
Transparent Distributed Cross-State
Synchronization in Optimistic Parallel
Discrete Event Simulation

Matteo Principe
Alessandro Pellegrini
Francesco Quaglia
Bruno Cruciani

Technical Report n. �2, 2017

ISSN 2281-4299

Transparent Distributed Cross-State

Synchronization in Optimistic Parallel Discrete

Event Simulation

Matteo Principe∗

matteo.principe92@gmail.com

Alessandro Pellegrini∗

pellegrini@dis.uniroma1.it

Francesco Quaglia†

francesco.quaglia@uniroma2.it

Bruno Ciciani∗

ciciani@dis.uniroma1.it

December 2017

Abstract

In this report we tackle transparent deploy and seamless execution
of sequentially-coded Parallel Discrete Event Simulation (PDES) mod-
els on distributed computing architectures. We present an innovative
distributed synchronization protocol which allows, in conjunction with
ad-hoc Operating System memory management facilities, to access the
simulation state of any concurrent Logical Process (LP) running on
any node of the distributed computing environment, as if it were lo-
cally hosted by a unique node—more specifically, by a unique address
space. By relying on our facilities, the simulation model developer
is not required to implement neither explicit message passing, nor to
rely on annotations or specific programming constructs. He can simply
code the accesses to the LPs’ states in place (e.g. via pointers), which
significantly simplifies the software development process. The burden
of synchronization and correct handling of these accesses is demanded
from our user-space and kernel-space runtime environment. Our pro-
posal targets Linux on x86 64 systems and has been integrated within
the ROOT-Sim open-source optimistic simulation platform, although
its design principles, and most parts of the developed software, are of
general relevance.

Keywords: Distributed Simulation, High-Performance Computing, PDES,
Programming Models

∗DIAG, Sapienza, University of Rome
†DICII, University of Rome “Tor Vergata”

1 Introduction

The advent and large diffusion of technologies such as multi-core platforms
and the Cloud is strongly impacting the way advanced simulation environ-
ments are built. Altogether, such an impact is even antithetical, because
multi-core systems tend to exalt computing modes based on data sharing,
while the Cloud offers opportunities for low-cost resources (e.g., spot in-
stances) that can be exploited as a cluster according to distributed-memory
oriented programming models.

In this report our focus is on bridging the two worlds—computing on
shared vs distributed memory platforms—for the case of Parallel Discrete
Event Simulation (PDES). The goal is to support transparent deploy on
distributed clusters of PDES models implemented in a fully sequential style,
which can therefore leverage shared-memory accesses of the simulation state.
In particular, we present the design and implementation of software facili-
ties (based on a combination of user space and kernel space code) that al-
low PDES models coded by explicitly relying on the data-sharing paradigm
proper of sequential implementations to be transparently deployed and ex-
ecuted seamlessly on distributed memory clusters of (multi-core) machines.
Our proposal is important also in the light of the fact that distributed com-
puting platforms made up by multi-core machines are fundamental to target
the transition from petascale to exascale simulations. Indeed, the recent ar-
chitectural trend is to rely on larger clusters of parallel computing nodes, as
the way to overcome both the power wall [1] and the memory wall [2], which
have posed strict limitations on what can be done with current off-the-shelf
computing systems.

To make our objective and the contribution by this report clearer, let
us recap the foundations of the PDES paradigm and some recent innova-
tions brought into PDES due to its reshuffle towards shared-memory multi-
core computing. In PDES, a complex simulation model is partitioned into
distinct portions, known as simulation objects or Logical Processes (LPs),
which mimic different parts of the overall simulated system [3]. LPs are con-
currently scheduled for execution, so as to enable speedup while processing
the simulation model. Further, the traditional specification of PDES has
been based on disjointness of the accesses to the state of the LPs while pro-
cessing simulation events. Interactions among the different portions of the
model were indeed based on explicit event exchange, mostly supported via
message passing. This perfectly fitted the scenario where model execution
parallelism was based on deploying the application on top of distributed
memory clusters. On the downside, this way of coding PDES models has
historically forced the programmer to separate at implementation time the
accesses to slices of the simulation model state, each one representing an
individual LP.

More recent research efforts have been devoted to rethinking the PDES

1

paradigm and its support, for better exploitation of shared-memory accesses
on multi-core machines, particularly by the side of making the models’ pro-
gramming job more flexible. Indeed, for several application classes (e.g.,
demographic agent-based models [4]), enabling the application modules to
directly access the state of some concurrent LP, while processing a simulation
event at another LP, can extremely simplify the task of coding a model. Such
a capability avoids the need for explicitly coding cross-LP event scheduling
each time an action at some LP depends on the current state of some other
LP. Rather than discovering the information via query events, it can be di-
rectly read from the state of the target LP by simply exploiting pointers
to the state. Furthermore, beyond querying, direct updates on the target
LP state can take place. Overall, while PDES has been historically charac-
terized by event-based synchronization across the LPs, new shared-memory
oriented incarnations of the PDES paradigm have introduced the concept
of Event & Cross-State (ECS) synchronization [5], based on the mixture of
event exchanges and direct accessibility of the whole set of the states of the
concurrent LPs by a module of the application.

With the software architecture that we present in this report we trans-
parently materialize ECS on top of distributed memory systems. Thus we
enable the exploitation of any kind of distributed (Cloud) resource for run-
ning the simulation model, while not sacrificing the flexibility of shared-
memory accesses offered to the programmers by the ECS paradigm. Our
proposal has also the advantage of fully transparently enabling speculative
(optimistic) processing—and rollback-based causal consistency—of the con-
current LPs [6], an approach that is recognized as a core building block for
actual scalability of the model execution.

In our design we target the Linux operating system, offering new memory
management capabilities able to:

• detect the materialization of cross state accesses among LPs hosted on
different machines, based on pointer de-referencing in shared-memory
(sequential-style) application coding;

• implement an approach where the accessing LP transparently gains a
lease on the logical pages associated with the state of the target LP,
at the snapshot corresponding to the the correct simulation time—the
one of the event that triggered the access;

• detect on the fly the class of machine instructions actually accessing
the target LP state, so as to pre-fetch and locally materialize the suited
number of pages for finalizing the access to the remotely hosted LP,
and writing back onto the hosting node only dirty pages upon the end
of the cross-state interaction.

Our software architecture has been integrated within the ROOT-Sim
open-source PDES runtime environment [7] and is freely available for down-

2

load1. Experimental data reported in this report show the viability of our
proposal.

The remainder of this report is structured as follows. In Section 2 we
discuss related work. Section 3 presents our reference system model. In
section 4 we discuss the innovative distributed architecture to support ECS,
which is experimentally evaluated in Section 5.

2 Related Work

The issue of bypassing state disjointness in PDES concurrent objects has
been dealt with by several studies. The work in [8] discusses how state
sharing might be emulated by using a separate LP hosting the shared data
and acting as a centralized server. This proposal also introduces the notion
of version records, where multi-versioning is used for shared data in order
to cope with read/write operations occurring at different logical times, and
to avoid unneeded rollbacks of the centralized server in case of optimistic
synchronization. This is an approach similar to the one in [9], where a
theoretical presentation of algorithms to implement a Distributed Shared
Memory mechanism is provided in terms of protocols to keep replicated in-
stances of a variable coherent. The above approaches are different from what
we propose given that they essentially rely on a message-passing API to nest
the read/write access to shared variables into the application code. Instead,
we support accesses as in-place specified (e.g. via pointer de-referencing)
within the shared memory oriented code implementation, fully demanding
from the innovative operating system memory management facilities their
handling. This has also the advantage of optimizing the execution path
of memory management operations depending on whether the cross state
access hits a locally-hosted vs a remote LP. Also, in our proposal sharing
is not limited to a particular memory slice (such as the state image of the
centralized server), while we allow access, and hence sharing, of any memory
buffer representing a portion of the whole simulation model state—this is
intrinsically linked to the possibility to navigate memory across concurrent
objects via pointers which we provide.

In [10] the notion of state query is introduced. A LP needing a portion
of the state which belongs to a different object can issue a query message to
it, and wait for a reply containing the suitable value. In case this value is
later detected to be no longer valid, an anti-message is sent to invalidate the
query. This approach still relies on message passing, and is not transparent
to the application programmer.

Other works [11–13] have proposed approaches for shared accesses across
simulation objects, which are in some cases based on in-place operations,
transparently handled by the underlying run-time environment. However,

1https://github.com/HPDCS/ROOT-Sim

3

Communication Network

Machine

CPU

Kernel

LP
LP

LP LP
LP

LP LP
LP

LP LP
LP

LP

...

...

CPU CPU CPU

Machine

CPU

Kernel

...CPU CPU CPU

Kernel

Figure 1: Reference System Model’s Organization

these proposals are limited to managing accesses that are confined to the
memory handed by a single multi-core machine. Instead, our goal it to
seamlessly enable such kind of accesses on distributed memory systems.

In the context of the High-Level-Architecture (HLA), proposals for sup-
porting shared states can be found in [14,15]. They are based on a middle-
ware component which relies on a timestamp-ordering messaging approach
for implementing a request/reply protocol. These approaches are targeted at
the conservative synchronization protocol, where there is no need to detect
and handle causality violations, while we target optimistic synchronization
and in-place accesses to the object states.

3 Reference System Model

A high-level organization of our reference system model is depicted in Fig-
ure 1. A parallel and distributed discrete-event simulation is supported by
a set of (possibly non-homogeneous) processing units, scattered across any
number of machines (i.e., computing nodes). On each computing node, any
number of simulation kernel instances can be running. These instances are
developed according to the symmetric multi-threaded paradigm, introduced
for the first time in [16], where shared memory is used to support intra-
kernel synchronization. Distributed communication is supported by some
network interconnection.

According to this organization, a symmetric simulation kernel instance
spawns, at simulation startup, a number of concurrent worker threads which
is the same as the number of processing units assigned to the kernel instance.
Each of these worker threads is stuck to a single processing unit for the whole
lifetime of the simulation run. The simulation model’s LPs are then assigned
to the worker threads according to some binding rule. This LP binding

4

ensures that, for a certain interval of wall-clock time, only one worker thread
can schedule events destined to one LP. The binding can be recomputed
either periodically or depending on runtime parameters, in order to evenly
distribute the workload of the simulation on the available computing power.

Therefore, in the most general setting, our reference system model is
made up of the following elements:

• A number K of simulation kernel instances (forming the KernelSet),
which are scattered across the available computing nodes.

• Each simulation kernel instance k ∈ KernelSet runs a set of concur-
rent worker threads, denoted as TSetk. These worker threads rely on
shared memory for their internal communication and synchronization
tasks.

• At any wall-clock time instant, a worker thread t ∈ TSetk is in charge
of scheduling events to a set of bound LPs, denoted as LPSett. As
mentioned before, one LP is managed only by one worker thread.
Therefore, LPSeti ∩ LPSetj = ∅ ∀i, j i 6= j.

Given the distributed nature of the simulation system, at any time an
LPi observes a set of local LPs, namely all the LPs bound to any worker
thread w ∈ TSetk such that LPi ∈ LPSett and t, w ∈ TSetk, and a set of
remote LPs, in any other case.

4 Distributed Event Cross-state Synchronization

4.1 Basics

Similarly to the original proposal in [5], our distributed ECS architecture
is based on two orthogonal facilities which are transparently offered by the
simulation platform. On the one hand, while simulation events are being
executed, the platform is able to detect that a LP is accessing the state
of another LP, possibly hosted by a remote simulation kernel instance. At
the same time, the platform is able to enforce a (distributed) protocol to
synchronize the Local Clocks of the LPs involved in an ECS synchronization,
so as to allow them to observe a consistent view on the simulation state.

In our organization, cross-state access detection is provided by innova-
tive kernel-level facilities, which let different worker threads of the platform
to share the same physical pages although with different access privileges.
Therefore, a page fault upon accessing the simulation state of a different LP
is the initiation of an ECS synchronization, as it will be later discussed. At
the same time, LP synchronization is enforced by relying on a (distributed)
communication protocol, based on the notion of control messages. A con-
trol message is a message exchanged across two different LPs, in a way

5

WAIT FOR

PAGE
READY

RUNNING

WAIT FOR

SYNCH

RUNNING

ECS

READY FOR

SYNCH

schedule

complete

com
plete

major ECS

fault
m

ajo
r E

CS

fa
ult schedule

ECS ack

minor ECS

fault

page

ackWAIT FOR

UNBLOCK

ECS Sta
rt

ECS

Unblock

Figure 2: LP State Machine.

completely similar to event transfer. Nevertheless, with one single excep-
tion, a control message is not incorporated into the receiver’s event queue,
as they are associated with ephemeral state transitions which must not be
replayed upon a rollback operation.

Correctness of the whole simulation is guaranteed by two facts: i) the
execution of an event by a LP can be suspended ; ii) every LP is always in an
execution state according to the state machine depicted in Figure 2, which
allows the simulation platform to correctly interpret the system events and
control messages which target every LP.

As for point i) above, we rely on User-Level Threads (ULT), namely
CPU contexts which can be saved and restored at any time instant by a
worker thread t ∈ TSetk. In particular, to give control to a LP, the worker
thread in charge of it changes its CPU context, allowing the execution of the
event to take place in an isolated environment, which has also its own stack.
In this way, whenever the simulation platform takes back control, it might
determine that the event’s execution has to be temporarily suspended, and
it deschedules the running LP (i.e., it restores the CPU context related to
the worker thread running in platform mode). Later, the worker thread can
decide to resume the execution of the suspended event, and this is done by
simply restoring the LP’s CPU state. Having a separate stack for every
LP within a single worker thread (which has its own system stack) ensures
the correctness of the preëmptive event execution. For a thorough technical
description of the approach used to realize this facility, we refer the reader
to [17].

With respect to point ii) above, the state machine reported in Figure 2
has three different types of states: blocked states (gray-shaded) are asso-
ciated with a LP which has been descheduled while executing an event,
thanks to the ULT facility; ready states (white-colored) are associated with
LPs which can be activated, either to start processing a new event, or to
resume the execution of a preëmpted event; running states, which are as-

6

sociated with LPs currently executing an event. This organization allows
to implement the smallest-timestamp first scheduling strategy [3] of each
worker thread quite easily, given that only LPs in a ready state can be
activated. The transitions across the different states are related to two
main kind of events: some are associated with the aforementioned cross-
state access detection, others with the actual LP synchronization. We will
thoroughly describe these transitions later.

4.2 Memory Management

In order to support cross-state access detection, the runtime environment
must enforce a memory management policy which allows in a simple way to
map a LP to a given memory address, and viceversa. This is particularly
important given that we must discriminate between memory accesses which
target the simulation states of both local and remote LPs.

Indeed, the goal is to detect at runtime what LP’s state is being tar-
geted by a memory access by relying on pure address-space mapping. When
the simulation is started up according to the distributed system model de-
scribed in Section 3, there are multiple (distributed) processes living in sep-
arate virtual address spaces. We therefore need an agreement across the
different kernel instances to map LPs states to the same virtual address
ranges. Given that we target full transparency towards the application-level
programmer, who is allowed to rely as well on dynamic memory allocation,
such an agreement could be impossible or over-costly at runtime.

We have therefore resorted, in a way similar to what has been proposed
in [18], to a deterministic memory map manager. In particular, in accor-
dance to the original proposal in [5], each LP is associated with a 1 GB
memory stock. As illustrated in Figure 3, the base address of this stock is
deterministically computed by every simulation kernel instance. In this way,
all simulation kernel instances map LPs stocks to a same contiguous region
of the virtual address space, where the stocks are uniquely associated with
an address range which does not overlap.

Given that a given simulation-kernel instance manages a pre-defined set
of LPs, thanks to its worker threads, at simulation startup these memory
stocks are delivered to a fine-grained memory manager, such as the one pre-
sented in [19], which ensures that the simulation model’s memory requests
can be served thanks to traditional APIs, such as malloc or new.

Overall, this organization delivers memory buffers in a non-anonymous
way, where the buffers destined to serve memory requests by an LP are
guaranteed to fall within a memory stock located in a contiguous virtual
address region reserved to host the state of that specific LP. In the case
of remote LPs, the virtual addresses are initialized and never used to serve
memory requests, by all kernels which do not host such LPs (grey regions
in the Figure).

7

Address Space of K1 Address Space of K2

...

...

...

...

LP1 Memory

Stock

LP2 Memory

Stock

LP3 Memory

Stock

LP4 Memory

Stock

Figure 3: LP Memory Map Organization

4.3 Kernel-Level Support

Cross-state access detection is ultimately supported by a close interaction
with ad-hoc operating system’s facilities offered by a custom Loadable Ker-
nel Module (LKM). This module offers two different levels of interaction:
explicit interaction is supported by a set of ioctl commands, to let worker
threads notify the kernel when a given LP is starting to process an event;
implicit interaction allows the kernel to notify the userspace runtime envi-
ronment whenever a LP is accessing the state of a different LP.

4.3.1 Explicit Interaction

When the module is loaded, it creates a special single-access device file in
/etc/ecs. Upon simulation startup, the simulation kernel opens this file
to let the module know that its threads must be managed according to the
below-described logic, and relies on the SET VM RANGE ioctl command to
tell the module what is the range of virtual addresses associated with the
LPs.

For the sake of clarity, we report in Figure 4 how a virtual address is
mapped to a physical address on x86 64 systems. The CR3 control register
keeps a pointer to a first-level paging table. From this table, it is possible to
traverse four different levels of indirection, until a physical page is located in
memory. The (virtual) linear address is decomposed into five different fields,
which determine the offset at each level of the chain where the pointer to the
next level is found. The last displacement is the offset within the physical
page, into which the memory access is falling.

The memory map depicted in Figure 3 is allocated so that the page
table respects an important invariant. We allocate LPs’ memory stocks so
that the whole GB of memory is aligned to one single entry in the Page
Directory Pointer (PDP) table. In this way, any access to any physical page

8

DirectoryPML4 Directory Ptr Table O�set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

Figure 4: The paging scheme in x86 64 processors.

PML4

PDP

	

LPx
O-th PDPTE

Sibling	PML4

Sibling	PDP

NULLCR3	register

access	to	LPx
	 	opened

	
upon

issuing
	
the

	
command

SCHEDULE_ON_PGD

Figure 5: ECS Schedule Example

related to the simulation state of a LP can be immediately mapped to the
actual LP thanks to the PDP entry used in the virtual-to-physical address
resolution. Therefore, thanks to the deterministic memory allocation scheme
enforced, the payload of the SET VM RANGE ioctl command is simply the
initial address of the first memory stock reserved for LP0, and the total
number of LPs.

To actually determine when a LP is accessing the state of a differ-
ent LP, worker threads inform the kernel module what is the LP which
will be activated for event execution via another ioctl command named
SCHEDULE ON PGD. This command activates a kernel-level logic implemented
in the module which installs a sibling page table on the CR3 register of the
CPU core running the worker thread. In particular, the invocation of the
SCHEDULE ON PGD command puts in place the policy illustrated in Figure 5.
The sibling page table is constructed by cloning the PML4 table associated
with the virtual memory of the whole process—this can be easily retrieved

9

by the module from current->mm->pgd—and by cloning the PDP tables
which point to the simulation state of any LP, be it both local and remote.
These cloned PDP tables are zeroed, except for the entry associated with
the currently-scheduled LP (notified via the ioctl call) so that whenever
an access is made towards a different LP’s simulation state, it generates a
memory fault.

Having different sibling PML4 tables associated with the different con-
current worker threads leads to the possibility to concurrently dispatch and
execute different LPs—this is done by having each worker thread opening the
access to the stocks associated with the object it is currently dispatching—
while still having the possibility to determine whether any of the dispatched
objects is confining its memory references within its own stocks. The as-
sumption underlying this type of organization is that, when there is the
need for opening access to a given stock, the corresponding memory man-
agement information is already present in the corresponding PDP entry of
the original page tables. This is not guaranteed by simply validating virtual
memory addresses via mmap, which leaves memory into the empty-zero state.
To overcome this problem, when we initialize the memory map depicted in
Figure 3, beyond calling mmap, we also explicitly write a null byte into one
single virtual page of the stock. In this way, the Linux kernel traps the ac-
cess to empty-zero memory and allocates the whole chain of page tables for
managing the pages within the stock (although a single one of these pages is
really allocated). This guarantees the existence of the PDP entry associated
with the stock, to be filled into the corresponding sibling PDP entry upon
dispatching the LP owning the stock. We note that relying on more tradi-
tional facilities, such as mprotect would not be viable. Indeed, this would
setup policies which are enforced for the whole process, while our approach
allows different threads within the same process to observe different memory
access privileges, at a very negligible cost.

4.3.2 Implicit Interaction

In order to let the userspace runtime environment know when a LP is ac-
cessing a different LP’s simulation state, we have to intercept the artificial
memory faults which are generated by the sibling page table installed in
the CR3 register of every CPU core. To this end, when the LKM is loaded,
it changes the IDT table (directly accessible via the IDT register) in or-
der to make the pointer to the page-fault handler point to an ad-hoc ECS
fault handler (rather than the original do page fault kernel function) im-
plemented within the module. This ad-hoc ECS fault handler is the core
of the detection of a cross-state access, and its pseudocode is reported in
Algorithm 1.

Once the ECS fault handler is activated, it first checks whether the
handler is activated to resolve a minor page fault from kernel space (F1) or

10

Algorithm 1 ECS Page Fault Kernel Handler

1: procedure FaultHandler(pt regs* regs)
2: if current→ mm = NULL then . F1
3: DoPageFault()
4: return
5: if current→ pid is not registered then . F2
6: DoPageFault()
7: return
8: target← ReadCR2()
9: if PML4(target) not in LP range then . F3

10: DoPageFault()
11: return
12: else
13: if PDP(target) = NULL then . F4
14: fault type←Major
15: else
16: if GetPteStickyBit(target) then . F5
17: fault type←Minor
18: SetPresenceBit(target)
19: else
20: if ¬GetPresenceBit(target) then . F6
21: DoPageFault()
22: if GetPdeStickyBit(target) then
23: fault type←Minor . F7
24: SetPageStickyFlag(target)
25: else
26: return
27: else . F8
28: fault type← AccessChange
29: SetPagePrivilege(target, WRITE)

30: Switch to the original Page Table . F9
31: Copy to userspace fault information
32: Push on userspace stack regs→ ip
33: regs→ ip← EcsHandler . F10

11

if the fault is associated with the thread of a non-registered process (F2),
i.e., a process which did not open the /dev/ecs device file. In both cases,
it calls the traditional kernel’s fault handler and then returns, as the fault
has been resolved elsewhere. If the thread is registered with the LKM, we
retrieve from the CR2 control register the target address of the memory
fault. We first check whether this address belongs to a PML4 entry which
keeps LPs memory stocks (F3) because, in the negative case, this is a minor
fault at the level of the simulation platform which must be resolved via the
traditional DoPageFault kernel facility.

We then discriminate what kind of access the LP is making to other LPs.
In particular, if the PDP entry associated with the target address is zeroed
(F4), this means that we are accessing the simulation state of a different LP
for the first time. This is the case thanks to the fact that upon scheduling a
LP, the SCHEDULE ON PGD ioctl command explicitly clears all PDP entries
pointing to the memory stocks reserved for different LPs. We refer to this
situation as an ECS Major Fault. In this case, we give back control to the
simulation platform by modifying the instruction pointer’s value to make
it point to the EcsHandler platform function (F10), which will be later
described. Before doing this (F9), we copy to userspace (in a per-thread
buffer) all the information related to the fault (namely the fault type, the
faulting memory target, and the address of the faulting instruction), we
switch to the original page table by reinstalling into CR3 the original PML4
address found at current->mm->pgd, and we push on userspace stack the
original value of the instruction pointer, to let the execution flow be resumed
eventually.

The userspace ECS handler, discussed in details in Section 4.5, starts a
(distributed) synchronization protocol across the involved LPs, to let them
observe a consistent snapshot. When synchronizing towards a remote LP,
the LKM has to determine what are the memory pages accessed both in read
and write mode, to fetch this content from the remote process hosting the
LP. To this end, the userspace handler eventually invokes a LKM facility via
the SET PAGE PROTECTION ioctl command. The logic associated with this
command is similar in spirit to what an invocation of mprotect would do
on the stock. As said, we cannot rely on it as it would modify the memory
view for all threads.

Conversely, we exploit the organization of a Page-Table Entry (PTE),
which is depicted in Figure 6, in the original memory view. In particular,
we scan all PTE entries which can be reached starting from the PDE entry
associated with the given remote LP towards which the scheduled one is
synchronizing. All non-null PTE entries, which are thus associated with an
actual materialized page, have the presence bit (bit 0) set to 1, to indicate
that the Page Base Address is a valid (physical) base pointer for the page.
We explicitly force the presence bit to zero, thus generating an additional
artificial memory fault whenever such a page (installed by the userspace

12

Figure 6: Page-Table Entry (4KB Page)

handler) is accessed. To discriminate whether a fault is artificial or not, due
to the above-described scheme, before clearing the present bit we set bit 9 in
the same PTE entry. This is an available bit (which we use as a sticky bit)
i.e. a bit which can be used by the LKM to implement additional facilities
not supported by the firmware. While performing this action, we similarly
set one available bit in the PDE entry, to mark the whole memory stock as
associated with a remote LP.

Eventually, the LP which initiated the ECS synchronization is scheduled
again, the sibling page table is loaded into the CR3 register of the core run-
ning the worker thread, and the cleared presence bit will generate a memory
fault. This condition is reflected in Algorithm 1 at points F5, F6, and F7.
The fault handler first determines whether the page is already materialized,
possibly due to a previous execution of an ECS synchronization, by check-
ing if the sticky flag in the associated PTE is set (F5). In this case, the
presence bit is set back to 1, and an ECS Minor Fault is delivered to the
userspace handler, to start the retrieval of the remote pages involved in the
memory access. Conversely, if the sticky bit is not set, we have to materi-
alize the page if and only if the presence bit in the PTE is not set (F6).
In this case, we call the original DoPageFault kernel handler. We now
discriminate again whether this is a memory fault related to the access to
non-materialized pages of local vs remote LPs, by checking the sticky bit
in the PDE entry which was previously set. In this case (F7), we activate
the userspace handler notifying an ECS Minor Fault to retrieve the remote
pages, only after having set as well the sticky bit in the PTE entry, to re-
align the page table to a consistent state according to the logic of the fault
handler.

The check at F6 is important, as it covers as well an additional case.
When a LP accesses a remote page in read mode, we explicitly prevent the
possibility to access the local copy of the page installed by the userspace
handler in write mode by setting bit 1 of the associated PTE to zero. This
bit (see Figure 6) is the read/write bit which, when set to zero, generates a
memory fault when the page is accessed in write mode. In this case (F8) we

13

WCTLPx

LPy WCT

CSDx = {y}
ex

erv

erva

eub

cross-state access detected while processing the event:

generation of a unique ID

thread schedules a di�erent object

since x is temporary blocked

thread in charge of object y

CPU-schedules a di�erent object

both objects are active at the

same time along a same thread

which performs shared accesses to

their states

the objects execute

again independently
ervaadded when receiving

x

x x

x

Figure 7: LP Synchronization Scheme

explicitly set back this bit to 1, enabling the possibility to write the page,
and deliver an ECS Access Change Fault to the userspace handler. This is
an important aspect, as we will show how later how this can optimize the
finalization of the ECS protocol.

As a final note, we also note that our scheme is able to handle both 4KB
page size (which exactly relies on all the 4 levels of paging we described
above) and large pages, namely 2MB pages. In the latter case, the sibling
chain that maps a 2MB page will only entail 3 levels of page-tables, namely
PML4/PDP/PDE. In fact, our custom fault handler, while traversing the
original chain of page-tables, is able to determine whether the target page
is a large one or not, and to setup the sibling page-tables’ chain accordingly.
We exploited swapoff/swapon services natively offered by Linux in order
to temporarily avoid asynchronous modifications of the original page-tables’
chain due to page swapping by the kswapd daemon.

4.4 LP Synchronization Protocol

Before entering in the details of the userspace ECS handler, we discuss the
(distributed) protocol to synchronize two LPs whenever a cross-state access
is detected. Synchronization is supported by control-message passing among
the involved nodes. The basic scheme is depicted in Figure 7.

Cross-state accesses must be supported in such a way to ensure that the
state snapshot observed by the event-handler is consistent, although gener-
ated by a speculative execution. Hence, the LPs whose states are accessed
while processing an individual event all need to figure as aligned (in logi-
cal time) to the timestamp of the event. This is achieved by encapsulating
the cross-state access within an atomic action that is, in its turn, based on
an ad-hoc synchronization protocol triggered on demand, if and only if a
cross-state access is detected.

The synchronization starts by having LPx at which the cross-state access

14

is detected send a rendezvous start control message ervx tagged with a system-
wide unique mark2 towards the destination LPy. LPx’s execution is then
suspended, thanks to the above-mentioned ULT facilities, and it enters the
Wait For Synch state described in Section 4.1. Once this control message is
received and incorporated into the destination LP’s event queue, LPy will
eventually reach this event either thanks to forward execution of events in
the queue, or due to a rollback operation if ervx is a straggler message. The
logic associated with the processing of ervx is that LPy is put in the Wait
for Unblock state and sends back to LPx a rendezvous ack control message
ervax . Once ervax is delivered at LPx, it moves LPx to the Ready for Synch
state, which eventually leads LPx to be reactivated. The id of LPy is added
to the Cross-State Dependency table of LPx (CSDx), which is passed as an
argument of the SCHEDULE ON PGD ioctl command to determine what PDP
entries should be opened for access in the sibling page table temporarily
installed in the CR3 register of core running the worker thread.

At this point, LPx and LPy are aligned to the same logical virtual time
instant, and LPx can access the state of LPy. In case LPy is remote, these
accesses will generate additional page faults. These will be associated with
additional control messages, as discussed later in Section 4.5. This scheme
can be iterated multiple times, so that within the execution of a single
event, LPx can synchronize with any number of LPs. The same rendezvous
mark is used to track the synchronization, so that in case any of the LPs
undergoes a rollback operation, all synchronized LPs can be rolled back
as well3. The ECS synchronization terminates when LPx completes the
execution of the currently-scheduled event. At this time, it sends to all
synchronized LPs a rendezvous unblock message eubx , so that all LPs can
now start again executing independently.

By the above description, the materialization of a cross-state access leads
to a non-persistent relation between two or more LPs. In fact, given that
cross-state synchronization is operated on a per-event basis, after the final-
ization of the event that led to cross-state accesses, the involved LPs start
again executing alone along their own simulation trajectories. However,
in general contexts, a cross-state access by the application code could be
the evidence that two (or more) LPs are actually starting to execute in a
synergistic way, in terms of overall simulation model execution trajectory.

4.5 Userspace ECS Management

When the LKM notifies the runtime environment that two LPs have to be
ECS-synchronized, the handler depicted in Algorithm 2 is activated. This

2These marks are fastly generated by relying on the Cantor Pairing Function using the
global id of the LP and a local monotonic counter.

3For a thorough description of the rollback strategy and all its implications on liveliness
and correctness of the approach, we refer the reader to [19].

15

Algorithm 2 Userspace ECS Handler

1: procedure EcsHandler(type, info)
2: if type = Major then . H1
3: ECS mark ← generate mark()
4: Send(RENDEZVOUS, info.targetLP , currentLV T)
5: LP state← WAIT FOR SYNCH
6: CSD ← CSD ∪ {info.targetLP}
7: Deschedule()
8: else if type = Minor then . H2
9: disasm← Disassemble(info.rip)

10: write mode← disasm.write
11: page addr ← BaseAddr(info.target)
12: pages← PgCount(info.target, disasm.span)
13: if write mode then
14: AddToWriteList(page addr, pages)
15: else
16: AddToReadList(page addr, pages)

17: Send(PAGE LEASE, info.targetLP , currentLV T)
18: LP state← WAIT FOR PAGE
19: Deschedule()
20: else if type = AccessChange then . H3
21: page addr ← BaseAddr(info.target)
22: AddToWriteList(page addr, 1)

handler performs different actions depending on the type of ECS fault which
is notified by the LKM.

The ECS Major Fault case (H1) is associated with the initiation of the
(distributed) protocol described in Section 4.4. First, a system-wide unique
mark is generated, and a rendezvous start message is sent to the LP keeping
the portion of the simulation state which is being accessed by the currently-
scheduled event. The id of the target LP is delivered by the LKM, as it
is uniquely associated with the PDP entry related to the faulting memory
address. The running LP then enters the Wait For Synch state, and the
target LP is added to the CSD of the running LP. Finally, the running LP
is descheduled thanks to the ULT facilities described before. In this way,
the running LP will never be activated until the rendezvous ack is received,
as previously described.

The ECS Minor Fault case (H2), which is associated only with the ac-
cess to the simulation state of a remote LP, has to first identify what kind
of operation is being executed on the shared state, namely a read or a
write operation. This information is only kept in the low-level assembly
instruction which has triggered the ECS syncrhonization. Therefore, we
rely on in-place dynamic disassembly of such an instruction, which can be
immediately found in the model’s address space by looking at the address
which caused the memory fault. Again, this information is delivered to the

16

<LP, address> <LP, address> <LP, address>

<LP, address> <LP, address> <LP, address>

<LP, address> <LP, address>
Read

List

Write

List

Figure 8: Page Touch Lists

userspace handler by the LKM, together with a snapshot of the relevant
CPU registers as observed by the faulting instruction.

The disassembler4 provides several relevant pieces of information regard-
ing the faulting instruction. Among these, we can determine whether the
instruction is accessing in read or write mode, and the size of the mem-
ory access. The latter information is used in conjunction with the target
memory address where the instruction has faulted notified by the LKM to
determine the base address of the first (remote) page which has to be trans-
ferred to the local node, and the number of pages. This information is sent
to the destination LP as an additional control message, named PAGE LEASE,
before putting the LP in the blocked Wait For Page state. Once this control
message is received at the target LP. Since the target LP is already in a
blocked state, we are actually acquiring a lease on the pages, having the LP
which originated the ECS synchronization keep a temporary master copy of
the content of that portion of the state. These pages can be safely installed
into the local address space, thanks to the non-overlapping organization of
the memory map manager depicted in Figure 3.

To keep track of what pages have been leased by an LP, we maintain two
page-touch lists. One list is associated with pages accessed in read mode,
which we refer to as read list, while the other (the write list) is associated
with pages accessed in write mode. The two lists keep as well the id of
the LP whose the original page belongs to, as depicted in Figure 8. This
is due to the fact that during the execution of an event, a LP is allowed
to synchronize with any number of LPs, thus we must keep track of the
ownership of each page. To reduce the complexity of this management, each
node in the list is associated with a PTE entry, where a bitmap of 512 bits
(one for each page) is used to determine whether the corresponding page
has been locally acquired or not.

When accessing a page in read mode, the LP has already acquired a
lease on it and a copy of the page content is already installed in the local
address space. Since the underlying operating system has granted access
in read mode only, once the event handler accesses the same page in write
mode, a new fault is detected. Nevertheless, this latter fault can be resolved
locally. When activating the userspace handler for an ECS Access Change

4In our implementation, we have used the x86 disassembler provided by hijacker, which
is available at https://github.com/HPDCS/hijacker.

17

Fault (H3), the LKM has already upgraded the access privilege to write
mode. The userspace has only to move the page from the read list to the
write list, in the corresponding PTE node.

The two lists are used as well upon the finalization of an event involved
in an ECS synchronization. Once the event’s execution is completed, the
runtime environment has to send a rendezvous unblock control message,
in order to notify the synchronized LPs that they can resume their normal
execution. The semantic of this event is augmented by adding to it a payload
which is composed of all the pages for which a lease in write mode has been
acquired during the execution of the event. This allows the destination
kernel instances to update the content of the simulation state of the involved
LPs, just before giving back control to them. In this way, the states are
reconciliated, and every LP in the system can observe a simulation state
snapshot which is consistent with the logic of the event handler just executed
at the originating LP.

4.6 Memory Reclaim

Due to our organization, the amount of pages materialized on a local node
for remote LPs is always increasing. We have devised a simple memory re-
claim policy which entails to periodically reset the memory map organization
described in Section 4.2.

This operation is supported by having one single worker thread at each
node invoke a sequence of munmap/mmap for every memory stock associated
to remote LPs. In this way, we instruct the underlying operating system to
release all memory pages which have been materialized during the execution
of remote cross-state synchronizations. It is fundamental to execute this
operation in isolation, i.e. when no other thread has any operation related
to a remote ECS still pending. In our implementation, we have resorted to a
periodic check, with a period of around 30 seconds, where all threads notify
in shared variables whether they have pending remote synchronization, and
an additional shared variable is used to delay the initiation of a remote ECS
if a memory reclaim phase is in progress.

5 Experimental Assessment

We have integrated the proposed architecture within ROOT-Sim, an open
source C/MPI-based simulation platform targeted at POSIX systems [7],
which implements a general-purpose parallel/distributed simulation envi-
ronment relying on the optimistic synchronization paradigm. ROOT-Sim
offers a very simple programming model based on the classical notion of
simulation-event handlers, to be implemented according to the ANSI-C stan-
dard, and transparently supports all the services required to parallelize the
execution.

18

As the benchmark application, we have used a multi-robot exploration
and mapping simulation model, according to the results in [20]. In this
model, a group of robots is set out into an unknown space, with the goal of
fully exploring it, while acquiring data from sensors (e.g., cameras, lasers,
. . .) which are used to map the environment. The robots are equipped
with enough processing power to elaborate the sensors data online (thus,
the map is constructed during the exploration), so as to allow them to
rely on the acquired knowledge to drive the exploration in a more efficient
way. Specifically, whenever a robot has to make a decision about which
direction should be taken to carry on the exploration, it is done by relying
on the notion of exploration frontier. By keeping a representation of the
explored world, the robot is able to detect which is the closest unexplored
area which it can reach, computes the fastest way to reach it and continues
the exploration.

The robots explore independently of each other until one coincidentally
detects another robot. Whenever two robots enter a proximity region, they
perform three different actions: i) they use their sensors to estimate their
mutual physical position—recall that they are just in proximity ; ii) they
verify the goodness of their position hypothesis by creating a rendez-vous
point (not to be confused with rendez-vous control messages related to the
ECS protocol) in the explored part of the region, and trying to meet again
there; iii) if the hypothesis is verified, they exchange the data acquired
during the exploration, thus reducing the exploration time and allowing for
a more accurate decision of the actions to be taken. Additionally, in case
step ii) succeeds (i.e., the robots actually meet in the rendez-vous point), it
means that the estimation of their respective position is correct. Therefore,
they can form a cluster, i.e. they can start exploring the environment in a
collaborative way. This collaborative exploration takes place in two different
ways. On the one hand, they jointly define (by relying on cost and utility
functions, as defined in [20]) their next exploration targets, so that they
can minimize the time required for a complete environment exploration. On
the other hand, they might decide to make a guess about the position of
other robots (the total number of which is known) which are not part of
the cluster yet. In the latter case, one of the robots (the one for which the
utility/cost ratio is convenient) targets the hypothesized position. If a robot
is found there, the aforementioned steps are carried out, so as to increase
the knowledge of the environment.

This model is a good test-case for exploiting the programming paradigm
and facilites offered by ECS. In our implementation, we rely on two different
types of LPs: robots and regions of the exploration environment, which is
represented as a square region divided into hexagonal cells. This choice
allows us to define a meaningful mobility model for the robots, and at the
same time allows us to define proximity regions which are used by the robots
to detect the presence of other ones in the nearby.

19

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
i
n
u
t
e
s
)

Computing Nodes
ECS No-ECS

Figure 9: Simulation Throughput

We have run experiments on a cluster of virtualized nodes, composed
of up to 10 Virtual Machines (VMs). The VMs are hosted by the VMware
Workstation hypervisor (version 10.0.4 build-2249910) hosted on top of a HP
ProLiant server equipped with 100 GB of RAM and 8 AMD Opteron 6376
CPUs running at 2.6 GHz. Each one has four cores (for a total of 32 physical
cores). We have installed Debian 6.0.7 with Linux kernel 2.6.32-5. Each VM
has two virtual cores and 8 GB of memory, thus overall mimicking a cluster
of mid-range computers. All available virtual cores are used by ROOT-Sim
to carry out the simulation.

We have configured our model to use 4 robots to explore a region com-
posed of 484 hexagonal cells. We have used two different implementations.
The first one (which we refer to as “ECS” in the results) is implemented
by relying on memory pointers used both to exchange data across robots,
and to register one robot within a cell—upon initialization, all cells regis-
ter their states into a shared array which is replicated across all computing
nodes. This is the implementation that triggers the transparent distributed
synchronization protocol presented in this report. The second one (which
we refer to as “No-ECS” in the results) relies on traditional message passing
to implement the same logic. in this latter version, when a robot exchanges
the information on the explored portion of the map, the data are explic-
itly marshalled into the event’s payload. As mentioned, this is an added
complexity on the model’s development, which the proposal in this report
explicitly tries to overcome.

20

In Figure 9 we report the simulation’s throughput when varying the
number of virtualized computing nodes in between 2 and 10. By the results,
we can observe two different behaviours depending on the number of virtu-
alized computing nodes used. Up to three computing nodes, the distributed-
ECS solution presented in this report offers an improved performance with
respect to the explicit message passing-based implementation. This is com-
pliant with the original results in [5]. This result is mainly related to the
fact that when running simulation events, the robots access a non-minimal
simulation state both in read and write mode. At the same time, the prob-
ability that the accessed simulation state is on the same computing node
is high (around 50%). Therefore, the likelihood that memory accesses can
be actuated in place without the need for any actual page transfer is high.
This is a scenario which definitely pays off, with respect to non-minimal
data structures marshalling/unmarshalling—the data associated with the
map being explored occupies around 3 pages in the simulation model.

When the number of distributed computing nodes increases, the over-
head introduced by the transparent facilities offered by the presented ar-
chitecture increases up to 30%. This behaviour is related to the fact that
the degree of parallelism in such configurations increases—indeed, we have
kept fixed the number of LPs while increasing the number of computing re-
sources. Therefore, this can be regarded as a worst-case scenario for the ECS
support. Indeed, the distributed protocol described in Section 4.4 blocks a
given LP, due to cross-state synchronization, for a non-minimal amount of
wall-clock time. This is related to the fact that multiple control messages are
exchanged in order to synchronize the Local Clock of the LPs, to transfer the
accessed memory pages, and to write back dirty pages. Since in the model
a reduced number of LPs are involved in the synchronization, the likelihood
that other LPs deliver a straggler message to synchronizing LPs gets higher.
In this scenario, the probability that the transparent protocol undergoes a
rollback operation is higher. This is reflected in the results, since the exe-
cution of a single ECS synchronization is retried multiple times. Anyhow,
despite the adverse scenario, the protocol is able to keep the overhead quite
reduced.

To show the effectiveness of the approach, in Figure 10 we report the
speedup of the execution over a purely sequential execution of the same
model, executed by relying on an efficient Calendar Queue [21]. By the
results, we can observe that the offered speedup is non-minimal, showing
that the whole experimental assessment has been carried out comparing
competitive parallel runs.

21

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 6 7 8 9 10

S
p
e
e
d
u
p

Computing Nodes
ECS No-ECS

Figure 10: Speedup with respect to Sequential Simulation

6 Conclusion

In this report we have presented an architecture which allows LPs to rely
on sequential-style memory accesses to read/write the simulation state of
any LP in a distributed simulation environment. This approach has the
benefit to significantly simplify the programming model according to which
simulation models are implemented, and to enable a transparent deploy on
generic distributed environments, such as clusters of (virtualized) computing
nodes. Additionally, the preliminary experimental assessment which we have
carried out shows that our solution is as well viable from a performance point
of view, since the introduced overhead is almost negligible.

References

[1] H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software,” Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202–
210, 2005.

[2] S. a. McKee, “Reflections on the memory wall,” Proceedings of the first
conference on computing frontiers on Computing frontiers - CF’04, p.
162, 2004.

[3] R. M. Fujimoto, “Parallel discrete event simulation,” Communications
of the ACM, vol. 33, no. 10, pp. 30–53, 1990.

22

[4] A. Pellegrini, C. Montañola-Sales, F. Quaglia, and J. Casanovas-Garcia,
“Programming Agent-Based Demographic Models with Cross-State and
Message-Exchange Dependencies: A Study with Speculative PDES and
Automatic Load-Sharing,” in Proceedings of the 2016 Winter Simula-
tion Conference, ser. WSC. IEEE Computer Society, Dec. 2016.

[5] A. Pellegrini and F. Quaglia, “Transparent multi-core speculative par-
allelization of DES models with event and cross-state dependencies,”
in Proceedings of the 2014 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, ser. PADS. ACM, May 2014, pp. 105–
116.

[6] D. R. Jefferson, “Virtual Time,” ACM Transactions on Programming
Languages and System, vol. 7, no. 3, pp. 404–425, 1985.

[7] A. Pellegrini and F. Quaglia, “The ROme OpTimistic Simulator: A
tutorial (invited tutorial),” in Proceedings of the 1st Workshop on Par-
allel and Distributed Agent-Based Simulations, ser. PADABS. LNCS,
Springer-Verlag, Aug. 2013.

[8] D. Bruce, “The treatment of state in optimistic systems,” ACM
SIGSIM Simulation Digest, vol. 25, no. 1, pp. 40–49, jul 1995.

[9] H. Mehl and S. Hammes, “How to integrate shared variables in dis-
tributed simulation,” SIGSIM Simulation Digest, vol. 25, no. 2, pp.
14–41, 1995.

[10] A. Fabbri and L. Donatiello, “SQTW: a mechanism for state-dependent
parallel simulation. Description and experimental study,” in Proceed-
ings of the Workshop on Parallel and Distributed Simulation, 1997, pp.
82–89.

[11] K. Ghosh and R. M. Fujimoto, “Parallel Discrete Event Simulation
Using Space-Time Memory.” in Proceedings of the International Con-
ference on Parallel Processing. CRC Press, 1991, pp. 201–208.

[12] L.-l. Chen, Y.-s. Lu, Y.-P. Yao, S.-l. Peng, and L.-d. Wu, “A Well-
Balanced Time Warp System on Multi-Core Environments,” in Pro-
ceedings of the 2011 IEEE Workshop on Principles of Advanced and
Distributed Simulation, ser. PADS. IEEE Computer Society, 2011, pp.
1–9.

[13] A. Pellegrini, R. Vitali, S. Peluso, and F. Quaglia, “Transparent and
efficient shared-state management for optimistic simulations on multi-
core machines,” in Proceedings 20th International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunication
Systems, ser. MASCOTS. IEEE Computer Society, Aug. 2012, pp.
134–141.

23

[14] B. P. Gan, M. Y. H. Low, J. Wei, X. Wang, S. J. Turner, and W. Cai,
“Synchronization and management of shared state in HLA-based dis-
tributed simulation,” in Proceedings of the Winter Simulation Confer-
ence, 2003, pp. 847–854.

[15] M. Y. H. Low, B. P. Gan, J. Wei, X. Wang, S. J. Turner, and W. Cai,
“Shared State Synchronization for HLA-Based Distributed Simula-
tion,” Simulation, vol. 82, no. 8, pp. 511–521, 2006.

[16] R. Vitali, A. Pellegrini, and F. Quaglia, “Towards symmetric multi-
threaded optimistic simulation kernels,” in Proceedings of the 26th In-
ternational Workshop on Principles of Advanced and Distributed Sim-
ulation, ser. PADS. IEEE Computer Society, Aug. 2012, pp. 211–220.

[17] A. Pellegrini and F. Quaglia, “A fine-grain time-sharing time warp
system,” ACM Transactions on Modeling and Computer Simulation,
vol. 27, no. 2, May 2017.

[18] S. Peluso, D. Didona, and F. Quaglia, “Application Transparent Migra-
tion of Simulation Objects with Generic Memory Layout,” in Proceed-
ings of the 25th Workshop on Principles of Advanced and Distributed
Simulation. IEEE Computer Society, 2011, pp. 169–177.

[19] A. Pellegrini, R. Vitali, and F. Quaglia, “Autonomic state management
for optimistic simulation platforms,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 6, pp. 1560–1569, Jun. 2015.

[20] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart,
“Distributed Multirobot Exploration and Mapping,” Proceedings of the
IEEE, vol. 94, no. 7, pp. 1325–1339, 2006.

[21] R. Brown, “Calendar queues: a fast O(1) priority queue implementation
for the simulation event set problem,” Communications of the ACM,
vol. 31, no. 10, pp. 1220–1227, 1988.

24

