and 3.5 milliseconds on M212. Overall, the relative
cost for the creation of tasks (and their contexts) and the

12. We recall that M2 has a multi-core processor released in 2019,
while M1 is based on multi-core processors released in 2010.
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management of task-switch operations introduced in ULMT
is irrelevant with this benchmark execution profile.

As for FLOORPLAN, the granularity of its tasks is much
finer and varies depending on whether a cut-off strategy
is employed or not—tasks have granularity of the order
of nanoseconds when no cut-off is used, in contrast to the
order of microseconds when manual cut-off or if clauses are
employed. This leads to the scenario (opposite to ALIGN-
MENT) where a substantial percentage of time is spent
executing code of the GOMP library rather than code of the
overlying application. By the data, we note that tied and
untied versions of this benchmark with no cut-off strategies
produce results, in terms of execution time, which are two
orders of magnitude worse than those achieved with cut-
off. Also, execution times with no cut-off do not scale with
the number of threads with both the baseline GOMP and
the ULMT runtime. By looking at data, the ULMT runtime
gives rise to speed-down compared to the baseline GOMP—
caused by the additional task management operations—
only under these pathological settings, essentially repre-
sentative of an application-level ”misconfiguration” that
gives rise to thrashing phenomena while managing tasks.
Instead, when running with cut-off (hence correct settings
for this application profile) the ULMT runtime gives rice
to positive speed-up (with about 30% of improvement).
Since FLOORPLAN makes heavy usage of nested tasks, we
observed with ULMT thousands of task-switches occurring
upon the execution of code associated with the taskwait con-
struct, which confirms the benefits achievable when forcing
the task scheduler to behave work-conservatively whenever
possible.

As for SPARSELU, the versions that use the for work-
sharing construct immediately distribute all work across
threads. They are characterized by an embarrassingly par-
allel execution scheme where no thread ever interferes with
the work of the others, nor they need to synchronize on
dependencies defined between parent and child tasks since
no taskwait directive is provided in the code (see Table 1).
Conversely, the versions that rely on the single work-sharing
construct create all the first-level explicit tasks, which in
their turn generate nested tasks to achieve a good work
distribution and load balance. However, we observed by
the experiments that, upon the execution of the taskwait con-
struct, the threads have mostly found either locally spawned
tasks available to be taken in charge or the dependency
constraints already met, which are favorable cases to the
baseline GOMP implementation. All these reasons explain
the low speed-up values achieved by the ULMT runtime
in a few configurations. In any case, no relevant penalty is
noted for the additional work by ULMT related to managing
separate task contexts.

As for STRASSEN, ULMT shows speed-down just for
the configuration with no cut-off and untied tasks. The
motivations are twofold. First, the absence of cut-off leads,
as hinted, to more pressure on the handling (creation and
scheduling) of tasks, which in ULMT is more costly be-
cause of the separation of task contexts. Second and more
important, ULMT has an extra overhead paid whenever the
execution of a nested task requires to suspend the currently
executed untied one, which needs to be queued into GBQ,
and then put back into GRQ when becoming ready again.

In fact, these queues are fully shared among all the threads,
thus imposing synchronized accesses for their manipula-
tion13—the original version of GOMP only has the GRQ fully
shared queue, while our version also has the fully shared
GBQ, whose accesses require additional synchronization
by the threads. However, with well-configured application
settings, and proper usage of cut-off strategies, the overhead
caused by ULMT pays off because of the achievement of
better usage of CPU-cores thanks to its orientation to work
conservativeness.

In any case, the ULMT overhead caused by an exces-
sively frequent switch between task contexts under, e.g.,
misconfiguration of the application could be controlled by
introducing an additional mechanism that supervises some
performance index (e.g. the task throughput) and dynam-
ically excludes the multi-context mechanism in scenarios
where it cannot positively impact on the actual execution.

4.4 Results with Hashtag-Text
In this section, we focus on the results obtained with
HASHTAG-TEXT (HT). As pointed out, this benchmark ap-
plication is fully complementary to literature benchmarks
since it makes use of task priorities. On the other hand,
similarly to other benchmarks, it relies on parent/child task
synchronization. With HT, ULMT can exploit the hardware-
profiler periodic interrupt to promptly pass control to
higher-priority standing tasks. It can also exploit context-
switch between tasks to avoid thread block upon taskwait
directives invoked by parent tasks. As for the periodic
hardware-profiler interrupt (we recall that on the target
platforms, which are based on AMD processors, we ex-
ploited IBS as the hardware profiler), we have selected three
different periods, namely 100, 50 and 25 microseconds.

In the top plots of Figure 7 and Figure 8 we show the
results obtained with no interarrival time between requests
for the two different machines used in the experiments.
meaning that we have a continuous injection of requests.
This is the most-intensive workload scenario, in which the
continuous creation of tasks also generates the heaviest con-
tention for accessing data structures where tasks are placed
before being executed. We report the speed-up achieved
by UMLT vs. the baseline GOMP for both the application
execution time and the request response time for the three
different request/task priority levels. By the results, ULMT
outperforms the baseline GOMP at all thread counts, with
speed-up of the execution time that ranges from 2% to about
8% on machine M1, and from 3% to about 7% on machine
M2. Noteworthy, the application takes benefits by the ULMT
runtime thanks to its support for work-conservativeness,
but it takes no benefits from the hardware-profiler sup-
port and the associated capability for asynchronous task
switching. In the plots, IBS OFF represents the settings
where IBS interrupts are simply switched off, while task
context switches enabling the avoidance of block phases for
threads are still active. This is somehow expected because

13. As pointed out before, full sharing task queues keeping untied
tasks—compared to work stealing—provides an assessment with no
specific queue management approach favorable to reduce the ULMT
overhead. Hence, it represents a test scenario where ULMT is assessed
to determine its baseline effects in an independent manner from other
optimizations.
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TABLE 2: Results with the applications from BOTS.

Version
8 Threads 16 Threads 24 Threads

Execution Time (seconds) Speedup Execution Time (seconds) Speedup Execution Time (seconds) Speedup
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Alignment

for-untied Baseline 18.936 4.502 1.002 1.001 9.752 2.330 1.002 1.005 6.627 1.602 1.004 1.016ULMT 18.898 4.499 9.730 2.319 6.598 1.576

for-tied Baseline 18.926 4.528 0.995 1.001 9.576 2.303 0.997 0.999 6.267 1.551 0.972 1.006ULMT 19.030 4.525 9.601 2.306 6.447 1.541

single-untied Baseline 18.980 4.496 0.998 0.999 9.769 2.306 1.002 1.002 6.669 1.568 1.008 1.006ULMT 19.022 4.501 9.746 2.301 6.616 1.559

single-tied Baseline 18.899 4.523 0.997 1.001 9.523 2.302 0.993 0.001 6.190 1.532 0.977 0.997ULMT 18.949 4.518 9.589 2.291 6.337 1.537
Floorplan

untied Baseline 153.534 31.484 0.625 0.744 24.355 24.355 0.626 0.626 330.681 20.638 0.592 0.543ULMT 245.655 42.299 38.907 38.907 558.558 38.001

untied-if Baseline 5.956 1.223 1.263 1.298 3.145 0.561 1.194 1.047 2.020 0.373 1.056 0.820ULMT 4.716 0.942 2.633 0.536 1.912 0.455

untied-manual Baseline 3.359 0.514 1.271 1.204 1.781 0.240 1.267 1.013 1.079 0.160 1.194 1.013ULMT 2.642 0.427 1.406 0.237 904 0.158

tied Baseline 185.456 32.253 0.643 0.624 386.984 24.193 0.645 0.550 616.214 22.448 0.690 0.531ULMT 288.368 51.671 600.359 44.002 893.358 42.276
SparseLU

for-untied Baseline 172.677 24.182 1.012 0.999 90.696 12.536 1.006 1.003 63.972 9.108 1.009 1.000ULMT 170.640 24.208 90.135 12.501 63.429 9.111

for-tied Baseline 172.752 24.143 1.012 1.000 90.352 12.494 1.008 0.997 63.785 9.033 1.010 0.994ULMT 170.714 24.143 89.631 12.528 63.177 9.085

single-untied Baseline 167.308 24.231 1.043 0.995 86.180 12.426 1.047 0.997 59.281 8.960 1.039 0.991ULMT 160.393 24.348 82.281 12.463 57.034 9.042

single-tied Baseline 167.064 24.719 1.042 0.995 86.195 12.644 1.048 1.002 59.216 9.048 1.047 1.002ULMT 160.308 24.848 82.210 12.614 56.576 9.031
Strassen

untied Baseline 33.637 5.584 0.865 0.704 19.656 3.076 0.858 0.563 14.046 2.457 0.776 0.478ULMT 38.888 7.935 22.908 5.461 18.090 5.142

untied-if Baseline 35.585 5.771 1.029 1.037 22.285 3.551 1.046 1.005 17.819 2.947 1.073 0.999ULMT 34.587 5.567 21.312 3.532 16.602 2.950

untied-manual Baseline 35.661 5.787 1.033 1.043 22.220 3.537 1.054 1.008 18.246 2.942 1.089 1.009ULMT 34.514 5.546 21.078 3.510 16.752 2.915

tied Baseline 33.246 5.852 1.014 1.054 19.163 3.537 1.009 1.016 14.243 2.922 1.044 1.011ULMT 32.796 5.550 18.985 3.482 13.638 2.889

of the corner case related to the absence of interarrival time
between requests, which leads both UMLT and the baseline
GOMP to mostly process the highest priority tasks along time,
since the corresponding queues are unlikely observed as
empty. This essentially annihilates the capability of ULMT
to more promptly switch to the execution of standing higher
priority tasks.

As soon as reasonable interarrival time of requests is set,
the benefits provided by the asynchronous task-switching
capabilities of ULMT become more evident. In the bottom
plots of Figure 7 and Figure 8 we report data for the scenario
with request interarrival time set to 10 microseconds. With
this setting, the speed-up values of the application execution
times provided by ULMT again come from the orientation
to work-conservativeness, but the speed-up values achieved
by ULMT on the response time of higher priority requests
are considerably increased in various configurations, espe-
cially those with highest interrupt rate by the IBS hard-
ware profiler. Globally, the achieved speed-up values of
the response times range from 3% to 11%, from 5% to
38% and from 3% to 60% respectively for the tasks with
priority 1, 2 and 3 with machine M1. At the same time,
they range from 8% to 45%, from 5% to 27% and from
4% to 24% for these same priorities with machine M2.
This is also an indication of the lightweight nature of our
solution to support asynchronous task-switching at very
fine granularity. Furthermore, ULMT enables improvements
of the response time also with priority 1 requests, especially
at larger core counts. This is motivated by the exploitation
of work-conservativeness for these requests in ULMT in

scenarios where we have several threads that get blocked
with GOMP while processing these requests—because of un-
satisfied task constraints. At the same time, given the non-
minimal amount of available cores, higher priority requests
are likely processed by threads running on top of another
subset of the cores.

TABLE 3: Overhead with different IBS settings - machine
M2 - 24 threads running HT.

IBS setting 100 microseconds 50 microseconds 25 microseconds

Measured overhead 2.12 % 2.46 % 4.81 %

To further assess the light weight of the support for the
asynchronous switch, we report in Table 3 the overhead of
the IBS interrupt management—expressed as the percent-
age of increase in the execution time when IBS is active
compared to the case of IBS OFF. For these experiments
we do not really exploit the IBS interrupt to change the
execution flow of threads in favor of higher priority tasks.
Rather, we simply let the handler of the IBS interrupt return,
hence introducing the overhead of managing the interrupts
with no real advantage. By the reported data we see that the
overhead is below 5% when the IBS is configured to send
the interrupt every 25 microseconds, while it is below 2.5%
when the IBS is configured to send the interrupt every 50 or
100 microseconds.
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Fig. 7: Speed-up of benchmark execution time and task
response time with priority 1-3 (machine M1)

5 CONCLUSIONS

The relevance of OpenMP for parallel programming is
definitely growing, so that the corresponding runtime sys-
tems need to be reshuffled to match the objectives of its
newer releases better. In this article, we have presented
a reshuffle of the GNU OpenMP (GOMP) runtime envi-
ronment, introducing two core innovative functionalities:
1) the support for fine-grain asynchronous reassignment
of CPU-cores to higher priority tasks, and 2) the support
for avoiding thread-block phases when unsatisfied paren-
t/child task dependencies materialize (an aspect linked to
the so called work-conservativeness property of OpenMP
runtime systems). Since the introduction of task priorities in
OpenMP is recent, none of the OpenMP benchmarks in the
literature has revealed effective for testing our innovative
runtime solutions. To bypass this problem, we have pre-
sented a fully new benchmark—called HASHTAG-TEXT—
that has been released as open source. Our innovative GOMP
runtime facilities have been released as open source as well,

Speed-Up with M2 and mean request interarrival time equal to 0 µseconds
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Speed-Up with M2 and mean request interarrival time equal to 10 µseconds
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Fig. 8: Speed-up of benchmark execution time and task
response time with priority 1-3 (machine M2).

and we have also presented the results of a comprehensive
experimental study demonstrating the effectiveness of our
proposal.
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