
Transparent Support for Partial Rollback in

Software Transactional Memories

Alice Porfirio, Alessandro Pellegrini,
Pierangelo Di Sanzo, and Francesco Quaglia

DIAG, Sapienza, University of Rome

Abstract. The Software Transactional Memory (STM) paradigm has
gained momentum thanks to its ability to provide synchronization trans-
parency in concurrent applications. With this paradigm, accesses to data
structures that are shared among multiple threads are carried out within
transactions, which are properly handled by the STM layer with no in-
tervention by the application code. In this article we propose an en-
hancement of typical STM architectures which allows supporting par-
tial rollback of active transactions, as opposed to the typical case where
a rollback of a transaction entails squashing all the already-performed
work. Our partial rollback scheme is still transparent to the application
programmer and has been implemented for x86-64 architectures and for
the ELF format, thus being largely usable on POSIX-compliant systems
hosted on top of off-the-shelf architectures. We integrated it within the
TinySTM open-source library and we present experimental results for the
STAMP STM benchmark run on top of a 32-core HP ProLiant server.

1 Introduction

Software Transactional Memory (STM) [1] stands as a programming paradigm
tailored for the development of concurrent applications. By leveraging on atomic
transactions, STM relieves the programmers from the burden of explicitly writ-
ing complex, error-prone thread synchronization code. In fact, programmers are
only requested to wrap critical-section code within transactions. In STM, data
conflicts are handled by means of conflict detection and management (CDMAN)
algorithms, such as the ones presented in [2–6]. However, most of the proposed
schemes rely on implementations where the rollback of a transaction entails
squashing all the work carried out during its execution, despite the fact that
part of the work can be still valid. To cope with this issue, in this article we
present the design and implementation of a partial rollback scheme that is able to
avoid rolling back an entire transaction, thus allowing portions of the carried-out
transactional work to be saved. This directly provides a reduction on the num-
ber of machine instructions required for finalizing a given transaction instance.
Such a reduction is achieved via minimal housekeeping overhead, in terms of
machine instructions required for supporting the partial rollback scheme, since
we exploit optimized approaches for the management of partial-log operations
(e.g. of automatic variables) during the execution of transactional code blocks.



Further, with our partial rollback scheme, mutual consistency of shared data
and thread-private data is automatically and transparently guaranteed. This re-
moves the need for explicitly identifying and annotating the private data (e.g.
the local variables) that need to be rollbackable, as instead is requested when
relying on typical facilities offered by STM implementations [2, 3].

We achieve complete transparency towards the application-level code via
an instrumentation tool, which adds partial log/undo capabilities without re-
quiring any intervention by the programmer. We integrated and tested our
proposal within the TinySTM open-source library [3], exploiting the Commit-
Time-Locking (CTL) algorithm natively supported by TinySTM. Further, the
instrumentation tool has been tailored to the Executable and Linkable Format
(ELF) and to x86-64 processors, thus allowing supporting partial rollback oper-
ations for TinySTM-based applications run on top of POSIX compliant systems
and widely diffused hardware architectures. Some experimental data highlighting
performance advantages from our proposal, when compared to the traditional
case of complete squashing for rolled back transactions, are also reported for the
case of the STAMP STM benchmark [7] run on top of a 32-core HP ProLiant
server equipped with 32GB of RAM memory and running Linux.

The remainder of this paper is structured as follows. In Section 2, related
work is discussed. Details on our algorithmic extensions of CTL aimed at partial
rollback are provided in Section 3. The actual implementation of the support
for partial rollback within TinySTM is presented in Section 4. Performance data
are provided in Section 5.

2 Related Work

Solutions aimed at the reduction of the waste of CPU-time associated with rolled
back STM transactions can be found in [8–10]. The main approaches underlying
these proposals entail (i) (dynamically) regulating the amount of concurrent
threads to a well suited value (see, e.g., [9]), which is expected to avoid thrashing
due to transaction aborts caused by excessive data conflicts, and/or (ii) a-priori
sequentializing transactions when the abort rate exceeds specific thresholds (see,
e.g., [10]). All these proposals are orthogonal to our one since none of them is
tailored to the reduction of the waste of work via partial save of the effects of
the execution of transactions.

Considering partial rollback in STM systems as the specific target, a few so-
lutions have been proposed in [11–13]. Differently from what we present in this
article, the proposal in [11] is limited to the management of partial rollback op-
erations on shared data, thus not supporting rollback of thread-private data. As
a consequence, mutual consistency between shared and private data within the
partial rollback scheme is demanded from the programmer, while our approach
enforces full transparency. The proposals in [12, 13] consist of an architectural
specification of partial rollback supports, which has however not been imple-
mented in any real environment, and has been evaluated only via simulation.
Instead, we provide a real implementation within the TinySTM framework. Ad-



ditionally, the work in [12, 13] bases partial rollback on a traditional approach
where shared and private objects are marked as updated via dirty-bitmaps and
are logged into per-object undo stacks. Instead, our proposal does not rely on
any explicit management of dirty-bitmaps, and packs log information by cluster-
ing thread-private data via optimized log operations of the thread stack, which
are based on ranges of memory addresses defining target regions for the memory
write instructions executed along the transaction.

3 Partial Rollback

3.1 Target CDMAN: Commit-Time-Locking plus Read Validation

We target the CTL algorithm, as used in implementations such as TL2 [2] and
TinySTM [3]. The algorithm relies on a global version clock (gvc), namely a
global shared counter, which is atomically incremented (e.g. via Compare-And-
Swap—CAS—operations) by any thread whenever it commits a transaction that
updated shared data. Also, each (size-tunable) set of shared memory objects,
such as memory words for the case of word-based STM, is associated with its own
meta-data consisting of (A) a lock-bit and (B) a timestamp. This association is
supported by means of hash functions taking as input the shared-object memory
address. When a transaction commits, the updated gvc value is reflected as the
new timestamp of the written objects.

Upon (re-)starting a transaction, a thread stores the current value of the
gvc into a local variable called transaction start-timestamp (tst). Upon a trans-
actional read operation from a shared object, the corresponding memory ad-
dress is added to the transaction read-set, while, upon a write operation, the
destination-object address and the value to be stored are both added to a trans-
action write-set (note that the written value is not yet stored into the actual
target location). In addition, when executing a transactional read operation, it
is checked in advance if the shared object has already been written by the trans-
action (by checking the content of the transaction write-set). In the positive
case, the value stored within the write-set is returned. Otherwise, the lock-bit
associated with the object is sampled to check whether it is set to 1, which
means that the object is currently locked by a concurrent transaction. If the
lock-bit has value 1, the reading transaction gets aborted (possibly after waiting
for the lock release for a while). Otherwise, the object value and its timestamp
are re-sampled along with the lock-bit in order to check if (A) the timestamp
is less than or equal to the tst of the reading transaction, and (B) the object
is not currently re-locked. If both the checks succeed, it means that no concur-
rent transaction has modified the object in the interval between the start of the
current transaction and the actual read operation, hence the value read is still
valid. Otherwise, the transaction gets aborted and then restarted.

Upon attempting to commit a writing transaction1, the thread tries to ac-
quire the locks associated with all the objects belonging to the transaction write-

1 For read-only transactions the commit operation is unnecessary as no shared objects
have to be updated.



set. This is done by attempting to set the lock-bit associated with each of these
objects (e.g via CAS operations). If at least one lock acquisition fails, the trans-
action is aborted and restarted. Otherwise, the transaction read-set gets vali-
dated. Namely, for each object belonging to the read-set, the associated current
timestamp is compared with the tst value in order to check if it was modified
after starting the transaction. Object modifications by concurrent transactions
imply that the object timestamp is greater than tst since it reflects updates in
the gvc, generated by successfully committing transactions. Hence, if the times-
tamp of at least one object has been modified, then the transaction is aborted
and restarted. Otherwise the transaction can successfully commit, thus storing
object-values kept within the transaction write-set in the destination memory
areas and releasing all the acquired locks.

A mechanism used in combination with this scheme is called snapshot ex-

tension. When the thread performs a transactional read from an object that
has been updated by a concurrent transaction (which would lead to an abort)
this mechanism checks if all the object values returned by previously executed
transactional read operations of the transaction (if any) are still valid. If yes,
the snapshot seen by the transaction is still consistent, hence the transaction
is not aborted. In this case, the tst is updated to the value of the gvc sampled
immediately before performing the check.

3.2 The Partial Rollback Scheme

In our partial rollback scheme, we rely on snapshot extension as a basis for
managing the tst. However, we devise an approach where snapshot extension is
exploited according to a sequential validation scheme, which is used to determine
the maximum amount of transactional work that can be considered as still valid
on the basis of the current state of shared data. Specifically, upon the read of an
invalid object-value, the previously executed read operations are revalidated in
order of their occurrence within the transaction, until all of them are found to
be still valid, or validation fails for one of them. The first invalid read operation
along the sequence is the restoration point for our partial rollback scheme, hence
all the subsequent work performed by the transaction (if any) is squashed.

Coherency between read and write sets within the partial rollback scheme has
been achieved by determining causality relations (i.e. temporal ordering) among
transactional read/write operations within each transaction, which are logged
as part of the representation of read/write sets. Hence, all the transactional
write operations that are detected as being causally dependent on invalid read
operations are also squashed from the write set.

As hinted before, we have also devised a scheme for partially rolling back
thread-private data, in a consistent manner with respect to squashing operations
of read and write sets. This is based on identifying the memory upper/lower
bound for any log/restore operation within the stack, to be used to correctly
manage thread-private data within the partial rollback scheme. On the other
hand, both upper and lower bounds for these operations change over time de-



pending on how flow-control and memory updates are materialized across differ-
ent routines while the transactional code block’s execution is still in progress.

Overall, beyond the already depicted handling of read/write sets (reflecting
the access to shared data), operated while managing incremental snapshot exten-
sions, our partial rollback scheme deals with the management of thread-private
data according to the following actions: (A1) upon invoking TM begin along the
thread, the stack pointer is used to determine the upper and lower bounds of
the stack region (initially empty) to be logged in case updates of thread-private
data occur along the transaction. This region may be enlarged (by moving its
bounds) when a write operation occurs within the stack along the transaction’s
execution. If the write touches data above (resp. below) the upper (resp. lower)
bound, such a bound is moved to the top (resp. bottom) address of the touched
memory area; (A2) upon invocation of any TM read operation along the thread,
a recovery image for the whole memory segment in between the current upper
and lower bounds for the target stack region is created, together with a recovery
image for the processor context; (A3) upon an incremental-snapshot extension
operation (as depicted above), the stack/processor recovery image associated
with the first no more valid TM read along the sequence (as determined in A2)
is restored, using an incremental-restore technique similar to the one proposed
in [14]; (A4) upon successful invocation of TM end along the thread, which deter-
mines actual commitment, the recovery images associated with the transaction
execution path (as determined in A2) are discarded.

The above scheme, in particular in point A3, provides facilities for consis-
tently rolling back thread-private data even in cases of complete squashing of
the performed transactional work (e.g. due to invalidation of the object accessed
upon the first read operation along the transactional code block). This is a rel-
evant facility along the line of simplifying the development of application code.

Two additional points devise discussion. First, generation of stack frames
restoration images is subject to a set of optimizations which we will depict later
on in Section 4. Second, with the devised approach, we make update operations
occurring within the stack rollbackable even if they occur via pointer-based ac-
cess. Specifically, whenever any routine is started-up within the thread execution
flow, if any pointer is received in input which allows the access to stack memory
locations (namely stack frames) associated with other functions living along the
thread, then any write access is automatically handled via the recovery images
depicted above.

The only case not covered, in terms of ability to rollback, is related to updates
occurring within global data that are inherently outside the control of the STM
layer (e.g. non-transactional global variables). However, with the STM approach,
these are typically avoided since the target is synchronization-transparent man-
agement of global (inherently shared) data structures.



4 Implementation

The logic required for handling partial rollback operations within TinySTM en-
tails: (A) Identifying the execution points where recovery images for the thread
stack need to be taken; (B) Implementing the actual log/restore logic for the
stack, and combining it with the management of read/write sets. Some parts of
this logic have been implemented via proper modification of TinySTM internals,
while an instrumentation tool [15] has been used in order to provide complete
transparency to the application layer in terms of exploitation of partial roll-
back capabilities. Within the whole code modification/instrumentation process,
both the above targets have been achieved via instrumentation rules that allow
nesting within the code a block of machine instructions to be executed right
before any call from the application software to the TM read function offered by
the TinySTM API. This allows us to transparently take control exactly when
we need to create a stack recovery image, namely before actually accessing the
target transactional object in read mode. If the read operation is invalid, the
additional logic included within the TinySTM layer is used in order to exploit
stack restoration images for supporting partial rollback.

In order to correctly create a recovery image, which includes the current
processor context right before the call to TM read, the instrumentation tool has
been used to transparently inline within the application ELF a functional block
structured as:
boundaries = recompute_boundaries();

getcontext(&cpu_state);

stm_store_context_in_readset(&cpu_state);

With this approach, stack/processor information associated with the current
state of execution of the function calling TM read is sampled, with no modifi-
cation of stack pointer/content and CPU image performed by the code block.
On the other hand, the creation of the stack recovery image is performed by
stm store context in readset, a function we have added to TinySTM, which
performs an optimized management of stack log operations as we will explain.

Creation of Stack Recovery Images Our approach to the creation of a re-
covery image for the stack of the transactional thread at a given point in the
execution is based on two optimizations. The first one deals with an incremental
approach for the determination of the stack portions that actually need to be
logged in order to correctly achieve a recovery image for the whole stack con-
tent. The second one deals with how to perform the actual copy of the memory
areas required for creation of the restoration image. The two optimizations are
explicitly thought to be used in combination.

As for the first optimization, a snapshot of the stack content at a given point
of execution is built by combining the latter available stack log plus a log of
only those portions that have been modified up to the point of interest. This
is an incremental approach, that has already been exploited in literature, but
typically according to a page-based logging approach (see, e.g., [16]). Instead, we
incrementally build the recovery image of the stack by logging data according
to arbitrary granularity, and by organizing them in a chain (realized in the



read set) as described in [14]. Also, the idea underlying our incremental scheme
is to determine the stack portions to be logged in such a way that they are
finally contained within a single area formed by contiguous memory locations.
This allows nesting the aforementioned second optimization related to efficient
support for memory copies in case of adjacency of the addresses characterizing
source and destination areas for the copy operation.

To achieve incremental logging, the application level ELF is again transpar-
ently instrumented by allowing the insertion of a code block before any machine-
level memory-write operation (e.g. mov instructions) which, by analysing the cur-
rent state of the processor, determines the actual virtual address to be targeted
by the update, and the size of the touched memory area. In case the update
falls within the stack (namely the lower address of the area to be touched is not
less than the current stack pointer value), the write operation deals with the
content of the stack, and needs to be made rollbackable. In this case, the inter-
val of virtual addresses [I1, I2] involved in the update is determined, which in
turn identifies a stack portion to be logged upon the creation of the subsequent
recovery image (as the one containing all the memory locations in between the
addresses I1 and I2). We note that for some machine-level memory instructions,
write access to the stack occurs by default, such as for the case of push and
call.

In fact, multiple write operations can occur before the point where the cre-
ation of the stack recovery image occurs. As an example, an additional write may
involve the stack portion in the interval of addresses [I3, I4]. In such a case, in-
stead of explicitly maintaining the list of stack portions to be logged and restored,
we adopt a clustering approach where we identify the actual area to be logged
as the one between a minimum address value computed as I− = min(I1, I3) and
a maximum address value computed as I+ = max(I2, I4). In other words, we
always log a contiguous segment of the stack, which contains all the modified
stack locations and possibly some non-modified locations. This is done so that
the actual log (namely memory copy) operation can be achieved by using a sin-
gle machine instruction, such as the movs instruction of the x86 instruction set.
This is the second optimization.

As an additional note, this approach is combined with a check on the actual
top-boundary of the stack such that, when considering an incrementally built re-
covery image associated with stack-pointer value x, any memory location within
the stack with address y < x, possibly belonging to the previous recovery im-
age, is logically marked as non-relevant for the incremental construction of the
current image. Further, we emphasize that our approach, based on a boundary
check on the actual modified region of the stack, up to the transactional read
operation, copes well with common optimizations offered by modern compiling
toolchains. In particular, standard compilers might decide to use, where avail-
able, the stack base registers (e.g. ebx on x86 architectures) as general purpose
ones. This speeds up the program’s execution by enlarging the set of information
which the processing unit is able to maintain within its internal state. On the
other hand, this makes it impossible to determine which is the current function’s



execution

time

stack

status

incremental

log

chain

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

modified data

logged

not logged

partial rollback

Fig. 1. Stack management within partial rollback.

stack frame. Our solution is able to cope with this scenario, since we do not need
to explicitly know the base of the stack zone for any specific function.

Stack Recovery Operations As mentioned, upon the detection of an incon-
sistent read, instead of relying on the classical rollback scheme, we perform a
partial rollback operation, which entails restarting the execution of the conflict-
ing transaction from an intermediate point such that every operation before it
is still considered valid. In order to effectively restart from within a transac-
tion, we must restore every aspect of the execution context. If on the one hand
the processor state is restored via the standard System V setcontext library
function—using a previously stored snapshot—in order to successfully cope with
automatic variables we must undo any modification concerning the stack frames
of the functions living along the thread execution. In Figure 1 we show how we
build partial stack logs during the execution of the transaction. In the above
example, upon the execution of READ4, an inconsistency is discovered, and
given the failure of the snapshot extension protocol we trigger our partial roll-
back operation. In the example, READ2 is selected as being the most recent
read operation entailing a still-valid value, therefore the execution is restarted
from READ3. In particular, in READ3’s read set we can find the portion of the
stack which was modified between the execution of READ2 and READ3. This is
restored together with the aforementioned processor context, and together with
other incremental portions of the stack from previous logs, as described in [14].

5 Experimental Results

We present some experimental results achieved with the STAMP STM bench-
mark suite [7], specifically with ssca2 and kmeans applications. The former is a
transactional implementation of the Scalable Synthetic Compact Applications
2 (SSCA2) benchmark [17], where a graph kernel is used to build a directed,
weighted multi-graph using adjacency arrays and auxiliary arrays. In particular,



 0

 0.05

 0.1

 0.15

 0.2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

ssca2+

tinySTM with partial rollback
tinySTM

 0

 5

 10

 15

 20

 25

 30

 35

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

ssca2++

tinySTM with partial rollback
tinySTM

Fig. 2. Results with ssca2.

threads concurrently add nodes to the graph, and transactions are used to syn-
chronize accesses to the adjacency arrays. Data contention in ssca2 is relatively
low, making this benchmark effective for assessing the overhead produced by our
partial rollback implementation with respect to the traditional rollback scheme,
evaluating it mostly for the forward execution. The second one, i.e. kmeans, is
a transactional implementation of a partition-based clustering method [18]. A
cluster is represented by the mean value of all the objects it contains, and during
the execution of this benchmark the mean points are updated by assigning each
object to its nearest cluster center, based on Euclid distance. This benchmark
relies on threads working on separate subsets of the data and uses transactions
in order to assign portions of the workload and to store final results concerning
the new centroid updates. Given the reduced amount of shared data structures
being updated by transactions, in this benchmark it is more likely to incur in
logical contention when a larger number of threads is used for the computation,
which would allow us to better assess the benefits deriving from our partial roll-
back scheme. Also, we note that this is not a best case for our approach, since
the amount of work saved from partial rollback is reduced, so that the overhead
generated by the CPU/stack state saving/restoring is not completely amortized,
which gives rise to a significative test case.

By the specification of STAMP, both the above applications can be charac-
terized by two parameters. One is the size of the dataset, which has been changed
in between ‘+’ (indicating medium) and ‘++’ (indicating large). The second one,
particularly used for the kmeans benchmark, indicates the actual requirements
of the transactions, in terms of, e.g., actual span of the accesses onto the dataset
and, correspondingly, CPU requirements. This parameter is denoted as ‘high’
(indicating high demand) and ‘low’ (indicating reduced demand).

The execution latency that we have observed for ssca2 while varying the
number of threads (namely the number of used CPU-cores) up to 32 is shown
in Figure 2, where each reported sample is the average value across 4 runs. As
hinted before, this benchmark is characterized by relatively simple transactions,
accessing a reduced amount of shared data, which leads the actual transactional
work to be a relatively reduced percentage of the whole work carried out. This is
reflected in that the actual data contention is very reduced, with the obvious out-



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

kmeans-high+

tinySTM with partial rollback
tinySTM

 0

 5

 10

 15

 20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

kmeans-high++

tinySTM with partial rollback
tinySTM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

kmeans-low+

tinySTM with partial rollback
tinySTM

 0

 10

 20

 30

 40

 50

 60

 70

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

kmeans-low++

tinySTM with partial rollback
tinySTM

Fig. 3. Results with kmeans.

come that partial rollback schemes cannot be expected to provide performance
improvements, given the almost null amount of rolled back transactions. On the
other hand, for this scenario we observe a small amount of overhead from the
support for partial rollback. Specifically, for the case of the ‘+’ configuration,
we observe an overhead which is on the order of 7% for most of the considered
concurrency levels (namely numbers of threads). Such an overhead is further re-
duced when considering the ‘++’ configuration. The increased data set leads to
reduced locality, making the execution slower than ‘+’. This causes the overhead
from the CPU-context/stack logging mechanisms for partial rollback to be less
evident.

In Figure 3 the results observed for the kmeans benchmark are reported, with
each sample expressing again the mean value over 4 runs. In this setting, the
most unfavorable configuration for our partial rollback scheme is ‘high+’, where
the transactions have higher requirements, and access a reduced dataset. This
leads to scenarios of high data conflict, likely occurring in the early phase of a
transaction execution (due to reduced size of the accessed dataset). This leads
the partial rollback scheme to induce a non-minimal amount of logging overhead,
while not allowing a significative save of work for rolling back transactions due
to the fact that rollbacks typically require transactions to resume from the be-
ginning of their execution. This phenomenon is alleviated when considering the
‘high++’ configuration, where the increased size of the dataset leads to scenarios
where at least a portion of the performed transactional work can be successfully
saved, since the dataset largeness gives rise to dynamics where the likelihood of



conflicting in the early phase of transaction execution gets reduced. This leads
the partial rollback scheme to exhibit increased effectiveness, especially with
a higher concurrency level. In such a case, in fact, the partial rollback scheme
achieves up to 20% reduction of the benchmark execution time on 32 CPU-cores.

The ‘low+’ configuration of kmeans gives rise to execution dynamics that
are not so far from those observable for the ‘high++’ configuration. Specifically,
here transactions conflict while accessing a reduced data set, but they exhibit
reduced resource requirements. Hence, also in this case there is no bias towards
conflicting in the early phase of the execution. As a consequence, the partial
rollback scheme operates effectively, especially when the level of concurrency is
increased. Specifically, it provides reductions of the benchmark execution latency
on the order of 40% as soon as the number of used CPU-cores is greater than
23. On the other hand, for reduced concurrency levels, the impact of transac-
tion rollback gets reduced, which leads to the scenario where the partial rollback
scheme induces logging overhead that does not get compensated by revenues
while partially rolling back transactions. Such an overhead is better absorbed
when running the ‘low++’ configuration (e.g. due to the aforementioned re-
duced locality phenomena within the benchmark). Hence for this scenario, we
observe that partial rollback provides similar performance as the one achievable
by the traditional scheme when the level of concurrency is limited, while it pro-
vides some performance advantages when this level gets increased, which leads
to scenarios where the transaction rollback phenomenon is more relevant, thus
rendering more useful the partial save of transactional work already carried out.

6 Summary

In this article we have presented the design and implementation of a support
for application-transparent partial rollback in STM, tailored to contention man-
agers relying on lazy (i.e. at commit-time) lock acquisition and on read validation
mechanisms. It has been integrated within the open source TinySTM package,
and has been tested on top of a 32-core HP ProLiant machine by running appli-
cations selected from the STAMP benchmark suite. By the data, our proposal
allows for performance improvements in scenarios characterized by non-minimal
data contention.

References

1. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, ACM
Press (August 1995)

2. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Proceedings of the
20th International Symposium on Distributed Computing. (2006) 194–208

3. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based
software transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming. PPoPP, ACM (2008)
237–246



4. Herlihy, M.P., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21 (May 1993) 289–300

5. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strat-
egy for contention management in software transactional memory. SIGPLAN No-
tices 44(4) (February 2009) 141–150

6. Lev, Y., Luchangco, V., Marathe, V.J., Moir, M., Nussbaum, D., Olszewski, M.:
Anatomy of a scalable software transactional memory. In: Proceedings of the
4th ACM SIGPLAN Workshop on Transactional Computing. TRANSACT, ACM
(2009)

7. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: Proceedings of the IEEE International
Symposium on Workload Characterization. ISWC (September 2008)

8. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Machine learning-based self-
adjusting concurrency in software transactional memory systems. In: Proceedings
of the 20th IEEE International Symposium On Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems. MASCOTS, IEEE Computer
Society (August 2012) 278–285

9. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Ad-
vanced concurrency control for transactional memory using transaction commit
rate. In: Proceedings of the 14th international Euro-Par conference on Parallel
Processing. Euro-Par, Springer-Verlag (2008) 719–728

10. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory
systems. In: Proceedings of the twentieth annual symposium on Parallelism in
algorithms and architectures. SPAA, ACM (2008) 169–178

11. Lupei, D.: A study of conflict detection in software transactional memory. Master’s
thesis, University of Toronto, the Netherlands (2009)

12. Gupta, M., Shyamasundar, R.K., Agarwal, S.: Article: Clustered checkpointing
and partial rollbacks for reducing conflict costs in stms. International Journal of
Computer Applications 1(22) (February 2010) 80–85

13. Gupta, M., Shyamasundar, R.K., Agarwal, S.: Automatic checkpointing and partial
rollback in software transaction memory (January 2012) US Patent 20110029490.

14. Pellegrini, A., Vitali, R., Quaglia, F.: Di-DyMeLoR: Logging only dirty chunks
for efficient management of dynamic memory based optimistic simulation objects.
In: Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Ad-
vanced and Distributed Simulation. PADS, IEEE Computer Society (2009) 45–53

15. Pellegrini, A.: Hijacker: Efficient static software instrumentation with applications
in high performance computing (poster paper). In: Proceedings of the 2013 Inter-
national Conference on High Performance Computing & Simulation. HPCS, IEEE
Computer Society (July 2013)

16. Santoro, A., Quaglia, F.: Transparent state management for optimistic synchro-
nization in the High Level Architecture. In: Proceedings of the 19th Workshop
on Principles of Advanced and Distributed Simulation, IEEE Computer Society
(June 2005) 171–180

17. Bader, D.A., Madduri, K.: Design and implementation of the hpcs graph analysis
benchmark on symmetric multiprocessors. In: Proceedings of the 12th interna-
tional conference on High Performance Computing. HiPC’05, Berlin, Heidelberg,
Springer-Verlag (2005) 465–476

18. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, Norwell, MA, USA (1981)


