
Hardware-Transactional-Memory Based Speculative Parallel Discrete Event
Simulation of Very Fine Grain Models

Emanuele Santini, Mauro Ianni, Alessandro Pellegrini, Francesco Quaglia
DIAG–Sapienza Università di Roma, Italy

Email: emalele1688@gmail.com, mauroianni@gmail.com, {pellegrini,quaglia}@dis.uniroma1.it

Abstract—This article presents an innovative runtime sup-
port for speculative parallel processing of discrete event sim-
ulation models on multi-core architectures, which exploits
Hardware-Transactional-Memory (HTM) facilities for the pur-
pose of state recoverability. In this proposal, the speculative
updates on the state of the simulation model are executed as
concurrent HTM-based transactions that are also in charge of
detecting whether the update is consistent with the advance-
ment of logical-time along model execution. Our proposal is
fully transparent to the application code. Hence, our HTM-
based run-time support can host conventionally developed
discrete event models relying on the concept of event-handlers
to be dispatched by an underlying simulation engine. Exper-
imental data show that our proposal provides 75% to 92%
of the ideal speedup on an Intel Haswell based platform
(equipped with 4 physical cores and HTM support) for discrete
event models with event granularity ranging between 2 and
12 microseconds. The data also show that these same models
cannot be executed efficiently on top of a last generation
parallel discrete event simulation platform employing software-
based recoverability.

Keywords-state recoverability; optimistic PDES;

I. INTRODUCTION

In Parallel Discrete Event Simulation (PDES) [1], the
simulation model is partitioned into simulation objects—
historically referred to as Logical Processes (LPs)—that are
allowed to be dispatched for event processing along con-
current worker-threads. This allows for exploiting hardware
parallelism with the aim at speeding up model execution.
The simulation object is usually implemented as a set of
data structures to be updated via a callback (representing
the application entry point), which is dispatched by the
underlying PDES platform (see, e.g., [2]–[4]). The dispatch
operation corresponds to the processing of a timestamped
event at the simulation object, and causally consistent exe-
cution is typically based on forcing any simulation object to
process its input events in non-decreasing timestamp order,
including those produced by other objects as the result of
processing activities they carried out. In fact, although recent
approaches provide alternative object-interaction methods
(see, e.g., [5], [6]), the cross-scheduling of events among
simulation objects is the basic approach adopted in PDES
to model the interactions occurring among the entities be-
longing to the simulated system/scenario.

In speculative PDES [7] there is no preliminary assess-
ment of causal consistency of the events, rather they are

dispatched for execution on whichever simulation object as
soon as they are available. This leads to high exploitation
of the intrinsic parallelism in the simulation model, since
causally unrelated portions of the simulated state trajectory
can be processed with no a-priory synchronization of the
execution of the different simulation objects. However, if
the updates occurring along a computation path are even-
tually detected to be inconsistent (i.e. they occurred out of
timestamp order), rollback mechanisms need to be actuated
so as to restore the application state to a consistent (past)
snapshot from which forward computation can be resumed.

Although simple in principle, state recoverability of the
simulation objects poses problems on the side of both
performance and application transparency. In fact, the more
efficient the recoverability support, the lower its overhead.
On the other hand, application-transparent state restore typ-
ically demands more operations from an underlying re-
coverability layer, which further biases the tradeoff away
from pure performance optimization. Literature studies have
(jointly) addressed performance and transparency aspects
in state recoverability of simulation objects via disparate
checkpointing techniques [8], [9] that, except for a few
proposals based on (either conventional or non-conventional)
hardware support [10], [11], rely on software implementa-
tions of the checkpointing support. Although most of these
proposals also entail overhead minimization techniques (e.g.
via tuning of the parameters driving both checkpointing
and–consequently–state recovery operations), for the case
of very fine grain simulation models, namely models based
on events that require a few microseconds of CPU-time
for being processed, the overhead can still represent an
impairment to performance. A way to cope with this issue
is the alternative recoverability technique based on reverse
computing [12], where the forward application code is
coupled with a (in some cases automatically generated [13])
reverse code version that is used to undo the state updates
that are eventually revealed to be inconsistent. This solution
pays off especially in contexts where, beside having fine
grain reverse (hence forward) events, the portion of the
state trajectory to be undone (namely the so called rollback
length) is short, which leads to a reduced number of reverse
events to be processed per rollback operation.

Another aspect that plays a relevant role in case of specu-
lative PDES of very fine grain models is the cost associated

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35

S
pe

ed
up

t w
rt

 S
eq

ue
nt

ia
l S

im
ul

at
io

n

Event Granularity (microsec)

2 Threads 8 Threads 16 Threads 32 Threads

Figure 1. Speedup for PHOLD while varying event granularity and number
of threads

with cross-simulation-object scheduling of events, which
may become predominant. This is typically achieved via
message exchange (managed at the level of the underlying
PDES platform), and the classical approach to undo the noti-
fication of an event that has been scheduled as a result of the
processing of another event that is then detected to be non-
consistent is to send a negative copy of it (the so called anti-
message). Beyond potentially triggering a rollback operation
at the recipient (in case the original copy of the message—
namely event—was already processed) anti-messages lead
to doubling the communication cost per-incorrect-scheduled
events. To cope with this issue, literature approaches have
been proposed in order to reduce the number of message
exchange operations, such as the ones based on message
aggregation [14] or lazy-cancellation (lazy-antimessages)
[15].

In any case, despite the existence of a bunch of literature
results on optimizing speculative PDES systems, executing
simulation models with very fine grain events on top of
these systems in a performance-efficient manner is still a
non-trivial achievement. Just to provide the reader with
some empirical evidence, we report in Figure 1 the speedup
achievable by running the classical PHOLD benchmark for
PDES systems [16] (in a configuration with 2048 simulation
objects) on top of the ROOT-Sim last generation speculative
PDES platform (1) hosted on a 32-core off-the-shelf HP
ProLiant machine, with respect to the sequential simulation
of the same benchmark (same code) on a calendar-queue
scheduler (still executed on the same machine). In the
plot, the CPU-demand by PHOLD events is varied from
a few to some tens of microseconds. The plotted curves
show that speedup is unacceptable (it is a slow-down) for
minimal CPU-requirements by the events, and is anyhow
non-competitive (vs the employed number of threads) even
when events last tens of microseconds.

In this article we cope with the issue of speculatively
running (very) fine grain PDES applications efficiently on
top of multi-core machines, which is achieved by exploiting

1https://github.com/HPDCS/ROOT-Sim

the Hardware-Transactional-Memory (HTM) support that is
nowadays offered by off-the-shelf processors (such as the
Intel Haswell). Overall, our proposal is suited for contexts
where conventional speculative PDES engines based on
software recoverability (even the most advanced ones) fail to
provide speedup just due to the excessively fine granularity
of the simulation events (as we have shown in Figure 1).

In our proposal we speculatively execute an event as an
HTM-based transaction that includes the actual buffering of
any newly produced event destined to whichever simulation
object (in case the transaction is successfully committed),
and which entails a code-block that is used to explicitly
detect whether the transaction (hence the processed event)
is causally consistent, so that a commit is issued only in case
consistency is verified. On the other hand, if the transaction
is not guaranteed to be causally consistent, it simply issues
an abort command that allows: (A) automatically undoing
the updates issued on the state of the simulation object and
(B) automatically discarding any new event produced as
a result of incorrect event processing. Both these targets
are achieved with no intervention by any software layer
thanks to the fact that the HTM transactional cache keeping
the state updates and the newly produced events is simply
squashed upon the abort of the transaction. A secondary
effect by our approach is that we allow intra-simulation-
object concurrency in the speculative processing scheme, as
opposed to traditional PDES engines where a single event
at a time can be CPU-scheduled for a specific simulation
object. Specifically, in our approach two worker-threads
operating within the PDES environment are allowed to
concurrently execute two different events targeting the same
simulation object (just depending on how the overall set
of events destined to the different simulation objects is
clustered along the simulation time axis). If the two events
are actually independent (given that their read/write sets are
disjoint, which means that they touch different portions of
the simulation object state) then they are both committable
in our execution model. This leads our system to implement
the so called weak-causality model [17], just in the form
of parallelization of the execution of events within the same
simulation object. As a last note, our approach is application
transparent given that the application layer can still be
designed as a set of event-handlers touching application
specific data structures, as it commonly occurs in reference
speculative PDES environments (see [2]–[4]) not relying on
HTM facilities and sequential simulators as well.

We also report the results of an experimental study based
on running our system, and specific test-bed applications,
on top of a machine equipped with 2 quad-core (hyper-
thread) Intel(R) Xeon(R) 3.5 GHz processors (with HTM
support) and 24 GB RAM, running Linux Ubuntu 12.04.2
LTS, kernel version 3.5.0-23-generic. By the data, our HTM-
based simulation engine allows achieving 75% to 92% of
the ideal speedup and a performance gain of up to 10x vs

Fetch event (if any) from

calendar-queue

Flush new events

(if any) to calendar-queue

Free

(default initial state)
Busy

Figure 2. State diagram for the generic worker-thread WTi

the last generation ROOT-Sim speculative PDES platform
relying on software-based recoverability support.

The remainder of this article is structured as follows. Our
HTM-based speculative PDES engine is presented in Section
II. Experimental data are provided in Section III. Related
work is discussed in Section IV.

II. THE HTM-BASED SPECULATIVE PDES ENGINE

We consider a scenario where all the events that have been
scheduled (including the simulation startup events), destined
to whichever simulation object, are kept within a unique pool
implemented as a classical calendar-queue [18]. The events
kept within the pool are extracted for concurrent processing
by multiple worker-threads.

The sorting of the elements into the calendar-queue is
based on event timestamps, but event-records also entail
information determining what simulation object is the target
of an event, and the actual event type/payload, as typical of
PDES environments.

All the events kept in the calendar-queue are schedule-
committed, with the meaning that they will never be re-
tracted (e.g. via negative copies). In fact, in our approach
events that were scheduled during an HTM-supported event
processing phase are flushed to the calendar-queue only if
the transaction associated with the processing of the event
successfully commits. This, in its turn, implies that the event
is no longer rollbackable, therefore the output it produced
will never need to be undone.

We target the scenario where the maximum number of
worker-threads employed in the speculative PDES engine is
upper bounded by the number of available CPU-cores, say
N . This is a classical configuration avoiding interference
by deschedule/reschedule operations in parallel applications
[19]–[21] at least for cases where the platform is temporarily
dedicated to a specific application.

The calendar-queue data structure is coupled with an array
of N entries, which we name processing[]. The i-th
entry of this array is used to keep data, say a timestamp
value, related to the status of the i-th worker-thread operating
within the speculative PDES platform, which we denote as
WTi. This array is initialized at simulation startup in such
a way to keep in all the entries the special value ∞. On the
other hand, the calendar-queue is initialized in such a way
to keep the initial events that, depending on the simulation
model configuration, will fire any initial state transition in
the model execution.

Algorithm 1 Fetch operation - worker-thread WTi

1: procedure FETCH [ATOMIC]RETURNS: event
2: e ← GETMINIMUMTIMESTAMPEVENTFROMCALENDARQUEUE
3: if e = NULL then
4: processing[i] ← ∞
5: else
6: processing[i] ← T (e)
7: end if
8: return e
9: end procedure

Each worker-thread WTi lives in the state diagram shown
in Figure 2. It starts executing within the free state, with
the meaning that it has no pending (to be executed) sim-
ulation event yet assigned to it. Hence, WTi initially has
no simulation object to take care of (for event processing).
WTi leaves the free state and enters the busy one upon
performing a FETCH operation that leads to the extraction
of some event to be processed from the calendar-queue. This
operation executes the actions described in Algorithm 1.
Specifically, it atomically extracts the event e with minimum
timestamp that is currently registered into the calendar-
queue (if any), and records the extracted timestamp value
into the entry processing[i] associated with WTi.
Atomicity avoids that two different worker-threads take
care of processing the same pending event. Also, if two
worker-threads, say WTi and WTj , execute the FETCH
operation concurrently, and the two operations are serialized
in such a way that the two threads extract from the calendar-
queue, respectively, the event e and then the event e′, it is
guaranteed that T (e) < T (e′) (2). Hence it is also guaranteed
that processing[i]<processing[j], given that the
two array entries are updated according to the established
serialization order. We also note that the FETCH operation
can be executed in constant-time average performance, since
the calendar-queue guarantees O(1) average-performance.
Hence, the usage of a conventional spin-lock to achieve
atomicity of the FETCH operation should not represent a
scalability impairment, at least at the CPU-core count that
currently characterizes processors offering HTM support (3).

If no event is extracted from the calendar-queue by WTi

while executing the FETCH procedure (i.e. the calendar-
queue is found to be empty), the entry processing[i]
is set to the default initial value ∞. In the main loop of
simulation processing, this scenario will simply lead to retry
the FETCH operation, leaving the worker-thread in the free
state, given that no job to perform has been assigned to it.

When WTi is allowed to commit the event it is currently
handling (while in the busy state), any speculative operation
(e.g. memory update) associated with event processing,

2Here we implicitly assume that no simultaneous events will ever exist.
However, the case of simultaneous events, where T (e) may be equal to
T (e′), will be explicitly dealt with later in the article.

3For scaled-up CPU-core counts, as we may expect it will be the case
for next-generation HTM-equipped machines, we can envisage the reliance
on wait-free algorithms rather than lock-based ones [22], [23].

Algorithm 2 Flush operation - worker-thread WTi

1: procedure FLUSH [ATOMIC](event set E)
2: ∀e ∈ E: INSERTINCALENDARQUEUE(e)
3: end procedure

which it kept at the level of the HTM cache, is allowed
to be flushed to memory for making it visible. In our
organization, the HTM-based transaction that implements
event processing writes newly scheduled events (possibly
produced by the current event execution) into a thread-
private buffer, such that the buffer content is made visible
only upon committing the HTM-based transaction. Hence,
right after committing the event processing phase, these
events can be flushed (outside of the transactional code-
block) from the thread-private buffer to the calendar-queue.
Overall, the activities carried out by any worker-thread
WTi right after committing some event, which we globally
refer to as FLUSH procedure, are the ones depicted in
Algorithm 2. This procedure is still an atomic action (hence
it can rely on, e.g., the same spin-lock used for managing the
FETCH operation) and simply inserts all the newly produced
events (if any) into the calendar-queue. Upon executing this
procedure, the worker-thread switches back to the free state.

The flushed events will be eventually extracted from the
calendar-queue by any thread that will (re)transit into the
free state, via the execution of FETCH operations. Clearly,
a new event e′ that is flushed to the calendar-queue might be
associated with a timestamp T (e′) such that T (e′) < T (e),
where e is an event previously fetched by some worker-
thread WTj (namely, the one with minimum timestamp
across those stored in the calendar-queue at the time of
the FETCH operation). In this case, the newly scheduled
event e′ stands in the past of e, which plays a role in the
determination of event safety (causal consistency) within the
speculative processing scheme.

To cope with the consistency issue, the values registered
in the array processing[] are used in our approach to
define the order according to which the events currently
handled by the worker-threads (while being in the busy
state) need to be committed. Specifically, they establish the
order according to which the HTM-based transactions imple-
menting the processing of the events need to be committed.
Hence, we use the array entries in a manner similar (at least
in spirit) to what is done by Lamport’s bakery algorithm
[24]. Overall, the condition that tells whether a worker-
thread WTi can safely commit the event it is handling is
expressed as:

∀j ̸= i : processing[i] < processing[j]

This condition indicates that the (possibly speculatively)
executed event is associated with the current lower bound
timestamp across all the not yet processed/committed events
in the system. Hence the timestamp of this event represents
the commit horizon, thus the event can be safely executed or

Algorithm 3 Safety-check - worker-thread WTi

1: procedure SAFE RETURNS: BOOLEAN
2: T̂ ← MIN∀j ̸=i(processing[j])
3: if (processing[i] < T̂) then
4: return TRUE
5: else
6: return FALSE
7: end if
8: end procedure

(in case of already carried out speculative execution) safely
committed. The pseudo-code implementing the safety-check
is provided in Algorithm 3. As the reader may observe,
the SAFE procedure does not require to be executed atomi-
cally, given that when any worker-thread WTj executes the
FLUSH procedure, it leaves processing[j] untouched.

From the above arguments, the actual execution loop of
any worker-thread WTi is the one reported in Algorithm 4,
where the safety-check is initially carried out before any
choice is taken in relation to the way (speculative or not)
the event e currently assigned to WTi needs to be processed.
If the safety-check at line 7 is verified, then the event can be
executed with no need to startup the HTM-based transaction
for recoverability purposes, since any side effect the event
would give rise to is safe. In other words, the timestamp of
the event is already known (prior to the actual processing
of the event) to correspond to the commit horizon of the
speculative run. On the other hand, if the safety-check at
line 7 is not verified, WTi processes the event speculatively
within an HTM-based transaction (hence in a recoverable
manner, given that the transaction can be aborted, if needed).
After the processing phase, the safety-check is re-executed
and if the event has become committable (namely, it now
lies on the—hopefully—advanced commit horizon) then the
actual commit takes place, with installation of the event
side effects that become visible. In the negative case, the
whole process of safety-assessment and safe vs speculative
execution is retried (resuming from line 7). In other words,
the structure of Algorithm 4 leads any worker-thread WTi

to be able to execute its currently assigned event in safe
mode or in speculative mode. In the latter case, we have
chances that, at the end of the speculative processing phase,
the event has become committable, thanks to the absence of
non-committed events still standing in its past.

A. Optimizations

Handling Simultaneous Events: The safety condition
discussed above is based on having some worker-thread
WTi in the busy state that is in charge of processing
(or has speculatively processed) the event with the current
absolute minimum timestamp within the whole system. This
condition might never be verified with simultaneous events,
namely events marked with the same identical timestamp.
If simultaneity of events were admitted in the simulation
model, then Algorithm 4 would give rise to live-lock.

Algorithm 4 Main loop
1: procedure MAINLOOP
2: while ¬endSimulation do
3: e ← FETCH()
4: if e = NULL then
5: retry from line 3
6: end if
7: if SAFE then
8: event set New events ← PROCESSEVENT(e)
9: FLUSH(New events)

10: else
11: BEGINTRANSACTION()
12: event set New events ← PROCESSEVENT(e)
13: if SAFE then
14: COMMITTRANSACTION()
15: FLUSH(New events)
16: else
17: ABORTTRANSACTION()
18: retry from line 7
19: end if
20: end if
21: end while
22: end procedure

As for this aspect, we note that guaranteeing progress in
speculative PDES systems in the presence of simultaneous
events is a well understood problem that has been exten-
sively studied in literature [25], which is not specifically
bound to our proposal. Hence different literature solutions
for tie-breaking simultaneous events (see, e.g., [26]) can be
exploited for integration with our HTM-based speculative
PDES system. A baseline approach could consist in com-
paring both timestamp values and worker-thread identifiers,
according to the philosophy underlying Lamport’s bakery
algorithm [24]. Therefore, a variant for safety-assessment
(of the event currently handled by any worker-thread WTi)
in the presence of simultaneous events, which we already
implemented in our engine, is based on the following
predicate:

∀j ̸= i : processing[i] ≤ processing[j] AND i < j

This variant does not consider (possible) causal relations
across simultaneous events, since the tie-break is exclusively
based on worker-threads’ identifiers. However, the achieve-
ment of liveness with simultaneous events, while jointly
guaranteeing causality across them, could be reached in our
scheme by relying on causal-timestamps (see, e.g., [27]).
Hence processing[] could be simply setup to keep
causal-timestamps rather than classical ones if a scenario
with causal simultaneous events would need to be dealt with.

Non-zero Lookahead: From the PDES literature it is
well known that the simulation model lookahead can play
a role on the efficiency of synchronization (4). Although it
plays a major role for conservative PDES [1], it can play

4If a discrete event model has lookahead value L, then it is guaranteed
that any event with timestamp T (e) will not give rise to any other event
with timestamp less than T (e)+L. Hence e will not give rise to causality
dependencies up to time T (e) + L. Overall, the lookahead is the ability
to predict that nothing will occur in logical time up to a point that is a
function of the current time.

such a role also in speculative PDES systems. However,
the traditional way the lookahead is used is to determine
(a-priori for conservative PDES vs a-posteriori for spec-
ulative PDES) the safety of the events that are executed
by a simulation object when assuming that the object is
a sequential entity. In our approach, objects are no longer
sequential entities, given that two different worker-threads
can contemporaneously reside in the busy state by having
fetched two events destined to the same simulation object.
Let us indicate with T (e) and T (e′) the timestamps of
these two events and assume, with no loss of generality,
that T (e) < T (e′). Suppose, still with no loss of general-
ity, that the simulation model has lookahead L, such that
T (e)+L > T (e′). In such a scenario, we cannot assert that
the event e′ is safe (which might lead it to commit before e is
committed), given that it may need to access the simulation
object snapshot that has been produced by e. Overall, event
safety calculation on the basis of the lookahead can be still
adopted for scenarios where the event in the past, say e in
our example, is associated with a simulation object different
from the one associated with the event in the future, say
e′ in the same example. In such a scenario, the condition
T (e) + L > T (e′) leads to the fact the any new event
produced by the source simulation object, the one processing
e, will not be causally related to e′. Hence, the overall HTM-
based speculative PDES engine organization can be modified
by including an additional array destination[], with
N entries, such that, in case WTi is in the busy state,
destination[i] keeps the identifier of the simulation
object that is the target of the event to be processed by
WTi. This way we can distinguish a priori whether different
events that are concurrently handled by two worker-threads
operate on disjoint portions of the simulation model. By
exploiting this new array, and the lookahead value L (if
any), the safety of the event to be processed by WTi can be
assessed according to the following condition:

∀j ̸= i such that destination[j] ̸= destination[i] :

processing[i] < processing[j] + L

AND

∀j ̸= i such that destination[j] = destination[i] :

processing[i] < processing[j]

The above logic can increase concurrency by allowing
the (speculatively) processed events to be committed in non-
strictly increasing values of their timestamps, as instead it
needs to occur when relying on the condition adopted by
the SAFE procedure in Algorithm 3. Further, the above
predicate can be still integrated with the aforementioned
logic for managing simultaneous events based on worker-
thread identifiers. As a last note, such a predicate is fully
independent of the actual interaction graph across the sim-
ulation objects. This is a choice aligned with the classical
objectives of speculative PDES synchronization, which does
not require a-priori knowledge of the (potential) interactions

across the concurrent simulation objects.
Throttling: Another optimization we discuss is related

to line 13 of Algorithm 4. In this line of the pseudo-code
the SAFE procedure is called while being in HTM-based
transactional context. It is not useful to call this procedure
multiple times (e.g. according to a polling approach for
safety assessment) within the same transaction while han-
dling event e. This is because any update occurring onto the
array checked by SAFE leads to the abort of the HTM-
based transaction associated with the processing of e in
case the safety-check was previously invoked within the
same transaction and the array was updated via FETCH
operations by concurrent worker-threads. In order to increase
the likelihood that, in case e has become a safe event along
its speculative processing interval, we can actually detect
its safety upon calling the SAFE procedure at line 13 of
Algorithm 4, we have devised a throttling approach (which
we recall is a classical technique for reducing the likelihood
of rollbacks in speculative PDES, see, e.g. [28]).

In particular, we modified the procedure SAFE to re-
turn to the invoking worker-thread WTi currently handling
event e, the number of entries of the processing[]
array which keep timestamps (possibly augmented with the
lookahead value) that are lower than the timestamp kept by
processing[i]. We denote with K this number, which
corresponds to the minimum number of events that need to
be committed before a speculative run of the event e bound
to WTi can be committed (5). Clearly, when calling SAFE at
line 7 of Algorithm 4, K is zero if the event bound to WTi

is safe, while K is different from zero in case the event is
not detected to be safe. However, in case the event e is not
yet safe, K provides an indication of the minimum number
of events from which e may causally depend.

In our throttling scheme, we insert a delay (a CPU-busy
loop, since operating system sleep cannot be used, given that
it would lead to aborting HTM-based transactions because of
a mode-change along thread execution) which is computed
as δ × K × α, where δ corresponds to the average event
granularity for the executed simulation model and α is a
parameter with value falling in the interval [0,1] which is
determined according to a classical hill-climbing approach,
similar to the one adopted in [29] for tuning the checkpoint
interval in PDES platforms to the value that optimizes
performance. In our hill-climbing approach the metric used
to dynamically set α is the number of committed events per
wall-clock-time unit. In other words, we regulate throttling
in such a way to increase the likelihood of performing useful
work while the worker-threads reside in the busy state. We
also included an ϵ-greedy scheme to avoid stalling in local
maxima.

5It is the minimum, not the exact value, because K does not account for
events with timestamps lower than processing[i], if any, which might
have been already inserted into the calendar-queue, but that might have not
been fetched for processing.

Speculative engine type
classical HTM-based

suitability for very fine-grain events no (or limited) yes
unbounded chain of speculative events yes no

intra-simulation-object parallelism no yes
suitability for very large scale platforms generally yes no

Table I
SUMMARY OF HTM-BASED VS CLASSICAL SPECULATIVE PDES.

B. HTM-based vs Classical Speculative PDES: a Summary

We provide in Table I a brief summary of the main dif-
ferences (as evaluated by relying on four reference indices)
between our HTM-based approach and classical speculative
PDES. The latter allows for (ideally) unbounded chains of
speculatively processed events along the execution path of
each individual simulation object (it may only depend on
memory limits for keeping speculative and recoverability
data), while our HTM-based approach allows for up to N
(number of CPU-cores) speculative events to stand out, given
that recoverability relies on the hardware transactional cache.
On the other hand, our approach allows for intra-simulation-
object concurrency while classical speculative PDES does
not allow for it. In fact, our engine automatically resolves
data conflicts arising while processing in parallel events des-
tined to the same simulation object (this leads to squash/retry
of the corresponding HTM-based transactions in case some
conflict materializes). As for usefulness when parallelizing
very fine grain models, the HTM-based approach fully fits
it, while the traditional approach may provide limited use-
fulness. On the other hand, the classical approach has been
already shown to scale to very large computing platforms
(see, e.g., [30]), while our solution is intrinsically targeted
at limited scale machines (e.g. because of the atomicity re-
quested in manipulating the shared calendar-queue across the
worker-threads, or the shared array of meta-data). However,
at current date, machines with HTM support show relatively
limited number of cores. Hence our approach looks suited
for current HTM platforms. Also, for very fine grain models,
significant reduction of the completion time can be achieved
even with limited (but well exploited) amounts of CPU-
cores, which is one target we achieve, as shown by the
experimental data we provide in the following section.

III. EXPERIMENTAL RESULTS

We initially tested our HTM-based speculative PDES
system by relying on the well known PHOLD benchmark
[16]. We included 2048 simulation objects in the simulation
model, each one scheduling events for itself or for the
other objects. Specifically, upon processing an event, the
probability to schedule a new event destined to another sim-
ulation object has been set to 0.2, which is representative of
scenarios with non-minimal interactions across the different
objects. Also, the initial population of events has been set to
1 event per simulation object, while the timestamp increment

determining the actual timestamp of newly scheduled events
has been set to follow the exponential distribution with
mean value equal to one simulation time unit. The model
lookahead has been set to a minimal value computed as
the 0.5% of the average timestamp increment. For this
benchmark configuration, we varied the CPU-demand for
processing the events in the interval between 2 and 12 mi-
croseconds, which has been done by appropriately setting the
classical busy-loop characterizing PHOLD event processing
steps. Hence we studied the system behavior when moving
from very fine to fine grain event configurations. We have
run this benchmark by varying the number of employed
threads from 1 to the maximum number of physical CPU-
cores, say 4, in the underlying HTM-equipped machine
(which entails two 4-core Intel Haswell 3.5 GHz processors
with hyper-threading support and has 24 GB RAM)(6). For
the case of single-thread runs, the execution time values
are those achieved by simply running the application code
on top of the calendar-queue scheduler, while for all the
other settings of the number of threads we relied on the
HTM-based parallel implementation we presented (7). We
have also run the same identical model on top of the
last generation ROOT-Sim speculative PDES engine, which
offers a pure software-based support for recoverability. In
Figure 3 we report the observed speedup values vs the
single-thread execution time (each reported value resulting
as the average over 5 different samples). The data clearly
show how our HTM-based proposal definitely outperforms
the traditional style PDES engine. Particularly, our solution
allows achieving speedup that ranges between 1.5 and 3.6,
with the highest values achieved when the granularity of
the events increases towards 12 microseconds. Also, with 4
threads it provides speedup above 3 as soon as the event
granularity is of at least 4 microseconds. Instead, the tradi-
tional style PDES engine only provides slow-down, which
again confirms the unsuitability of the classical software-
based recoverability support for speculative execution of
models with very reduced event granularity.

In Figure 4 we report an additional set of data showing
how the HTM-support for event speculation influences the
execution dynamics. In particular, we show the probability
that some event gets eventually committed after having been
executed speculatively within an HTM-based transaction.
The data show an interesting trend where for lower levels
of parallelism (say 2 threads) the HTM support does not
influence speculation (and its performance effects) signif-
icantly. In fact, the likelihood for a committed event to
have been executed within an HTM-based transaction is

6We did not use hyper-threading (hence the whole available set of 8
cores) in order to avoid interference by different threads on transactional-
cache portions that are shared across hyper-threaded cores, which would
likely lead HTM-based speculative processing of events to abort due to
phenomena that are not directly imputable to our speculative processing
support. Data gathered during our experimentation confirm this expectation.

7This is available as open source at https://github.com/HPDCS/htmPDES.

very low, indicating how the most important contribution to
parallelism in the execution is provided by the exploitation
of the lookahead, which allows for processing events in a
safe mode outside any transaction. On the other hand, when
increasing the level of parallelism, the HTM-based support
starts to play a relevant role, given that the probability for
a committed event to have been processed speculatively
within some HTM-based transaction increases up to almost
0.2. Also, the increase of the usefulness of HTM-based
speculative processing when moving from 2 to 4 threads
indicates a potential for scalability of our approach to HTM-
equipped machines with larger numbers of physical cores.

Another set of experiments has been carried out by relying
on a multi-robot (multi-agent) exploration and mapping
simulation model, developed on the basis of the results in
[31]. Specifically, in this model a group of robots is set out
into an unknown space, with the goal of fully exploring
it, while acquiring data from sensors (e.g., cameras, lasers,
. . .) which are used to map the environment. Whenever a
robot has to make a decision about which direction should
be taken to carry on the exploration, it is done by relying on
pheromones count. Specifically, each subregion is assigned a
counter which is incremented whenever any robot visits it so
as to notify other ones of its transit. To decide what direction
to take, robots adopt a greedy approach, so that when a
robot is in a particular subregion, it targets the neighbor
with the minimum trail count. A random choice takes
place if multiple subregions have the same (minimum) trail
count. In our implementation of this model, each simulation
object models a squared subregion of an overall region
to be explored. We considered 2025 subregions, that are
explored in parallel by 16 robots, modeling the scenario of a
relatively reduced number of high-qualified agents in charge
of the exploration. Each robot has a mean residence time
within a subregion of 5 min, and for physical constraints it
cannot pass though a subregion in less than 30 seconds, a
value that determines the lookahead of the model (since a
new arrival event in any subregion cannot occur before 30
seconds have elapsed since the arrival in the currently visited
subregion). This simulation is aimed at determining the
coverage time, depending on the choices that are performed
while determining what new subregion to enter. This model
is still very fine grain given that mobility events only entail
determining what direction to choose. The results for this
application are presented in Figure 5. By the data we can
see how the HTM-based solution is able to deliver maximum
speedup of the order of (slightly less than) 3.5, just when
using 4 threads. Also, it provides super linear speedup when
employing 3 threads. Further, the traditional style PDES
engine did not provide any reasonable speedup also for this
case study, rather a slow-down. This additionally supports
the relevance of our HTM-based proposal.

Finally, in Figure 5 we also report a speedup curve
achieved when using a lookahead for event safety detection

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 8 12

S
pe

ed
up

 w
rt

 S
er

ia
l E

xe
cu

tio
n

Event Granularity (microsec)

2 Threads
4 Threads
Traditional PDES (2 threads)
Traditional PDES (4 threads)

Figure 3. Speedup values for PHOLD

 0

 0.05

 0.1

 0.15

 0.2

2 4 8 12P
ro

ba
bi

lit
y

of
 U

se
fu

l H
T

M
-s

pe
cu

la
tiv

e
P

ro
ce

ss
in

g

Event Granularity (microsec)

2 Threads 4 Threads

Figure 4. Usefulness of HTM-based speculation

0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4

S
pe

ed
up

 w
rt

 S
er

ia
l E

xe
cu

tio
n

Number of Concurrent Threads

HTM-based
HTM-based (50% of the actual lookahead)
Traditional PDES

Figure 5. Speedup values for the multi-robot model

that has been set to 50% of the actual lookahead of the
simulation model. By the data we see that this configuration
still provides good speedup, which for the case of 4 threads
is slightly less than the 80% of the value observed when
employing the real lookahead of the application. This is
an additional indication of the usefulness of HTM-based
speculation, especially for larger numbers of threads (as we
have already noted for the PHOLD benchmark). Finally,
these data show how the HTM-based approach can provide
resilience to performance failures in scenarios where the
lookahead managed at the level of the simulation engine is
an under-estimation of the real one. This might help setting
up the engine in scenarios where the determination of the
precise lookahead of the application can be a time consum-
ing job (e.g. when not relying on automatic approaches to
lookahead extraction [32]).

IV. RELATED WORK

As hinted, most of the state recoverability proposals in
speculative PDES are based on software approaches. The
ones relying on checkpointing tend to reduce the overhead
of the recoverability support (and of the actual recovery
operations executed in case of rollback) by either exploiting
incremental or sparse checkpointing techniques [8], [33],
[34], or a combination of the two [9], [35]. Compared
to these schemes, our proposal is orthogonal since we
guarantee recoverability by relying on a hardware support,
rather than a software one.

The recent proposal in [36] discusses the possibility to
speculatively execute discrete event simulation applications
in parallel on top of shared-memory multi-core systems by
exploiting the TM paradigm as the means for state recover-
ability. However, this work is still bound to software based
recoverability, and does not attempt to exploit the innovative
HTM-support provided by mainstream processors, as instead
we do in our proposal.

Other checkpointing schemes oriented to speculative
PDES have been based on hardware level facilities. The
proposal in [10] presents the rollback chip, which is a special
purpose device used to keep the live state of the simulation
object and entails the capability to perform the restore of

past values. Compared to this scheme, our proposal does
not require specialized hardware, rather it is based on off-
the-shelf general purpose HTM facilities. An alternative
way of using hardware support for state recoverability in
speculative PDES has been provided in [11], where the
actual checkpoint operation (data copy from live state to
the checkpoint buffer) is realized in non-blocking manner
via software managed DMA engines. In our proposal we
retain the same non-blocking advantage, in fact the before
image of the simulation object state is implicitly guaranteed
to be available even when the simulation object is CPU-
dispatched, thanks to the underlying hardware transactional
cache used to host the after image associated with event
processing. On the other hand, the restore to the before
image in our proposal does not require software intervention,
given that it only entails aborting the transaction associated
with the incorrectly processed event. This is not the case for
the approach in [11], which is based on software modules
used to access the log and copy back the snapshot to be
restored into the live state region.

Hardware supported synchronization in PDES has been
also studied in [37], [38]. Both these proposals exploit
hardware facilities to determine the commit (or committable)
horizon of a parallel PDES run, hence to assess the safety
of processed events (or of those to be still processed). These
solutions are orthogonal to our one, given that they do
not target hardware-based recoverability of the simulation
model state trajectory. Also, the proposal in [37] stands as
a theoretical design, given that the hardware component im-
plementing the reduction that calculates the commit horizon
has not been physically realized, rather it has only been
evaluated via simulation. Instead, our engine is based on
real off-the-shelf hardware facilities.

The proposal in [39] exploits HTM as the means for the
atomic management of the event pool in multi-thread PDES
platforms (by encapsulating concurrent accesses to the pool
within HTM-based transactions). Rather, we exploit HTM
for state recoverability.

As hinted, approaches explicitly tailored to fine grain
speculative PDES include those oriented to reduce the
communication overhead, thus ultimately improving the

computation to communication ratio. These include schemes
like (i) lazy-cancellation [15], where an anti-message is sent
out only after the assurance that the corresponding message
to be canceled would never been recreated, (ii) message
aggregation [14], where messages are sent after batching
them so as to amortize the send-setup cost, (iii) zero-copy
message passing [40], where the number of data copies
along the path from source to destination is reduced to a
minimum, and (iv) risk free synchronization [41], where
produced messages (events) are sent out only after having
determined the consistency of the corresponding source
event. Compared to these approaches, we implicitly pursue
similar objectives given that in our solution only committed
output events (those produced by a committed transaction,
namely a committed event execution) are actually flushed to
memory. Hence we do not allow any non-committed output
to live out of the hardware transactional cache, and we do
not require sending anti-messages, given that only the output
by committed events is reflected into memory.

Finally, compared to the reverse computing approach
[12], which can be considered as a means to reduce the
state recoverability cost in case of fine grain events (where
software based checkpointing would induce excessive CPU-
time/memory overhead), our approach provides a different
tradeoff given that our HTM-based speculative PDES engine
guarantees state consistency with no intervention by the
software. In fact we do not rely on reverse events, rather on
squashing the hardware transactional cache in the underlying
HTM system, which leads the latency of the state restore
operation to be independent of the length of rollback (as
instead it does not occur in reverse computing schemes).
On the other hand, our proposal allows for a speculative
trajectory that has a number of speculative (uncommitted)
steps bounded by the number of CPU-cores (namely the
number of HTM caches available in the system), while
reverse computing can be employed in contexts where the
speculative chain of processed events does not undergo any
specific constraint. In other words, in our approach optimism
is limited by the available hardware resources, in terms of
HTM caches, which is not the case for reverse computing.

V. CONCLUSIONS

In this article we have explored the idea of relying
on Hardware-Transactional-Memory (HTM) to improve the
execution speed of very fine grain parallel discrete event
simulation applications. This is done by exploiting hard-
ware supported in-memory transactions to implement the
speculative execution of simulation events. If they are not
ensured to be causally consistent at the time of committing
the transaction, the rollback operation can be executed at
reduced cost by simply squashing the transactional hardware
cache. Experimental results show that this approach pays
off in reducing the relative overhead of the classic software
based recoverability support (e.g. software implemented

checkpointing) for speculative parallel discrete event sim-
ulation. As a result, our scheme allowed to achieve speedup
in the parallel execution of discrete event models with event
granularity of the order of a few microseconds, a config-
uration typically non-effectively addressable via classical
speculative parallel discrete event simulation engines relying
on software based recoverability.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Com-
munications of the ACM, vol. 33, no. 10, pp. 30–53, 1990.

[2] D. E. Martin, T. J. McBrayer, and P. A. Wilsey, “WARPED:
A Time Warp simulation kernel for analysis and application
development,” in Proceedings of the 29th Hawaii Interna-
tional Conference on System Sciences - Volume 1: Software
Technology and Architecture, 1996, p. 383.

[3] C. D. Carothers, D. W. Bauer, and S. Pearce, “ROSS: a high
performance modular Time Warp system,” in Proceedings of
the 14th Workshop on Parallel and Distributed Simulation,
2000, pp. 53–60.

[4] A. Pellegrini, R. Vitali, and F. Quaglia, “The ROme OpTi-
mistic Simulator: Core internals and programming model,”
in Proceedings of the 4th International ICST Conference on
Simulation Tools and Techniques, 2011, pp. 96–98.

[5] A. Pellegrini, R. Vitali, S. Peluso, and F. Quaglia, “Trans-
parent and efficient shared-state management for optimistic
simulations on multi-core machines,” in Proceedings of the
20th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
2012, pp. 134–141.

[6] A. Pellegrini and F. Quaglia, “Transparent multi-core specu-
lative parallelization of DES models with event and cross-
state dependencies,” in Proceedings of the ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation,
2014, pp. 105–116.

[7] D. R. Jefferson, “Virtual Time,” ACM Transactions on Pro-
gramming Languages and System, vol. 7, no. 3, pp. 404–425,
1985.

[8] R. Rönngren, M. Liljenstam, R. Ayani, and J. Montagnat,
“Transparent incremental state saving in Time Warp parallel
discrete event simulation,” in Proceedings of the 10th Work-
shop on Parallel and Distributed Simulation, 1996, pp. 70–77.

[9] A. Pellegrini, R. Vitali, and F. Quaglia, “Autonomic state
management for optimistic simulation platforms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26,
no. 6, pp. 1560-1569, 2015.

[10] R. M. Fujimoto, J. Tsai, and G. Gopalakrishnan, “Design and
evaluation of the rollback chip: Special purpose hardware for
Time Warp,” IEEE Transactions on Computers, vol. 41, no. 1,
pp. 68–82, 1992.

[11] F. Quaglia and A. Santoro, “Non-blocking checkpointing
for optimistic parallel simulation: Description and an imple-
mentation,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 6, pp. 593–610, 2003.

[12] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto,
“Efficient optimistic parallel simulations using reverse com-
putation,” ACM Transactions on Modeling and Computer
Simulation, vol. 9, no. 3, pp. 224–253, 1999.

[13] J. M. LaPre, E. Gonsiorowski, and C. D. Carothers, “LO-
RAIN: a step closer to the PDES ’holy grail’,” in Proceedings
of the ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, 2014, pp. 3–14.

[14] M. Chetlur, N. Abu-Ghazaleh, R. Radhakrishnan, and P. A.
Wilsey, “Optimizing communication in Time-Warp simula-
tors,” in Proceedings of the 12th Workshop on Parallel and
Distributed Simulation, 1998, pp. 64–71.

[15] A. Gafni, “Space management and cancellation mechanisms
for Time Warp,” Tech. Rep. TR-85-341, University of Southern
California, Los Angeles (Ca,USA), 1985.

[16] R. M. Fujimoto, “Performance of Time Warp under synthetic
workloads,” in Proceedings of the Multiconf. on Distributed
Simulation, 1990, pp. 23–28.

[17] F. Quaglia and R. Baldoni, “Exploiting intra-object dependen-
cies in parallel simulation,” Information Processing Letters,
vol. 70, no. 3, pp. 119–125, 1999.

[18] R. Brown, “Calendar queues: a fast O(1) priority queue
implementation for the simulation event set problem,” Com-
munications of the ACM, vol. 31, pp. 1220–1227, 1988.

[19] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to OS interference using kernel-level
noise injection,” in Proceedings of the ACM/IEEE Conference
on Supercomputing, 2008, pp. 19:1–19:12.

[20] W. Maldonado, P. Marlier, P. Felber, A. Suissa, D. Hendler,
A. Fedorova, J. L. Lawall, and G. Muller, “Scheduling
support for transactional memory contention management,”
in Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2010, pp.
79–90.

[21] S. Seelam, L. L. Fong, A. N. Tantawi, J. Lewars, J. Divirgilio,
and K. Gildea, “Extreme scale computing: Modeling the
impact of system noise in multicore clustered systems,” in
Proceedings of the 24th IEEE International Symposium on
Parallel and Distributed Processing, 2010, pp. 1–12.

[22] A. Kogan and E. Petrank, “Wait-free queues with multiple
enqueuers and dequeuers,” in Proceedings of the 16th ACM
symposium on Principles and Practice of Parallel Program-
ming, 2011, pp. 223–234.

[23] M. P. Herlihy, “Wait-free synchronization,” ACM Transac-
tions on Programming Languages and Systems, vol. 13, pp.
124–149, 1991.

[24] L. Lamport, “A new solution of Dijkstra’s concurrent
programming problem,” Commun. ACM, vol. 17, no. 8, pp.
453–455, 1974.

[25] V. Jha and R. Bagrodia, “Simultaneous events and lookahead
in simulation protocols,” ACM Transactions on Modeling
and Computer Simulation, vol. 10, no. 3, pp. 241–267, 2000.

[26] H. Mehl, “A deterministic tie-breaking scheme for sequential
and distributed simulation,” in Proceedings of the Workshop
on Parallel and Distributed Simulation, 1992.

[27] R. Fujimoto, “Exploiting temporal uncertainty in parallel and
distributed simulations,” in Proceedings of the Thirteenth
Workshop on Parallel and Distributed Simulation, 1999, pp.
46–53.

[28] S. Srinivasan and P. Reynolds, Jr., “Elastic time,” ACM
Transactions on Modeling and Computer Simulation, vol. 8,
no. 2, pp. 103–139, 1998.

[29] A. C. Palaniswamy and P. A. Wilsey, “Adaptive checkpoint
intervals in an optimistically synchronised parallel digital
system simulator,” in Proceedings of the IFIP TC10/WG 10.5
International Conference on Very Large Scale Integration,
1993, pp. 353–362.

[30] P. D. Barnes, Jr., C. D. Carothers, D. R. Jefferson, and
J. M. LaPre, “Warp speed: executing time warp on 1, 966,
080 cores,” in Proceedings of the ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, 2013, pp.
327–336.

[31] S. Koenig and Y. Liu, “Terrain coverage with ant robots: a
simulation study,” in Agents, 2001, pp. 600–607.

[32] E. Deelman, R. Bagrodia, R. Sakellariou, and V. S. Adve,
“Improving lookahead in parallel discrete event simulations
of large-scale applications using compiler analysis,” in
Proceedings of the 15th Workshop on Parallel and
Distributed Simulation, 2001, pp. 5–13.

[33] F. Quaglia, “A cost model for selecting checkpoint positions
in Time Warp parallel simulation,” IEEE Transactions on
Parallel and Distributed Systems, vol. 12, no. 4, pp. 346–362,
2001.

[34] B. R. Preiss, W. M. Loucks, and D. MacIntyre, “Effects of
the checkpoint interval on time and space in Time Warp,”
ACM Transactions on Modeling and Computer Simulation,
vol. 4, no. 3, pp. 223–253, 1994.

[35] H. Soliman and A. Elmaghraby, “An analytical model for
hybrid checkpointing in Time Warp distributed simulation,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 10, pp. 947–951, 1998.

[36] O. Dalle, “Using TM for high-performance discrete-event
simulation on multi-core architectures,” Presentation at the
EuroTM Workshop on Transactional Memory, Apr. 2013.

[37] E. W. Lynch and G. F. Riley, “Hardware supported time
synchronization in multi-core architectures,” in Proceedings
of the 23rd Workshop on Principles of Advanced and
Distributed Simulation, 2009, pp. 88–94.

[38] S. Srinivasan, M. J. Lyell, P. F. R. Jr., and J. Wehrwein,
“Implementation of reductions in support of PDES on
a network of workstations,” in Proceedings of the 12th
Workshop on Parallel and Distributed Simulation, 1998, pp.
116–123.

[39] J. Hay and P. Wilsey, “Experiments with hardware-based
transactional memory in parallel simulation,” in Proceedings
of the ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, 2015, pp. 75–86.

[40] B. P. Swenson and G. F. Riley, “A new approach to zero-copy
message passing with reversible memory allocation in multi-
core architectures.” in Proceeedings of the 26th Workshop
on Principles of Advanced and Distributed Simulation, 2012,
pp. 44–52.

[41] S. Bellenot, “Performance of a riskfree Time Warp operating
system,” in Proceedings of the 7th Workshop on Parallel and
Distributed Simulation, 1993, pp. 155–158.

