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ABSTRACT
A rollback operation in a speculative parallel discrete event simula-
tor has traditionally targeted the perfect reconstruction of the state
to be restored after a timestamp-order violation. This imposes that
the rollback support entails specific capabilities and consequently
pays given costs. In this article we propose approximated rollbacks,
which allow a simulation object to perfectly realign its virtual time
to the timestamp of the state to be restored, but lead the recon-
structed state to be an approximation of what it should really be.
The advantage is an important reduction of the cost for managing
the state restore task in a rollback phase, as well as for managing
the activities (i.e. state saving) that actually enable rollbacks to be
executed. Our proposal is suited for stochastic simulations, and
explores a tradeoff between the statistical representativeness of the
outcome of the simulation run and the execution performance. We
provide mechanisms that enable the application programmer to
control this tradeoff, as well as simulation-platform level mecha-
nisms that constitute the basis for managing approximate rollbacks
in general simulation scenarios. A study on the aforementioned
tradeoff is also presented.
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1 INTRODUCTION
Parallel Discrete Event Simulation (PDES) [4] enables the exploita-
tion of the scaled-up computing power offered by parallel and dis-
tributed platforms to reduce the execution time of simulation runs
and to make large/huge simulation models tractable. It is based
on partitioning the entire model to be simulated in simulation
objects—historically referred to as Logical Processes (LPs)—which
are CPU-dispatched for processing their events concurrently. A
challenge in this research area is to keep the concurrent evolu-
tion of these objects consistent, and the classical reference criterion
states that the overall simulation run is consistent if each object pro-
cesses its incoming events—possibly produced by other objects—in
non-decreasing timestamp order.

A scalable approach to ensure timestamp-ordered execution of
events at each individual simulation object is optimistic synchroniza-
tion [7]. This solution is based on speculative processing techniques,
where objects are allowed to process their events without any assur-
ance that timestamp order violations will not occur. Hence no cost
is paid to a-priori determine the safety of the events to be processed.
Violations can occur, as an example due to the arrival at object 𝑂
of some newly-scheduled event from a concurrent object 𝑂 ′, with
timestamp in the past of𝑂 ’s already processed events. If a violation
occurs, then the simulation object affected by the causality error (in
our case 𝑂) rolls back in logical time. This leads to the restoration
of the last state value not affected by the violation.

The common way to support the rollback operation of a simula-
tion object is to perform an exact reconstruction of its last correct
state, and many literature studies have investigated solutions to
perform this operation at reduced cost (e.g. [2, 14]). Most of these so-
lutions take into account the tradeoff between the overhead caused
by the activities that enable the capability to rollback—such as sav-
ing state information along the forward execution of the simulation
object—and the actual overhead caused by the reconstruction phase,
which squashes the current inconsistent state in favor of an older
still-consistent state image.

In this article we investigate an orthogonal approach to the re-
duction of the cost for rolling back the simulation object to a past
state, which we name approximated rollback. Our solution is based
on the idea that the perfect reconstruction of the last correct past
state when a causality error takes place might be “redundant” to
achieve a meaningful execution of the simulation. In more details,
we may get acceptably accurate simulation results even in scenarios
where the resume of the execution of the causality-error affected

https://doi.org/10.1145/3384441.3395984
https://doi.org/10.1145/3384441.3395984
https://doi.org/10.1145/3384441.3395984


SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA Principe, et al.

simulation object takes place from a state that is a reasonable ap-
proximation of the one that should have been restored. Clearly, this
solution can fit stochastic simulations, where we typically estimate
properties of the simulated system through statistical techniques.

The central concept that stands behind our solution is that the
state of a simulation object can be partitioned into core and non-core
portions. The core portion allows reconstructing the whole state,
although in an approximated way. This allows focusing on the core
portion only, when both state saving and state reload from the
log need to be carried out. On the other hand, the possibility to
devise a portion of the simulation object state as core is application-
dependent, hence the approximated rollback technique requires a
bit more intervention by the application programmer in terms of
interaction with the state management logic offered by the opti-
mistic runtime environment. To reduce the need for intervention
by the programmer, we provide a state-management architecture1
that allows to transparently save the core-state portion, and sup-
ports an application-level callback which, starting from a saved
core-state portion, will approximately reconstruct the whole state
when a rollback occurs. Our architecture also offers the possibility
to dynamically change the identification of the core-state portion,
which allows to further optimize the execution of the approximated
rollback technique when the simulation object state dynamically
changes in shape and semantics.

In our architectural proposal we still enable the coexistence of
approximated rollback phases and traditional non-approximated
ones, based on the perfect reconstruction of past states. Also, we
leave to the simulation model the possibility to switch between
the two at runtime. The final effect is to enable the simulation
model to choose what phases of the simulation run can tolerate
approximations and what phases cannot. This choice can depend
on the runtime observation of the actual state of a simulation object
and on its evolution trajectory, so that the approximated mode can
be enabled or disabled depending on whether specific predicates
hold or not. Ultimately, the choice on whether to enable or disable
this support can be simply based on the passage of logical time,
and on the willingness to allow no more than a given percentage
of passed-through logical time to be managed with approximated
rollbacks.

The architectural support of the approximated rollback technique
has been implemented in the open-source ROOT-Sim optimistic
PDES platform [10] and is therefore available for download2. Ex-
perimental data for an assessment of our proposal are reported
in this article, in particular for the case of a synthetic benchmark
based on PHold [5], and a real-world agent-based epidemiological
Susceptible-Infected-Recovered (SIR) model [8], which allows to
study the spreading of viral diseases.

The remainder of this paper is structured as follows. In Section
2 we discuss related work. The approximted rollback technique
and its support are presented in Section 3. Experimental data are
provided in Section 4.

1Overall, it can be regarded as a rollback-capable memory management architecture.
2The official ROOT-Sim repository is at https://github.com/HPDCS/ROOT-Sim. The
artifact submitted for reproducibility of this work is available at https://doi.org/10.
5281/zenodo.3765238.

2 RELATEDWORK
The objective of reducing the cost for managing state-rollback op-
erations in speculative PDES has been long studied in the literature.
A few solutions propose to exploit infrequent state snapshots—
to reduce the CPU-cost and memory footprint for logging state
information—and to restore a missing snapshot by reloading a pre-
vious one and reprocessing intermediate events. In these solutions,
a key point is to optimize the joint costs of taking the snapshots
and rolling back to the target state image via the intermediate re-
processing phase. Several methods to determine the best-suited
snapshots to take, or how frequently shapshots should be taken,
have been proposed (see, e.g., [14, 15]).

Other approaches are based on taking incremental checkpoints,
which only log the portions of the simulation-object state that
have been modified since the last checkpoint operation (see, e.g.,
[18, 21]). This reduces the CPU-cycles and memory footprint to
create the checkpoints along the forward execution phase. However,
the rollback phase requires to backward apply all the incrementally
logged checkpoints to enable the resume of the simulation object
execution from the correct past state. Sometimes, the length of
the sequence of backward steps is unpredictably long, leading to
negative performance effects. To cope with this problem, some
solutions [12, 19] have proposed mixed schemes where incremental
and non-incremental checkpoints are taken in interleaved manner
along the forward execution phase of a simulation object.

The extremism of the reduction of the memory footprint asso-
ciated with state saving has lead a few authors to rely on reverse
computing approaches [1]. These are based on backward repro-
cessing (in reverse order and manner) all the causally-inconsistent
events upon the rollback task. Except for irreversible state changes,
with this solution no logs of state information is required. How-
ever, for (very) long rollbacks the cost of backward reprocessing
the events might be a dominating factor adverse to performance.
To cope with this issue, the work in [2] has studied how to mix
reverse computing with classical infrequent checkpoints, so as to
limit the maximum number of backward-processed events in a
rollback phase.

All the aforementioned approaches target the scenario where the
reconstruction of the past state to be restored is “perfect”, meaning
that the restored state is an exact copy of the corresponding state
observed along the forward execution phase, before the occurrence
of the causality error. In this paper, we take the different approach of
reconstructing the state to be restored in an approximated manner,
hence enabling a new dimension in terms of the tradeoff between
the CPU-cost and the memory footprint to save state information,
and the latency to restore the last correct state upon rolling back.
As for transparency, our solution requires some intervention by
the programmer, who needs to include in the application code
specific calls to an API that enables the approximated rollback
scheme, and needs to implement a callback function to exploit the
platform-level state-saving tasks in order to approximately rebuild
the state to be restored. However, following a few guidelines we
shall introduce, the above requirements affect the complexity of
coding the application logic of a PDES application in a relatively
limited manner. Also, the additional logic the programmer needs
to put in the coded model is domain-specific and fully bound to the
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features of the coded model. In other words, the programmer does
not need to be aware of what a rollback is. He only needs to be aware
of how the state of a simulation object can be reshaped starting
from a minimal set of state information transparently managed (i.e.,
logged and restored) by the underlying PDES platform. In any case,
a few of the above cited solutions do not provide the support for full
transparency to the application programmer (e.g. [14, 15, 18, 19]).

Our proposal is also related to solutions based on the notion of
uncertainty in the occurrence of events [3, 16]. In these propos-
als, the PDES platform can take decisions aimed at reducing the
execution time of the simulation by exploiting a kind of “under-
specification" of either time and space for the occurrence of events.
The final effect can be a bias in the evolution of the simulation
model trajectory that can ultimately lead to an approximation of
the collected statistics—compared to a scenario where no under-
specification is used and exploited by the runtime system. However,
a core difference in our solution is that the effects of the approxi-
mation in the model-execution trajectory, caused by approximated
rollbacks, can be somehow controlled by the application program-
mer, since the execution phases where the approximated rollbacks
can occur are defined by the application logic. Also, with the ap-
proximated rollback scheme, the programmer has the ability to
determine what portions of the simulation-object state define the
core, and what portions are instead less valuable, and can be rebuilt
in an approximated manner. This is an additional means to provide
the programmer with a way to control the effects of approximated
rollbacks on the output statistics by the simulation.

Other proposals have studied the tradeoff between relaxing strict
causality of the events and its effects on performance in (specula-
tive) PDES [6, 17]. Essentially, these solutions skip running some
state rollbacks if the effects of processing events out of strict times-
tamp order is considered acceptable—in terms of the final statistics
computed by running the simulation. Our solution can be seen as
fully orthogonal to these approaches, since we still comply with
strict timestamp ordering of the events at each individual simula-
tion object, but we allow a given event to observe an approximation
of the state that would have been observed in a rollback-free run
of the same simulation model.

3 APPROXIMATED ROLLBACK TECHNIQUE
In this section we initially discuss the core aspects associated with
the approximated rollback technique, and its implications on the
application coding/configuration process. Then we present the
architectural development we carried out to integrate the support
for approximated rollbacks in the open source ROOT-Sim platform.

3.1 Outline
The approximated rollback technique deals with the ability of a
speculative PDES application to resume its execution, after the
occurrence of a rollback that brings a simulation object back to
logical time 𝑇 , from a state 𝑆 ′ which does not fully match with the
original state 𝑆 that was observed by the simulation object (at the
same time 𝑇 ) along the forward-mode execution.

Denoting with𝑉𝑇 (𝑥) the virtual time of a state 𝑥 , and with 𝐼 (𝑥)
the actual information kept by 𝑥—namely the collection of state-
variables forming the state—and denoting with 𝑆 ′ ← 𝑆 the relation

between two states 𝑆 ′ and 𝑆 such that 𝑆 ′ represents the restoration
of 𝑆 after a rollback, then the approximated rollback technique can
be characterized through the following expression:

𝑆 ′ ← 𝑆 ⇒ [ 𝑉𝑇 (𝑆 ′) = 𝑉𝑇 (𝑆)] ∧ [ 𝐼 (𝑆 ′) ⊆ 𝐼 (𝑆)] (1)

By Equation 1, the logical time of the two states 𝑆 ′ and 𝑆 involved
in the 𝑆 ′ ← 𝑆 relation is identical, while 𝑆 entails a superset of the
information kept by 𝑆 ′. In other words, the approximated rollback
leads to restore a state with some missing information, but there is
no added information (i.e. no added state-variable) in 𝑆 ′ that was
not originally present in 𝑆 . This is a crucial aspect from the point
of view of model coding, since the application programmer knows
that after an approximated rollback takes place he will never need
to deal with a state-variable that was not already observed along
the forward execution mode.

As for model execution in a speculative PDES environment, the
subset relation between 𝐼 (𝑆 ′) and 𝐼 (𝑆) implies that, in order to
create a snapshot useful to restore 𝑆 ′, when we pass through 𝑆 we
can log (much) less data with respect to the size of 𝑆 . We know
that logging less data than the state size to create a snapshot is a
classical achievement of many incremental state saving techniques.
However, in the approximated rollback technique, in order to reduce
the log size (and the CPU-time to take it) there is no need to relate
data that are saved in the log—and that are used to restore the object
to state 𝑆 ′—with the write operations occurring on the object state
along the forward execution mode. We simply need to discard some
information belonging to 𝑆 to create the log useful to restore 𝑆 ′.
This also means that we do not need to put in place any tracing
mechanism (based on, e.g., software instrumentation) to track state
updates to reduce the log size. Also, we do not need to backward re-
traverse the incremental log chain to rebuild 𝑆 . We simply restore
the saved core information of 𝑆—namely 𝐼 (𝑆 ′) rather than 𝐼 (𝑆)—
which enables restoring 𝑆 ′ in place of 𝑆 .

Another implication of the relation 𝐼 (𝑆 ′) ⊆ 𝐼 (𝑆) is that 𝑆 ′ is not
guaranteed to fully record the history of the events that have been
processed at the simulation object up to the restoration time 𝑇 . In
fact, some information that these events installed in the originally
passed-through state 𝑆 is no longer there after rolling back to state
𝑆 ′. Accepting this risk implicitly leads to discarding the idea that
reducing the amount of per-event logged state information in the
speculative PDES run should be achieved via sparse state saving
techniques combined with coasting forward. In fact, a coasting
forward phase is targeted at the regeneration of a state image that
exactly records the whole history of events that are processed and
not affected by a causality violation, including the events that are
intermediate between the logical time of the last checkpoint before
the causality error, and the timestamp 𝑇 of the last correct event.
Avoiding this type of “perfect state reconstruction” makes the state
restoration time upon a rollback independent of the granularity of
the events.

Overall, dealing with large state sizes and coarse-grain events
(possibly updating large portions of the state) in a speculative PDES
application is no longer a concern when employing approximated
rollbacks, especially when 𝐼 (𝑆 ′) is a very reduced subset of 𝐼 (𝑆). On
the other hand, large state sizes and coarse-grain (write-intensive)
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Figure 1: Direct and indirect generation of 𝑒 ′ by 𝑒.

events represent a challenging scenario for all the other techniques,
including reverse-computing based ones3.

Clearly, in our approach, we also need to consider the feasibility
of resuming from 𝑆 ′ (rather than 𝑆) after a rollback in terms of
correctness of the simulation model execution. With correctness we
do not mean the statistical outcome of the stochastic simulation
run, which can be clearly affected by an approximation in the state
restore phase. Rather, we intend that the processing of the events
occurring after an approximated rollback does not give rise to
exceptions that lead to the abort or a crash of the simulation run. If
it were the case, then we would give no guarantee that a speculative
PDES simulation based on approximated rollbacks can eventually
reach its termination.

The problem to be considered is still related to the fact that 𝑆 ′
will result in a partial record of the history of events processed at
the simulation object, say 𝑂𝐵𝐽 , up to the restoration time 𝑇 . But
we know that the history of events occurring up to time 𝑇 at the
object𝑂𝐵𝐽 can affect the future of the same object, either directly or
indirectly. Looking at the examples in Figure 1, a direct effect takes
place when an event 𝑒 with timestamp 𝑇 (𝑒) < 𝑇 , executed by 𝑂𝐵𝐽 ,
schedules a new event 𝑒 ′ with timestamp𝑇 (𝑒 ′) for the same object,
with𝑇 < 𝑇 (𝑒 ′). On the other hand, an indirect effect appears when
the event 𝑒 leads to schedule 𝑒 ′ passing through other simulation
objects—so 𝑒 leads to the scheduling of one or more intermediate
events across a chain of simulation objects, which ends with the
scheduling of the event 𝑒 ′ at object 𝑂𝐵𝐽 .

The key point here is that the event 𝑒 has access to state infor-
mation related to the history of the events processed at object 𝑂𝐵𝐽
up to 𝑇 (𝑒), and the newly-scheduled event 𝑒 ′ can have a payload
for which we may expect some match with the information found
by 𝑒 in the object state when it was processed. A classical example
is that 𝑒 installs in the object state a key 𝐾 at time 𝑇 (𝑒), which will
need to be removed by another event 𝑒 ′ in the future at time 𝑇 (𝑒 ′),
with 𝑒 ′ scheduled by 𝑒 . Suppose this information—namely the key
𝐾—is still included in the state 𝑆 when 𝑂𝐵𝐽 transits from 𝑇 (𝑒) to
𝑇 , and then disappears because an approximated rollback at time𝑇
(which does not undo the execution of 𝑒) restores state 𝑆 ′ rather
than 𝑆 . In this case, whenmoving to𝑇 (𝑒 ′) (with𝑇 (𝑒 ′) > 𝑇 ) after the

3In fact, coarse-grain events with many updates on the state will likely lead to coarse-
grain backward computing steps, independently of whether the backward computing
phase is based on reverse event handlers [1] or reverse reconstruction of memory-
location values [2].
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Figure 2: The runtime exception (key not found) caused by
the processing of 𝑒 ′.

post-rollback resume, the event 𝑒 ′ will generate an exception (the
key is not found in the object state). An example of this situation is
depicted in Figure 2.

The above discussion allows us to introduce the concept of com-
bination between approximated and non-approximated rollbacks,
to be used to avoid such runtime anomalies. When an event 𝑒 is
processed such that a new event 𝑒 ′ is scheduled (or it is simply
expected to be scheduled) in the future, whose processing will not
tolerate an approximation in the state evolution trajectory, then
the simulation model can simply switch to traditional rollbacks.
As for the above example, at time 𝑇 (𝑒) the model can switch to
non-approximated rollbacks, and then can switch back to approx-
imated rollbacks a time 𝑇 (𝑒 ′). Outside this logical-time window,
approximated rollbacks can work with no risk of runtime excep-
tions. Otherwise, we can adopt the different approach where the
key 𝐾 is kept in the core of the state of the object—hence also in
the core of the state 𝑆—so we know that we still find this key into
𝐼 (𝑆 ′) when 𝑆 ′ is restored in an approximated rollback.

A last point needs to be discussed to conclude the outline of
the approximated rollback technique. It is related to the following
question: «once we restore 𝑆 ′ (instead of 𝑆), are we able to perform a
guess on the missing piece of information between 𝐼 (𝑆) and 𝐼 (𝑆 ′)?».
Considering stochastic simulation as the target, the answer is yes. In
particular, we can complement the restore of 𝑆 ′ with the invocation
of an application-level callback that simply takes 𝑆 ′ and changes
its form in order to (possibly) improve the real distance that exists
between 𝐼 (𝑆) and 𝐼 (𝑆 ′). Overall, denoting with 𝐶𝐹 this callback
function, we have that the final state that is restored at time 𝑇 in
an approximated rollback is 𝐶𝐹 (𝑆 ′). Clearly, the inclusion of the
callback function 𝐶𝐹 to support the approximated reconstruction
of the state from which to resume the processing of the simulation
object after a rollback adds some runtime overhead to the state
reconstruction process. However, we still avoid the dependence
between the cost of the approximate state reconstruction and the
amount of rolled back events.

At this point we can add another indication on how to build 𝑆 ′,
which is the actual core of 𝑆 , in order to make the callback function
𝐶𝐹 effective: 𝑆 ′ (and hence 𝑆) should include information on what
pieces of the state are missing between 𝑆 and 𝑆 ′. However, their
values are a “do not care”, and will be simply regenerated (in an
approximated manner) by the callback function 𝐶𝐹 . Clearly, it is
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left in the hand of the application programmer to determine what
information is suited for the approximate reconstruction via 𝐶𝐹 ,
and what is instead more relevant to the stochastic process we are
simulating, and should be therefore maintained in the core of 𝑆—so
that we are sure that wewill find it again in 𝑆 ′ after an approximated
rollback. In the next section we provide an architectural support
for approximated rollbacks and a general indication on what the
approximated rollback support can provide to make the job of
the programmers easier. On the other hand, the above described
solution is an archetypal that can be instantiated in differentiated
modes, also depending on the specific software technology used to
develop models and/or to implement the speculative PDES runtime
environment.

3.2 Architectural Support
We have instantiated the approximated rollback support integrat-
ing it in the ROOT-Sim speculative PDES platform. This platform
allows running discrete event models developed using the C pro-
gramming language. Hence, the exploitation of the capabilities of
ROOT-Sim enables the programmer to build simulation objects
with a strict control on the memory layout of their states. In more
details, a simulation object in ROOT-Sim is represented by a set
of memory buffers which are dynamically allocated (and possibly
released) along the lifetime of the object, using the conventional
functions malloc and free offered by the standard library of the C
programming language. Also, when an object is scheduled for event
processing, the event-handler callback that is invoked by the run-
time environment receives as input parameter a pointer that allows
accessing a chunk of memory representing the “top level” state
information. Starting from this chunk, any other chunk currently
allocated in the object state can be still reached via pointers.

The set of memory chunks forming the object state represents
the so called “memory map” of the object. To enable state restora-
tion, various mechanisms are offered, ranging from infrequent to
incremental checkpointing of the memory map. In particular, the
memory map of each object is handled via the DyMeLoR [11] layer,
which keeps compact metadata for identifying allocated chunks,
dirty chunks and chunks whose speculative release is not yet com-
mitted (hence it can still be undone). To keep these metadata con-
sistent, DyMeLoR transparently intercepts the calls to malloc and
free as natively issued by the application-level code. Also, it can
intercept the memory write operations issued by the application
level code through binary instrumentation schemes still operating
transparently to the application-code developer. A checkpoint op-
eration involves copying the currently-allocated chunks into a log
buffer, while the restore operation puts the logged chunks back in
place in their original memory locations.

In this memory management model, the information 𝐼 (𝑆) asso-
ciated with a state 𝑆 observed by the simulation object along event
processing is formed by two parts:

1) the collection of the memory addresses associated with the
currently active chunks, and their size—we can globally de-
fine them as the chunk areas;

2) the actual content of the currently active chunks.
Considering a state 𝑆 ′, which is an approximated restore of 𝑆 ,

then 𝐼 (𝑆 ′) might miss a subset of the chunk contents—but it might

still keep the chunk areas—and/or might miss a subset of the chunk
areas—hence also missing their content.

In the currently developed support for approximated rollbacks,
we opted for the second choice. Therefore, 𝑆 ′ is an approximation
of 𝑆 because the actual memory map associated with 𝑆 ′ misses
memory chunks that were instead present in the memory map
associated with 𝑆—at the time when 𝑆 was passed through by the
object along the forward-mode execution of the simulation. In other
words, we do not allow to restore a chunk of memory in the memory
map of 𝑆 ′ without restoring its content.

This approach allows us to define the concept of strongly con-
nected core memory in the object state as follows:

Definition 3.1 (strong core-memory connectivity). All the pointers
between any couple of chunks of memory ⟨𝐴, 𝐵⟩ that belong to the
core of the state 𝑆 , namely the portion of 𝑆 which is restored in
an approximated rollback through the restoration of 𝑆 ′, are still
meaningful—they are not dangling pointers.

It is important to note that this property deals with the mutual
relation (through pointers) between couples of memory chunks
that are in 𝑆 ′, while it does not apply to an individual memory
chunk. In other words, with strong core-memory connectivity, it is
still possible that a chunk belonging to 𝑆 ′ has a dangling pointer—
a pointer that points to a memory address not covered by any
chunk of 𝑆 ′. Essentially this is a missing chunk in the approximated
rollback.

To better illustrate this aspect, let us consider the scenario de-
picted in Figure 3. In the top part we represent the organization of
the state 𝑆 , when it was passed through in forward-mode execution.
As for the content of the different chunks included in the memory
map of the object state 𝑆 , we focus on pointer fields possibly kept
within locations included in the chunks. In the bottom part of the
same picture we show the organization of 𝑆 ′. Here, all the buffers
that are marked red in the layout of 𝑆 no longer appear in the layout
of 𝑆 ′—but those that are in 𝑆 ′ have identical content with respect
to the corresponding ones that were in 𝑆 . Therefore, we correctly
have that 𝐼 (𝑆 ′) ⊆ 𝐼 (𝑆). For the sake of simplicity in the discussion,
we marked the different memory chunks with labels. Also, with no
loss of generality, in the example scenario we have assumed that
the memory chunk 𝐴 represents the top-level state information
pointed to by the pointer passed to the event-handler routine when
an event is CPU-dispatched at the simulation object—this pointer
is denoted as 𝑃0 in our representation. By the example, we have
that strong core-memory connectivity is respected when restoring
𝑆 ′ instead of 𝑆 , although chunk 𝐸 has a dangling pointer 𝑝𝑘 . The
same is true for the pointer 𝑝ℎ kept in the memory chunk 𝐴.

Now, the relevance of the strong core-memory connectivity prop-
erty is that we can rely on a simple approach, to be followed at the
application level when coding the state management logic of the
simulation object, in order to enable restoring a state 𝑆 ′ such that,
starting from the pointer 𝑃0, we can be able to actually access all
the chunks that are in the memory map associated with 𝑆 ′—this
means that 𝑆 ′ is fully reachable starting from 𝑃0. The approach
is that for any couple of chunks ⟨𝐴, 𝐵⟩ belonging to the state 𝑆 ,
such that there is a direct pointer-based relation between the two,
namely 𝐴

𝑝
→ 𝐵, then 𝐵 can be part of the core memory of state 𝑆

if and only if 𝐴 is in the core memory too. The only exception is
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Figure 3: Explaining the strong core-memory connectivity
property.

for the top-level chunk, namely chunk 𝐴 pointed to by 𝑃0 in our
example.

We recall that, in the approximated rollback scheme, we also
include the possibility to use the callback function 𝐶𝐹 , which re-
ceives 𝑆 ′ in input, in order to perform some transformation of 𝑆 ′
possibly leading to a better approximation of the original state to
be restored 𝑆 . Clearly, full reachability of 𝑆 ′ is a fundamental aspect
to effectively code 𝐶𝐹 . However, another important point to cor-
rectly manage the core information available in 𝑆 ′ is to make the
callback function 𝐶𝐹 able to deterministically recognize dangling
pointers embedded in chunks belonging to 𝑆 ′. We recall again that,
following the above approach to define what chunks belong (and
what chunks do not belong) to the core-memory portion of the
state 𝑆—so as to build a fully-reachable set of chunks—a dangling
pointer in a chunk included in the restored state 𝑆 ′ will surely point
to a chunk that has been missed in the approximated rollback.

The support for the deterministic identification of what pointers
are not dangling is the inclusion of a new type of data structure,
called struct discriminable_pointer, such that the virtual ad-
dress to be used to point to a chunk in the object state 𝑆 is coupled
with a control bit-mask telling whether it is pointing to a chunk in
the core-memory part or not—in the positive case we say that it is
a core pointer. In this way, the callback function𝐶𝐹 can safely scan
all the buffers in 𝑆 ′ via pointers, deciding whether to materialize or
not missing chunks (those pointed to by non-core pointers) using
stochastic values for filling their fields, which are somehow repre-
sentative (or feasible) for the specific model that is being simulated.
In our implementation we provide macros, available to the applica-
tion programmer, to set a discriminable_pointer variable to a
pairs of ⟨𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑡𝑦𝑝𝑒⟩ where the type field codes the control bits
corresponding to either a core pointer or a non-core pointer. Other
macros are available to simply read the pointer value (namely the
address kept by the pointer) and its state (core vs non-core) or for
switching its state from core to non-core and vice versa.

At the simulation engine level, the DyMeLoR memory-map man-
ager has been augmented with the newAPI function core_memory(
void *address, int command), which can be used to indicate
to the runtime if a chunk with a given address needs, from now
on, to be included in the core part of the object state. The command
parameter can have two values (INCLUDE or REMOVE) so that the ap-
plication programmer can decide to dynamically include or exclude

Wall-clock-time

processing of event e processing of event e’

core_memory()
calls

start_approximated()

Object state
a full state log is taken
and from now on only 
the blue chunks are 
logged

end_approximated()

core-memory settings 
are revoked (all chunks 
become again white)

Figure 4: An example timeline.

a chunk from the core of the object state along model execution, de-
pending on what is going on at the application level. Clearly, all the
invocations to core_memory() are rollbackable, so they can be re-
voked transparently by the DyMeLoR memory-map manager. This
implies that, at each simulation time 𝑇 , the chunks that are seen
as belonging to the core or not are exactly those that are selected
by the application logic up to time 𝑇 , independently of updates
that were possibly performed after time 𝑇 but before a rollback
occurrence to time 𝑇 . This allows the application programmer to
only be faced with the forward execution flow of the model, and
with the possibility to define with no ambiguity what parts of the
object state are included in the state core memory at any given
point in simulation time.

Two additional API functions are used in our architecture, in
order to either start an approximated rollback phase or end it—thus
resuming to the classical precise rollback scheme. These two API
functions need to be used by the programmer to cope with the
scenarios depicted in Section 3.1, where at some point in simulation
time an event 𝑒 is processed leading to direct/indirect scheduling of
another event 𝑒 ′ for the same object, which needs to observe in the
simulation object state the effect of the exact history of events up
to 𝑒 . Table 1 shows the complete set of API functions we included
in our implementation to support approximated rollbacks.

As a last consideration, we show in Figure 4 an example timeline
for the usage of these API functions by the application code. At
time 𝑇 (𝑒) the event 𝑒 is processed, and during the processing the
application code invokes the function start_approximated(), af-
ter having called core_memory() for marking some of the chunks
in the state layout as core memory. At this point, a full checkpoint
of the whole object state is transparently taken via DyMeLoR and,
from now on, only those chunks that have been previously marked
as core memory will be subject to checkpoint operations. Then, at
time 𝑇 (𝑒 ′), the application model calls end_approximated(), and
at this point the difference between core and non-core memory
disappears (at the level of the metadata maintained by DyMeLoR)
so that the runtime PDES environment starts again adopting a clas-
sical checkpoint mechanism where all the chunks belonging to the
state layout are logged when a checkpoint is taken. In other words,
the end_approximated() call revokes the discrimination between
core and non-core memory—hence the previously issued calls to
core_memory() used to set some chunks as core ones are logically
invalidated (starting from the current simulation time). Clearly, the
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API fuctions
int core_memory(void *address, int command)
void start_approximated(void)
void end_approximated(void)
API macros
void set_pointer(struct discriminable_pointer, void *address, int type)
void set_pointer_type(struct discriminable_pointer, int type)
void set_pointer_address(struct discriminable_pointer, void *address, int type)
int get_pointer_type(struct discriminable_pointer)
void *get_pointer_address(struct discriminable_pointer)

Table 1: API exposed to support approximated rollbacks.

possibility to take checkpoints infrequently is still enabled along
a period where the non-approximated rollback mode is active. In
fact, a non-checkpointed state can still be perfectly reconstructed
by relying on the reload of a previous checkpoint and on coasting
forward.

A couple of additional notes need to be discussed. In our ar-
chitectural support, the callback function 𝐶𝐿 to be defined by the
application programmer is called as soon as an approximated roll-
back occurs, and the state 𝑆 ′ is restored. The execution of 𝐶𝐿 takes
place before any other event is processed at the simulation ob-
ject upon resuming after the rollback phase. At this point, the 𝐶𝐿
function needs to find the discriminable_pointer variables cor-
rectly set. Therefore it is the care of the programmer to correctly
mark these pointers and the core chunks via the core_memory()
API, right before calling start_approximated() and for the whole
simulation time where the approximated rollback mode is active.

Finally, the usage of discriminable_pointers to link the chunks
is not mandatory, and the programmer can still rely on classical
pointers. In more details, the state 𝑆 ′ might entail pointers whose
nature (core vs non-core) can be implicitly identified when running
the 𝐶𝐹 callback. An example of this scenario is when the top level
memory chunk in the object state points to disjoint lists of records,
and only a subset of these lists need to be kept in the core of the
object state. In this case, the 𝐶𝐹 function can implicitly assume
that the lists not belonging to the core need to be simply repopu-
lated (with stochastically-generated values for the content of their
records) upon the occurrence of an approximated rollback.

3.3 Further Optimizations
Up to now we discussed the role of approximated rollbacks by con-
sidering that the approximation for a rollback that needs to restore
the simulation objects at some past simulation time 𝑇 is essentially
caused by the reload of core information only (missing therefore
other information), which was originally saved when passing time
𝑇 along forward execution. However, we can extend this concept
by considering that the events processed by the simulation object
before reaching time𝑇 along forward execution can be part of a sim-
ulation portion that can still be correctly handled via approximated
rollbacks (see Section 3.1 for the requirements). Let us consider the
example in Figure 5, where we have a state 𝑆 that is passed through
by the simulation object after other events 𝑒1 . . . 𝑒𝑛 were processed.
If the simulation time interval between the timestamp of 𝑒1 and the
logical time of state 𝑆 can be handled by approximated rollbacks,
then it means that we can admit the events 𝑒1 . . . 𝑒𝑛 to be processed
with no runtime anomaly after an approximated rollback that leads

Figure 5: An interval of events manageable in an approxi-
mated coasting forward.

to reprocess this same event sequence. If this is true for the process-
ing of these events along forward execution after a rollback, it is
still true if we process them as a simple artifact of a state update we
would like to perform during a coasting forward phase. This means
that for the whole simulation time interval between the timestamp
of 𝑒1 and the restore time 𝑇 at which we would like to reconstruct
state 𝑆 in an approximated rollback, we can use coasting forward
starting from an approximately reconstructed state—hence an ap-
proximated coasting forward. Overall, approximated rollback opens
to the possibility to include an additional dimension of freedom for
the reduction of the cost for rollback management in speculative
executions, based on infrequent core-memory logs.

4 EXPERIMENTAL DATA
In this section we present an experimental study for an assessment
of our approximated rollback technique. We initially describe the
computing platforms used for the experiments. Then we provide
details of the simulation applications that have been used as the
test-beds, alongside with the associated results.

4.1 Computing Platforms
We have run experiments on two platforms. The first platform
is a bare-metal one, composed of a server equipped with 4 AMD
Opteron™ 6168 multicore processors, each one with 12 cores, re-
sulting in a total of 48 cores, and 128 GB of RAM. The second one
is a virtualized infrastructure, composed of 3 virtual nodes from
Amazon Web Services (AWS). We have relied on three homoge-
neous compute nodes, namely three m5.8xlarge instances, equipped
with 128 GB of RAM and, and 32 virtual CPUs. Virtual instances
belonging to the m5 family are run on top of Intel Xeon® Platinum
8175 CPUs, with clock rate up to 3.1 GHz. All instances have been
deployed in the same AWS region, and in the same availability zone,
thus reducing the interconnection latency.

4.2 Test-bed Applications
Our experiments are based on a synthetic benchmark and a real-
world application. The synthetic benchmark is a variation of the
traditional PHold benchmark [5], which has been developed accord-
ing to the specification in [20]. In this version of PHold, beyond the
traditional busy loop used to mimic the delay of a simulation event,
every simulation object allocates upon the simulation startup a
scattered state composed of multiple linked data structures. These
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Figure 6: TB epidemic model - total execution time (𝜒 = 10).

data structures are synthetic, in the sense that they keep a mem-
ber telling their size and a buffer which is filled with random data.
While executing an event, the simulation model scans through this
data structure and updates the content of a subset of the simulation
state, by writing additional random data. With some probability,
one of the linked data structures is unchained from the simulation
state of an object, and sent towards some random receiver as the
payload of a message. Upon the receipt of such message, the desti-
nation simulation object installs a copy of the data structure in its
simulation state, and continues to maintain its content according
to the above-described logic.

This organization of PHold allows to capture additional charac-
teristics of simulation models, related to their memory usage. In
particular, a simulation object can have a simulation state which
is different from that of other simulation objects (thus mimicking
a scenario with different simulation objects representing different
real-world entities). Moreover, the data exchange mimics the tradi-
tional behavior of PDES applications, according to which simulation
objects exchange information among each other. Finally, the overall
size of the simulation model (across all objects) is kept constant.

In our configuration of the model, we rely on two different re-
current phases. In one phase, the model runs with precise rollbacks.
After a certain amount of simulation time, the model switches to
approximated rollbacks. In this case, only the metadata describing
the number of buffers kept in the simulation state are considered as
core memory. Upon approximated state reconstruction, the model is
parameterizable in the amount of missing state information which
should be reconstructed so as to allow to continue the execution.
This synthetic approach allows us to study what is the impact of
the user-defined state reconstruction callback towards the overall
execution time of the simulation model.

For our experiments we have used 100 total simulation objects.
Given the platforms we have used, this is an interesting configu-
ration. Indeed, the number of simulation objects per thread/core
spans from 100 to 2 in the single-node bare-metal deploy, while it
spans from 50 to 1 in the AWS deploy. Given the speculative na-
ture of the ROOT-Sim runtime environment, this is a configuration
with a high likelihood of local clocks’ divergence among different
simulation objects, leading to a non-minimal incidence of rollbacks.

The real-world application is an agent-based epidemiological
Susceptible-Infected-Recovered (SIR) model [8] to study the spread-
ing of diseases in large populations, with a focus on tuberculosis

(TB). The model has been developed at the Barcelona Supercom-
puting Center (BSC) [9] to study the spreading phenomenon of
this disease in the area around Barcelona. The model has been
originally developed for being executed on top of the ROOT-Sim
environment with no support for approximated rollbacks. We have
slightly reorganized the application level code in order to embed
the usage of the API that triggers the usage of the approximated
rollback technique.

The model is based on agents (individuals) that circulate around
an area, which is modeled by different simulation objects. Each
object models a region in the target area, and the presence of agents
in the region is recorder via information kept in the state of the sim-
ulation object modeling the region. In particular, the object keeps a
record for each agent currently residing in the corresponding re-
gion, and the different agents model individuals who can be in one
of five possible states according to TB infection dynamics: healthy,
infected, sick (i.e., with active TB), under-treatment and recovered.
The state variables of the individuals refer mainly to their status
in the TB infection cycle as well as the time spent in such phases.
Other individual parameters are age, native-immigrant origin, pos-
sible risk factors (e.g. smoking), and possible immunosuppression
(mainly AIDS). Once a person is infected, the presence (or not) of
pulmonary cavitation is also considered.

In our reshuffle of this model, done to exploit approximated
rollbacks while speculatively running it, the individuals are im-
plemented according to the Agent-based Modeling specification
described in [13]. In this way, the agents belonging to different
states are mapped to different hash tables, and only a subset of
the hash tables belongs to the core memory. In particular, we have
identified as core agents the ones in the healthy and recovered
states. These agents are always restored accurately in the approxi-
mated rollback operation. The less relevant agents, namely those
belonging to the infected, under-treatment, and sick states, are
approximated. For them, the core only keeps the corresponding
counter, but no individual-specific information (age, gender etc.) is
actually maintained in the core, and restored in the approximated
rollback. Loosing this information when the rollback occurs, and
reconstructing it stochastically via the 𝐶𝐹 callback function, leads
to deviating the characterizing features of the population (like the
percentage of individuals within given age ranges, as well as the
percentage of strangers and the percentage of individuals with
other pathologies) corresponding to the values that were setup at
startup of the simulation. In other words, an approximated rollback
leads, for a given simulation run, to (slightly) change the sample
of individuals moving around the area, which can clearly lead to
changes in the statistics related to the spreading of the disease.

We have configured the epidemiological SIR model to carry out
a micro-simulation of a medium metropolitan city. In particular,
we have used 1600 simulation objects, each one covering a square
region of 0,06 𝑘𝑚2, for a total simulated area of 96 𝑘𝑚2. The total
number of agents managed by the model sums up to 1.6 millions.
Agents move according to a random walk in the city area, so every
simulation object manages on average 1,000 agents—a population
density of 16,000 people per square kilometer. This configuration
resembles the figures for the city of Barcelona in 2019. At simulation
startup, 95.59% of the population is healthy, 4.28% of the population
is infected, 0.12% of the population has recovered, and the remainder
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0.01% is composed of sick or under-treatment people. Despite this
very reduced number of contagious people, the agents are dynamic
and frequently move, thus bringing the simulated environment into
a pandemic quite quickly. We have simulated at total of 10 days of
the SIR model evolution.

4.3 Results
We first discuss the results associated with the real-world applica-
tion, namely the TB epidemic model. As mentioned in Section 3.3,
our approximated rollback scheme can benefit even further from
the joint exploitation of infrequent state saving of the core part of
the object state. In Figure 6 we provide early performance results
of the approximated rollback scheme compared to the traditional
precise rollback scheme, when run in the single-node bare-metal
deploy, with a periodic state saving interval set to 𝜒 = 10 simulation
events. This plot is essentially used to show the scalability in per-
formance when increasing the computing power, which is similar
for approximated and precise rollbacks—and to establish a baseline
for moving in the configuration space of the log/restore support for
a deep assessment. In fact, a single fixed value of the checkpoint
interval is clearly not sufficient to characterize the potential of a
state-rollback scheme, in terms of its effects on performance.

To better assess the validity of our approach, we have therefore
run precise and approximated executions of the TB epidemic model
while also varying the checkpoint interval 𝜒 . In particular, we have
set the checkpoint interval 𝜒 to 1, 10, 20 and 40. To study and
understand the behavior of the approximated rollback scheme, we
have decided to compare against each other all the configurations
which we have run. All the results associated with the TB epidemic
model have been obtained by relying on the same sequence of
pseudo-random numbers (i.e., the initial seed for the rollbackable
random number generator has been explicitly and consistently set),
and are averaged over 5 different runs.

In Figures 7a–7c we report the relative performance of the ap-
proximated rollback scheme vs the precise rollback scheme, when
comparing the different checkpoint intervals. The relative perfor-
mance is computed as the difference between the total execution
time of the precise and the approximated run, over the total ex-
ecution time of the precise run. In all plots, we identify with the
letter A the approximated scheme, and with P the precise scheme.
The number after each letter is the corresponding checkpointing
interval. By the results, we observe that in most situations we can
benefit from an increased performance. The situations in which
the traditional precise rollback scheme performs better than the
approximated one (i.e., a negative relative speedup is observed) are
associated with 𝜒 = 40 for the approximated scheme, and 𝜒 set to
lower values for the precise one. These simulation runs are char-
acterized by a non-negligible amount of rollbacks, with a rollback
length which is relatively short. Therefore, setting 𝜒 = 40 for the
approximated scheme requires to replay a non-minimal amount
of events, which is otherwise not needed by the precise scheme.
Hence, all the benefits associated with the reduced checkpoint/
restore operation from the approximated scheme, which we will
emphasize more with an additional set of experiments, are lost.

To prove that the approximated rollback technique is viable to
provide useful (although potentially less precise) simulation results,

in Figure 9 we report the actual simulation results from the model,
run with 𝜒 = 10. In particular, we plot the percentage of agents in
each of the states (namely healthy, infected, sick, under-treatment,
and recovered) for each simulated day. We recall that we store in the
core memory of the simulation objects only the number of agents
and the full information related to healthy and recovered agents.
Despite the fact that we are also able to restore the number of
infected, sick, and under-treatment agents, the inaccurate informa-
tion related to each of these agents will produce a deviation in the
simulation trajectory. By the results in Figure 9, we can observe that
the trend in the number of agents in the different states observed
across the simulation run for the case of approximated and precise
rollbacks is comparable. Given the relative performance increase
offered by the approximated rollback scheme, this result confirms
that approximated rollbacks is a viable technique, especially if the
simulation modeler is interested in trends.

Our final experiment related to the TB epidemic model aims at
understanding what is the effect of the state size in this model, with
respect to the dynamics of the approximated rollback scheme. To
this end, we have significantly scaled down the model, moving to a
scenario in which each simulation object manages on average 20
agents, rather than the aforementioned 1,000. In this configuration,
the impact of core vs non-core memory on the log/restore operation
becomes less important. The results of this experiment, for the
approximated scheme run with 𝜒 = 10, are reported in Figure 10.
As expected, we observe that we are able to provide a relative
speedup which is less favorable when compared to that shown in
Figure 7a.

To better understand the dynamics of the approximated rollback
scheme, we have run a set of experiments relying on our variation
of the PHold synthetic benchmark. In Figure 11 we report the exe-
cution time required to simulate 10K loop/buffer-migration events
at each simulation object, on the single-node bare-metal deploy. We
have varied the amount of state which is reconstructed by the𝐶𝐹 re-
store function, spanning over 25%, 75%, and 100% of the simulation
state. By the results, we can observe that the approximated rollback
scheme provides a better performance with a higher core count (i.e.,
when the number of rollbacks is higher) in all state-reconstruction
configurations. Also, the 100% state reconstruction configuration
shows a better performance, due to the reduced cost for state saving
which is observed with approximated rollbacks. With a small core
count, the precise rollback scheme shows a performance which is
better than the 75% state reconstruction configuration. We explain
this phenomenon by the fact that the approximated scheme alters
the sequence of operations on the critical path of the runtime envi-
ronment, thus producing a slightly increased amount of rollbacks
when running with a reduced amount of threads, yet with a limited
amount of simulation objects.

To complete our assessment using the PHold model when re-
constructing 25% of the state, in Figures 8a, 8c, and 8b, we report
the data for the AWS deploy related to the overall execution time,
memory usage, and restore-operation latency, respectively. We note
that, in this deploy, the intrusiveness of rollbacks is increased by
the network latency. By the results, we can observe that approxi-
mated rollbacks can deliver a performance increase between 25%
and 50% (Figure 8a). This aspect is clearly related to the time saved
in the restore operation (Figure 8b) and the checkpoint operation.
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Figure 7: TB epidemic model - relative performance of the approximated vs precise rollback.
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(a) Overall execution time.
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(b) State restore latency.
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Figure 8: PHold results for the AWS deploy.
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Interestingly, a higher number of rollbacks produces the highest
performance increase of 50%—as in the case of a large core count
in Figure 8a. An additional benefit of the approximated rollback
scheme is the fact that it further allows larger problems to become
tractable when employing speculative processing schemes. Indeed,
as shown in Figure 8c, the amount of memory required when rely-
ing on the approximated rollback scheme is significantly reduced.

5 CONCLUSIONS
We have presented approximated rollbacks, a technique which
allows to save/restore only a subset of the state of a simulation
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object, relying on a user-defined state-reconstruction function to
possibly guess the non-restored (missing) portions of the state.
Our experimental assessment has shown that this approach can
provide non-negligible performance improvements, both in local
and distributed simulation environments. We have also assessed
the impact of the approximated rollback technique on the statistical
goodness of the outcome of the simulation, in particular for the
case of an epidemic phenomenon of the tuberculosis disease. These
results further show the viability of our proposal.
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