
RBlockSim: Parallel and Distributed Simulation for
Blockchain Benchmarking

Adriano Pimpini
adriano.pimpini@gmail.com

Tor Vergata University of Rome
Rome, Italy

Alessandro Pellegrini
a.pellegrini@ing.uniroma2.it

Tor Vergata University of Rome
Rome, Italy

ABSTRACT
Since the introduction of Bitcoin in 2008, blockchain technology’s
popularity has been rapidly on the rise. This has led to and benefited
from the introduction of numerous new implementations address-
ing specific needs regarding performance, scalability, privacy, etc.

Developing new implementations requiresmaking design choices
that greatly influence the blockchain’s behaviour. While deploy-
ing full-scale networks for evaluation is impractical and costly,
simulation offers a safe and convenient environment to test and
benchmark different implementations against the requirements.

Although single-threaded simulation of blockchain networks is
available, it can incur long execution times when simulating large-
scale scenarios. Additionally, it is constrained by the machine’s
RAM, limiting the size of networks one may study.

In this paper, we introduce and benchmark RBlockSim, a simu-
lation approach that leverages optimistic parallel and distributed
discrete-event simulation to overcome the above limitations and
provides a modular, high-performance test-bed for blockchain eval-
uation.

CCS CONCEPTS
• Computing methodologies → Discrete-event simulation;
Massively parallel and high-performance simulations; • Se-
curity and privacy→ Distributed systems security; • General and
reference → Evaluation.

KEYWORDS
Blockchain, Speculative Parallel Discrete Event Simulation, Security,
Performance, Accuracy, Benchmarking.
ACM Reference Format:
Adriano Pimpini and Alessandro Pellegrini. 2025. RBlockSim: Parallel and
Distributed Simulation for Blockchain Benchmarking. In 39th ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’25),
June 23–26, 2025, Santa Fe, NM, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3726301.3728421

1 INTRODUCTION
Blockchain technology has experienced massive growth in popu-
larity since the introduction of Bitcoin [19] in 2008. Its multifaceted
appeal stems from its various properties, including decentralisation,

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1591-4/2025/06
https://doi.org/10.1145/3726301.3728421

security, and transparency, which make blockchain attractive for a
variety of applications beyond cryptocurrency.

Since then, many different blockchain implementations have ap-
peared for specific use cases. When designing such blockchains, cer-
tain requirements must be considered. A blockchain can be tailored
to meet these needs and achieve desired performance benchmarks
by carefully selecting design choices, such as the used consensus
algorithm, the block size, or the generation interval. Collectively,
these choices may affect transaction rates, energy efficiency, propa-
gation delays, or, in general, the balance between security and per-
formance. However, the effects of design choices on the network’s
emergent behaviour cannot be precisely evaluated with pencil and
paper: they need to be observed and measured at run time. De-
ploying the blockchain network at scale for realistic benchmarking
is a prohibitive (if not unfeasible) endeavour, requiring unrealis-
tic amounts of computational power, memory, storage, and time.
Simulation is an alternative approach that offers a more efficient
way to evaluate the performance of a blockchain implementation:
indeed, simulation allows for the controlled and systematic test-
ing of various design choices, significantly reducing the computa-
tional and resource overhead by mimicking costly operations. This
approach eliminates hardware bottlenecks and prevents skewed
results caused by physical machine limitations, ensuring a more
accurate and efficient evaluation of the blockchain’s performance,
scalability, and security.

Simulating blockchains with Parallel Discrete Event Simulation
(PDES) [10] can provide non-negligible benefits over existing solu-
tions. PDES is superior to sequential simulation (see, e.g., [2, 9, 11])
due to its ability to leverage concurrency, thereby significantly
enhancing simulation efficiency and scalability. Unlike sequential
simulation, which processes events one at a time, PDES distributes
events across multiple processors and/or multiple machines, allow-
ing for concurrent event processing to reduce the overall simulation
time. This concurrency is especially beneficial in large-scale simu-
lations, such as those modelling blockchain networks, where the
volume of events can be substantial. Compared to time-stepped
distributed simulation (see, e.g., [24]), which advances all simulated
entities in fixed time increments and can be inefficient when events
are sparse, PDES processes events precisely when they occur, opti-
mising resource usage andmaintaining high simulation fidelity. The
improved accuracy and fidelity of discrete-event simulation have
already been recognised in multiple domains, including blockchain
simulation (see, e.g., [4, 6, 22]).

At the same time, deploying a concurrent simulation requires
special attention to deliver correct results, thus requiring some
synchronisation protocol. Synchronisation is fundamental in PDES
because it ensures the correct chronological order of events across

https://orcid.org/0000-0002-9703-1211
https://orcid.org/0000-0002-0179-9868
https://doi.org/10.1145/3726301.3728421
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://doi.org/10.1145/3726301.3728421


SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Adriano Pimpini and Alessandro Pellegrini

multiple processors, preventing causality errors where an event
might be processed before its preceding events. Without proper syn-
chronisation, simulations can produce inaccurate results because
events could be handled out of order. Two primary synchronisation
methods are used: conservative [5] and optimistic [14]. Conserva-
tive synchronisation prevents any event from being processed until
it is certain that no preceding events exist, possibly leading to idle
waiting times but ensuring correctness. On the other hand, opti-
mistic synchronisation allows events to be processed speculatively,
rolling back and correcting any errors if out-of-order events are
detected later. This method can significantly improve performance,
but requires efficient error detection and rollback mechanisms to
maintain accuracy. Recently, conservative synchronisation has been
shown to be an optional accelerator for an underlying optimistic
synchronisation algorithm [15]. Moreover, speculative synchro-
nisation can also favour performance when the model is tightly
coupled, thanks to improved locality management [13, 18]. There-
fore, we explicitly exploit speculative synchronisation, based on
the Time Warp synchronisation algorithm [14], as the synchroni-
sation strategy to deliver efficient parallel/distributed blockchain
simulations.

In this paper, we present RBlockSim, a high-performance, par-
allel, and distributed blockchain simulation framework that lever-
ages speculative PDES to achieve scalability and efficiency in large-
scale blockchain benchmarking. RBlockSim supports customisable
blockchain configurations, allowing users to explore consensus
protocols, network topologies, and adversarial behaviours. Its mod-
ular design facilitates rapid experimentation, while its optimised
blockchain management system ensures efficient fork management
and transaction handling. We release RBlockSim as open source1 as
a tool enabling researchers and practitioners to evaluate blockchain
protocols, analyse emergent network behaviours, and experiment
with various consensus mechanisms and adversarial scenarios in a
modular and extensible environment.

The rest of this paper is structured as follows. In Section 2, we
present the paper’s background context and scope. In Section 3,
we explore related work conducted in the area. Section 4 explores
RBlockSim’s architecture and various modules in detail. In Section 5,
the experimental setup and the performance and security results
are presented.

2 BACKGROUND AND SCOPE
A blockchain is a distributed ledger replicated across a peer-to-peer
network, responsible for recording and managing a continuously
growing list of transactions in a secure and tamper-proof manner.
Transactions are initially created by participants, digitally signed us-
ing asymmetric cryptography to ensure authenticity and integrity,
and then broadcasted to the network. Once disseminated, transac-
tions are aggregated by network participants, typically miners or
validators, into batches called blocks.

1The RBlockSim repository can be found at https://github.com/AdrianoPi/RBlockSim.
The persistent version associated with this publication is available at https://doi.org/
10.5281/zenodo.15281276.

Each block contains a cryptographic reference to its predecessor
(the previous block’s hash), the current batch of validated transac-
tions, a timestamp, and a cryptographic hash that uniquely iden-
tifies the block itself. This structure inherently creates a linear
and immutable sequence—thus forming the blockchain. The cryp-
tographic linkage between blocks ensures that modifying even a
single transaction in any block invalidates the subsequent blocks,
as their hashes would no longer match, guaranteeing tamper resis-
tance across the entire chain.

The decentralized and typically trustless nature of blockchain
networks necessitates mechanisms to ensure consistent integration
and validation of new blocks across the distributed nodes. This
consistency is maintained by consensus algorithms—distributed
protocols that govern how new blocks are created, validated, and
integrated into the blockchain, and how conflicts or forks (simulta-
neous valid but divergent blockchain states) are resolved.

Consensus algorithms such as Proof of Work (PoW) and Proof
of Stake (PoS) define distinct rules for block creation and valida-
tion. In PoW-based systems, employed prominently by Bitcoin [19],
participants known as miners compete to solve computationally
intensive cryptographic puzzles. The first miner to solve the puzzle
is entitled to propose the next block and broadcast it to the network.
Nodes verify the solution and the block’s content before accepting
it into their local version of the blockchain. This computational
cost serves as a deterrent against malicious actors attempting to
alter the ledger, as the required computational power and energy
consumption would be prohibitively high.

In contrast, PoS-based systems, notably adopted by Ethereum [27],
rely on participants (validators) who lock or "stake" cryptocurrency
as collateral for their participation in the consensus process. Val-
idators are selected deterministically or randomly, proportional
to their stake, to propose and validate blocks. Malicious behav-
ior is economically discouraged by risking loss of staked assets,
which provides security without the intensive energy consumption
associated with PoW.

Maintaining consistency across nodes in the presence of faulty
or malicious participants—often termed Byzantine behaviour—is
critical. Byzantine Fault Tolerance (BFT) mechanisms or incentives
embedded within consensus algorithms ensure resilience against
participants who might act unpredictably or maliciously, thereby
maintaining network reliability and block consistency.

Despite a plethora of blockchain systems having been proposed
and made available in recent years (we refer the reader to [12] for
a comprehensive discussion), there can be many reasons [28] for
wanting to implement a new one or build on top of an existing
one by modifying some of its characteristics and creating a fork.
The reasons can encompass performance requirements, such as
scalability and transaction throughput, or efficiency needs, such
as the use of a consensus protocol requiring less computational
power (e.g. Ethereum 2.0 moving from PoW to PoS), or privacy and
security considerations, or technological innovations, to name a
few.

Many of the characteristics mentioned above are actually emer-
gent properties of the network that can only be really observed
at runtime. This is because they arise from the complex interac-
tions between numerous (logical) components, such as network
nodes, consensus algorithms, and transaction flows, which cannot

https://github.com/AdrianoPi/RBlockSim
https://doi.org/10.5281/zenodo.15281276
https://doi.org/10.5281/zenodo.15281276


RBlockSim: Parallel and Distributed Simulation for Blockchain Benchmarking SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

be fully predicted or modelled using static analysis or theoretical ap-
proaches. These properties, including network latency, throughput,
scalability, and resistance to attacks, depend on dynamic factors
like node behaviour, network topology, and transaction patterns
that only manifest during actual operation. Physical deployments
would be ideal for evaluating emergent behaviour. However, they
are impractical because of limitations in:

• Scalability: networks can comprise tens or hundreds of thou-
sands of nodes2. Physically deploying such a large number
of nodes requires considerable amounts of memory and stor-
age, calling for either enterprise servers or a non-minimal
number of networked machines.

• Computational power : a large-scale network has the potential
to require significant computational power even when using
lightweight proofs, such as PoS.

• Cost: the requirements above underline the need for a sub-
stantial investment in hardware to support the deployment,
as both procuring and operational costs can be prohibitive.
Cloud environments, while potentially offering scalability,
could exacerbate these concerns.

Overcoming the above limitations is possible through simula-
tion. Simulation can help in studying the emergent properties of
blockchain systems by providing a controlled, flexible, and scalable
environment to model and analyse the complex interactions within
the network. Through simulation, researchers can replicate the
dynamic behaviours of nodes, transactions, and consensus mech-
anisms under various scenarios and configurations without the
resource constraints and risks associated with deploying a real
blockchain network. This approach allows for the systematic ex-
ploration of how different design choices and external conditions
impact performance, scalability, security, and other emergent prop-
erties. By observing these interactions in a simulated environment,
developers can gain valuable insights into potential issues, optimise
system parameters, and make informed decisions to enhance the
overall robustness and efficiency of blockchain implementations.

This work aims to provide a simulation test bed that can help
evaluate various aspects of old and novel blockchain implementa-
tions. We achieve this via RBlockSim: a model built on top of the
ROme OpTimistic Simulation framework (ROOT-Sim) [21]. RBlock-
Sim takes care of interfacing with the simulation runtime environ-
ment to provide a core structure that users can build on top of, by
changing the configuration parameters or directly modifying the
behaviour of specific functions to model the blockchain they want
to test.

Currently, RBlockSim ships with a sample Bitcoin model. It is
also able to simulate Byzantine behaviour, as presented later. The
general-purpose nature of the implementation, however, permits
the simulation of arbitrary adversarial behaviours, network proto-
cols, and consensus protocols.

3 RELATEDWORK
Owing to blockchain’s popularity, various simulation frameworks
have been developed and presented to the community [1, 20]. One
of the initial attempts to simulate blockchain networks can be found

2https://blockworks.co/news/ethereum-to-reach-500000-validators, accessed on Janu-
ary 14, 2025.

in [11]. This work introduces a quantitative framework to assess the
security and performance tradeoffs of various PoW blockchain con-
figurations, which considers real-world constraints such as network
propagation delays, block sizes, and block generation intervals to
evaluate the optimal adversarial strategies for double-spending and
selfish mining. We retain most of these capabilities while propos-
ing a simulation methodology that can improve the scalability and
performance significantly.

There are two different simulators called BlockSim [2, 9], both of
which are based on discrete-event simulation. The first one [2] was
developed to support various blockchains and their configurations.
It is organised into three abstraction layers: network, consensus, and
incentives, enabling detailed modelling and analysis of blockchain
dynamics while supporting various consensus algorithms. The sec-
ond one [9] offers a discrete-event simulation framework created to
assess various blockchain implementations and ships with Bitcoin
and Ethereum models. BlockSim [9] models different components
of blockchain systems, such as blocks, transactions, ledgers, and
networks, allowing users to expand these models for their design
and implementation assessments. Neither simulator supports paral-
lel/distributed execution of the simulations, which is a focal point
of our work.

The work in [2] was extended in CBlockSim [17] with the goal
of improving simulation performance. This is done by integrating
a network module with a realistic topology generation algorithm
and an efficient block propagation algorithm. It adopts a binary
transaction pool structure and bitwise operations to reduce memory
usage and accelerate simulation. Yet, also no parallelism is offered
by CBlockSim.

In [24], LUNES-Blockchain is introduced as an agent-based block-
chain simulator that utilises Parallel and Distributed Simulation
techniques to improve scalability. The simulator focuses on mod-
elling the Bitcoin protocol and examines the impact of security
attacks like the Sybil Attack on the consensus protocol. LUNES-
Blockchain replicates various blockchain functions, including peer-
to-peer overlay management, message dissemination, and the min-
ing process. LUNES-Blockchain is built on top of the ARTÌS runtime
environment [3], which supports speculative synchronisation based
on the Time Warp protocol, as we do. Nevertheless, in [24] this ca-
pability of the underlying runtime environment was not exploited,
and a time-stepped synchronisation algorithm was employed. We
explicitly exploit speculative synchronisation to improve the per-
formance, scalability and accuracy of the simulations. While some
performance data for LUNES-Blockchain are reported in [25], later
in this work RBlockSim’s times are shown to be more than an order
of magnitude smaller with the used setup, with respect to those
reported for LUNES-Blockchain.

The work in [16] introduces a discrete-event simulation model
that analyses the dynamics of the Bitcoin blockchain network, with
a focus on the strategic interactions between individual miners
and mining pool managers. The model includes realistic features
such as budget constraints, hashing power, mining costs, and vari-
ous mining pool reward policies to simulate the decision-making
processes of miners and pool managers. The study examines how
these decisions affect system metrics such as mining difficulty and
total hashing power through Monte Carlo simulations. Key find-
ings include the effectiveness of dynamic difficulty adjustment in

https://blockworks.co/news/ethereum-to-reach-500000-validators


SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Adriano Pimpini and Alessandro Pellegrini

maintaining stable block generation rates and the proportionality of
Bitcoin rewards to mining capacities and budget volumes. We retain
some of the simulation capabilities presented in this work, while
we do not necessarily focus on Bitcoin. Also, we explore parallel
and distributed simulation based on speculative synchronisation,
for performance and accuracy purposes.

Digital Twins are also explored in [7, 8] as a way to bench-
mark blockchain technology. In particular, these works address the
blockchain trilemma tradeoff—balancing decentralisation, scalabil-
ity, and security. The proposed Digital Twin framework integrates
Dynamic Data-Driven Application Systems (DDDAS) to dynam-
ically manage blockchain systems by continuously adapting to
real-time data through simulation and optimisation. The architec-
ture includes a scenario generator, a simulation module, and an
optimiser, enabling dynamic consensus protocol selection to op-
timise system performance. We do not explicitly consider digital
twins in this work, which can be considered orthogonal to the
benchmarking via simulation methods.

In [6], the authors introduce the BSELA architecture as a solution
to the limitations found in existing blockchain simulators. The core
innovation of BSELA lies in its Event-Layered Architecture and the
next-event time advance mechanism based on event rounds. This
improves the efficiency, stability, and maintainability of discrete-
event simulation. Events are categorised into intra-block and inter-
block categories, managed by a Min-Heap and a queue, respectively,
which optimises event processing and resource utilisation. BSELA
outperforms previous simulators, providing superior performance,
accuracy, and scalability for modelling blockchain networks while
improving data transfer efficiency and security. We also exploit
discrete-event simulation for accuracy purposes, but we expand
beyond the capabilities of BSELA, allowing parallel and distributed
blockchain simulation.

4 RBLOCKSIM ARCHITECTURE
In this section, the various modules of RBlockSim are presented
and explained.

4.1 Blockchain Management
We define a block’s height as one plus the number of blocks between
the block and the genesis block, and we define the block depth as
the difference between the height of the highest seen valid block
and the block’s height.

Each node maintains a local copy of the chain and its view of
the state of various aspects of the network (e.g., transactions) based
on the fork of the chain, which it considers the main chain. At
the implementation level, the chain is organised in levels based on
block height: each level holds all the sibling blocks with the same
height, using a non-shrinking array. Figure 1 shows a diagram of
the internal organisation of the chain.

When switching the main chain, the node has to recompute
the view it has of the network state by reverting the effects of the
blocks on the old chain and applying the effects of those on the
new chain. This chain organisation allows for 𝑂 (1) access to any
given chain level and fast back-walking to switch chains. Block
lookup given the height ℎ𝑒𝑖𝑔ℎ𝑡 is 𝑂 (1) for the access to the chain
level, plus 𝑂 (𝑁ℎ𝑒𝑖𝑔ℎ𝑡 ), where 𝑁ℎ𝑒𝑖𝑔ℎ𝑡 is the number of blocks at

Blockchain levels

Primary

Secondary Dm+1 Dm+2 ... 2 * Dm

0 1 ... Dm

Dmax

Size

Capacity

Blocks

Level

Level capacity

0 1 ...

Blocks in level

Figure 1: blockchain is managed in height levels, stored using
two arrays.

that height; this kind of lookup happens when inserting a new
block in the chain, which requires looking for its parent, and then
possibly connecting any of the block’s children that were delivered
earlier than the block itself. Block access is 𝑂 (1) when the block’s
index inside the level is known. It is to be noted that 𝑁ℎ𝑒𝑖𝑔ℎ𝑡 is
expected to be extremely small, as the number of forks that happen
at a given height is ideally very limited, making the lookup light.
Besides supporting the implemented longest chain fork resolution
rule, it also fits rules like GHOST [26] as it allows for fast retrieval
and/or selection for inclusion of uncle blocks.

Looking deeper into the implementation, two buffers are used to
store the chain data, each of fixed size 𝐷𝑚𝑎𝑥 . The buffers hold the
latest levels of the chain, with all the respective blocks, and alternate
between one of two roles “primary” and “secondary”: the primary
buffer holds the highest levels. When the primary buffer becomes
full, the secondary one is emptied (maintaining level capacity), and
the two buffers are swapped, avoiding continuous allocations and
thus capping the memory usage. With optimistic synchronisation,
the advantage of decreased memory usage is doubled as it decreases
the size of the memory snapshots the simulator has to keep to
rollback the execution when needed.

The quantity 𝐷𝑚𝑎𝑥 is configurable at compile time and can be
picked based on the protocol implementation to suit the specific
needs. Intuitively, 𝐷𝑚𝑎𝑥 should strike the balance between being
large enough to allow for smooth operation of the data structure,
and being small enough to limit the cost of checkpointing required
by optimistic synchronisation. This approach introduces two main
constraints that are, however, not limiting:

(1) Everything deeper than𝐷𝑚𝑎𝑥 is potentially lost and, as such,
to be considered committed, inaccessible and immutable.
This is only partially a limitation because, while blocks are
never technically committed in a blockchain, for practical
uses, it is necessary to decide on a depth𝐷𝑐𝑜𝑚𝑚𝑖𝑡 after which
to consider a block as committed. Picking a value for 𝐷𝑚𝑎𝑥

such that 𝐷𝑚𝑎𝑥 > 𝐷𝑐𝑜𝑚𝑚𝑖𝑡 is required. 𝐷𝑐𝑜𝑚𝑚𝑖𝑡 is often a
reasonably small number—the number of blocks produced
in a few hours—which will usually be much smaller than
𝐷𝑚𝑎𝑥 in any case.

(2) No forks can be longer than 𝐷𝑚𝑎𝑥 , as a node needs access
to the blocks leading to the fork to compute the view of the
state adequately. Since it is desirable for forks to be as short-
lived as possible for any protocol, this is, again, not a real



RBlockSim: Parallel and Distributed Simulation for Blockchain Benchmarking SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

limitation. The case of hard forks can be supported by ignor-
ing the blocks on the uninteresting fork and/or reshaping
the network topology.

4.2 Block Generation/Proposal
The implemented consensus protocol is PoW. The core principle
of PoW is to demonstrate computational effort. Miners try to solve
computationally expensive cryptographic problems by participat-
ing in a distributed competition. The first miner to solve a prob-
lem earns the right to propose the next block to be added to the
blockchain and receives the reward. Themodular implementation of
RBlockSim, anyhow, allows to implement and experiment with any
other consensus protocol, such as PoS, quite easily. Anyhow, PoW
is a computationally heavier protocol, which better highlights the
benefits of relying on simulation-based evaluation of blockchains.

With PoW, given a block containing a number of transactions,
the cryptographic problem consists of finding a nonce value that,
combined with the block’s payload data, results in a block hash
satisfying some specific criterion (e.g., having 𝑋 leading 0s). Other
cryptographic problems are theoretically possible, but the simplicity
and effectiveness of hashing make it the most popular method
for PoW by a considerable margin. In any case, the intrinsically
expensive nature of PoW makes using a real implementation to
benchmark a blockchain infeasible, requiring a way to simulate
PoW.

Given a desired block interval 𝜏𝑏 , each node 𝑛 has a probability
of mining the block that is proportional to:

𝐻𝑛

𝑁∑
𝑖=0

𝐻𝑖

, (1)

where 𝐻𝑖 is the hash-rate of node 𝑖 . The block generation process
is memoryless, a property captured by exponential probability dis-
tributions. As such, to simulate PoW, node 𝑛 does not solve a cryp-
tographic puzzle, but rather it draws a value from an exponential
distribution with mean:

𝜏𝑏

𝑁∑
𝑖
𝐻𝑖

𝐻𝑛
. (2)

The extracted value𝑀𝑑𝑒𝑙𝑎𝑦 will be the time to pass before 𝑛 gets
to mine its next block. Each time the main chain’s state changes
(e.g., a new block is added or another chain is identified as the
main chain), a new sample has to be extracted from the exponen-
tial distribution to determine the next generation delay. A min-
ing (GENERATE_BLOCK) event is consequently scheduled at time
𝑡𝑛𝑜𝑤 +𝑀𝑑𝑒𝑙𝑎𝑦 . Figure 2 shows the execution flow in response to
the various events. In response to the mining event, the transac-
tions to be included in the block are selected, and the block is
constructed. Then, that block is applied to the local chain and prop-
agated through gossiping.

Internally, block generation events are implemented using re-
tractable messages, which can be rescheduled to allow a change
in an event’s timestamp. This prevents scheduling events, only to
have to ignore them after a change in the chain, reducing memory
usage and, thus, execution time.

GENERATE_BLOCK
RECEIVE_BLOCK

REQUEST_BLOCK

Retrieve the block

Yes

No
Found?

Send copy of block to
requester

End

Select transactions
for block to mine

Construct the block

Apply generated
block locally

Gossip-propagate
block

End

Yes NoIs block
unseen?

No

YesIs block's
parent

known?

Apply block locally

Request parent block

Gossip-propagate
block

Schedule next block
generation

Schedule next block
generation

Yes

NoUpdate to
main fork?

End

No

Yes Is block's
parent

known?

Request parent
block

Figure 2: RBlockSim’s event handling flows

Due to the speculative discrete event simulation approach, the
nodes’ statuses are unaligned, making a dynamic global state im-
possible. As such, the current implementation assumes each node’s
hash rate (and thus, the network’s hash rate) to be constant for
simplicity; more complex methods can, however, be implemented
(e.g., broadcasting an update of a node’s hash rate as a control mes-
sage). This modelling of Proof of Work is executed in the function
scheduleNextBlockGeneration, which the user can update to simulate
different block generation approaches.

Blocks are propagated with RECEIVE_BLOCK events when mined
or received to be forwarded. In response to them, since because of
gossiping a block could be received more than once, RBlockSim
first checks whether that is the case: if the received block 𝐵𝑟 was



SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Adriano Pimpini and Alessandro Pellegrini

already seen, it only checks if the parent 𝐵𝑝 of 𝐵𝑟 is still missing—
in which case 𝐵𝑝 is requested from the node that sent 𝐵𝑟 using a
REQUEST_BLOCK event.

If 𝐵𝑟 was instead previously unknown, it is applied to the local
chain. If its parent 𝐵𝑝 is unknown, it is requested from the node
that propagated 𝐵𝑟 . 𝐵𝑟 is then gossiped to the node’s peers. Note
that blocks with unseen parents cannot become part of the main
chain, in which case 𝐵𝑟 is only stored locally without effects on
the selection of the main fork. If the application of 𝐵𝑟 updates the
main fork, the block generation event for the receiving node is
rescheduled.

When a node receives a REQUEST_BLOCK event, it seeks the re-
quested block in the local chain. If found, the block is sent to the
requester node in a RECEIVE_BLOCK event.

4.3 Transaction management
The used transaction management approach is taken from CBlock-
Sim [17]: transactions are generated in bulk at the start of the
simulation, and the view each node has on their availability is mod-
elled with a bitmap that the node maintains. The bit 𝐵𝑡 represents
the state of the transaction with id 𝑡 : it is set when the transaction
has already been used; otherwise, it is zero. Nodes also keep track
of the first transaction available to be executed and the most recent
transaction seen. Similarly, blocks carry information on the id of
the first transaction they include, and a bitmap representing the
included transactions, all used to know which transactions to mark
as executed in the node state when applying a block. When mining
a block, the node selects the transactions to be included from the
ones available and includes them in the block by setting the correct
bit in the block’s bitmap.

Nevertheless, the transaction management system is mostly a
proof of concept, with static transaction generation that follows
non-significant patterns, and whose main purpose is to implement
functionality to have a performance comparison (see Section 5.3)
using features that are as aligned as possible.

RBlockSim’s modularity allows for arbitrarily more complex
implementations, such as runtime transaction generation and dis-
semination similar to what happens with blocks, using the network
module.

4.4 Topology
The blockchain network’s peer-to-peer topology is randomly gen-
erated using a Python script that generates a symmetric topology
given a minimum and maximum number of connections per node,
then writes it to a C header and source file couple, as an adjacency
list. These files are then compiled and linked with the rest of the
project.

RBlockSim also supports regional distribution of nodes: in the
configuration file, the user can specify:

(1) the number of regions,
(2) the percentage of simulated nodes each region holds (per-

centages have to add up to 1), and
(3) the average propagation latencies between different regions.

As with all other aspects of RBlockSim, this can be further expanded
by providing, e.g., bandwidths to model varying transmission delay

in the network module depending on block sizes and bandwidths,
with limited coding effort.

4.5 Network
The network module is responsible for inter-node communication,
providing primitives for block dissemination. The implemented
dissemination approach is gossiping—in the same fashion as in Bit-
coin Core’s implementation—with a configurable fanout 𝜙 . Nodes
have a list of peers to which they are connected (according to the
generated topology—see Section 4.4). When a node mines a block,
it sends it to all its neighbours. The rationale is that a block’s miner
wants as many nodes as possible to know about the newly mined
block as fast as possible (unless it is attempting a block-withholding
attack). When a node receives a block for the first time, it randomly
selects 𝜙 of its peers to relay the block to. These actions are actually
carried out rather than simulated, decoupling the Network module
from the Topology module, allowing for flexible network topology
to be implemented if needed. This approach also allows for a more
accurate simulation of the block dissemination process.

The propagation delay for each block is computed by drawing
from an exponential distribution with an average of the configured
region-to-region delays.

Using gossiping also means that a node could receive a block
more than once, in which case it is ignored. Another limitation to
note is that a node might never receive a block through gossiping
alone. For this reason, nodes can ask other nodes to provide missing
blocks. Specifically, in the current implementation, a node that
receives a block the parent of which it has not received yet, will ask
for the parent block from the peer that relayed the “orphan” block
to it.

4.6 Fork resolution
Each node keeps a local copy of the blockchain. The algorithm
for chain selection uses the longest chain rule: the chain with the
highest number of valid blocks is selected as the main chain. In the
context of this paper, the term “main chain” is used interchangeably
with “main fork”, identifying the sequence of blocks selected by the
node as the reference ledger for the chain status.

In RBlockSim, each block holds a “score”, which quantifies—based
on the chain selection rule—how fit that block is to become the
last block of the main chain. Comparing block scores helps decide
whether to switch the status of the main fork from one fork to the
other. When using the longest chain rule, the score matches the
block height. For other algorithms like GHOST, the amount of work
done by the ancestors can be considered, taking into account the
inclusion of uncle blocks. Chain selection is rendered lightweight as
each block’s score can be computed starting from its predecessor’s
score (and will be strictly non-decreasing).

Furthermore, switching chains is only contemplated when one
of the chains is updated by comparing the scores between the main
chain and the newly updated one.

When switching chains, the switchChains function takes care of
reverting the effects of the previous main chain and applying the
effects of the new main chain.



RBlockSim: Parallel and Distributed Simulation for Blockchain Benchmarking SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

4.7 Byzantine Behaviour
The simulator can model malicious node behaviour to evaluate the
impact on the blockchain network. The current implementation
features simulation models of the 51% and the Selfish mining attacks
on a bitcoin-like network using Proof of Work with Longest-Chain
consensus.

A 51% attack occurs when a node (or group of coordinated nodes)
controls a majority (at least 50% + 1) of the network’s hash power,
which enables malicious actions such as changing the ordering of
transactions, and potentially rewriting portions of the blockchain.

Selfish mining is an attack in which a miner node actively con-
ceals the blocks it has mined from other nodes in the network by
delaying their dissemination. This can allow the attacker to gain
an unfair advantage, as it gets a head-start on the next node to
be mined. Concealing longer sequences of blocks can allow the
attacker to effectively make the computational effort of other nodes
go to waste, earn the block rewards for the newly revealed blocks,
but also to perform attacks such as double-spending [23].

In the presented implementation, the attacker uses two parame-
ters to guide its behaviour: a risk tolerance, and the attack depth.

Having the longest-chain consensus, the risk tolerance used by
both attacks indicates how many blocks the attacker is willing to
fall behind with respect to a competing fork, in favour of a shorter
fork on which, however, it owns more blocks. While even honest
miners will favour forks in which they own more blocks in case of
equal chain height, the risk tolerance allows attackers to stick to a
“losing” chain, in the hopes of outperforming the competing miners
and cashing out otherwise-lost blocks, in a high-risk, high-reward
approach.

The attack depth is used in selfish mining attacks and specifies
the number of blocks to mine secretly before releasing them to the
network to attempt a chain takeover. If the newly released fork
is (permanently) adopted as the main chain by honest nodes, the
attack is considered successful for our purposes.

5 EXPERIMENTAL EVALUATION
The experiments were run on a machine with two Intel Xeon CPUs
E5-2696 v4 @ 2.20GHz, with 22 physical cores each, for a total of
44 physical cores, or 88 hyperthreads. The machine has 256 GB of
RAM.

5.1 Statistical Validation
To validate the simulated behaviour, we check that each node mines
a number of blocks that is proportional to the percentage of network
hash rate it owns, irrespective of whether the blocks are part of the
main chain.

To do so, we extracted the number of blocks mined by nodes that
owned a known percentage of the network’s hash power, compute
the percentage of blocks mined with respect to the total number of
mined blocks, after which the block mining rate is averaged over
the runs and plotted against the node’s hash rate.

Figure 3 reports the results of our experimentation: the grey,
dashed line is the expected behaviour (number of mined blocks
directly proportional to percentage of network hash power owned),
and the blue line is the observed behaviour.

0.0 0.2 0.4 0.6 0.8 1.0
Hash rate

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se
rv
ed

 b
lo
ck
 m

in
in
g 
ra
te Expected

Observed mining rate

Figure 3: node’s hash rate and observed block mining rate.

We can see how the observed behaviour closely follows the
expected one, confirming that the simulation model adheres to the
statistical one.

5.2 Byzantine Behaviour Simulation
To exemplify the capabilities of the presented framework, simula-
tion runs have been carried out exploring the network’s behaviour
in case of attacks, as explained in Section 4.7. Every run lasts 24
hours of simulation time and models Bitcoin’s behaviour, using
PoW with a block interval of 10 minutes.

When simulating the 51% attack, we varied the attacker hash
rate from 1% to 99% of the network rate, while using different risk
tolerance values. The simulations used networks of varying size.
Figures 4a, 4b, and 4c show the results, comparing the possessed
hash rate and the percentage of main chain’s blocks that were
mined by the attacker. We can see how possessing a higher hash
rate without actively trying to sabotage the network does not seem
to result in disproportionate block acceptance rates, even in the case
of a stubborn node that favours non-main chain forks on which it
mined more blocks.

To simulate selfish mining, following the approach used for the
51% attack, we varied the attacker’s hash rate, the risk tolerance,
as well as the attack depth. This allows us to observe the effect of
these parameters on the attack’s success rate. Figures 4d, 4e and
4f compare the hash rate possessed by the node with the percent-
age of mined blocks included in the main chain, while Figure 5
shows the probability of a selfish mining attack succeeding, based
on the hash rate that the attacker controls. It is interesting to note
how, even with modest portions of a network’s hash rate, an at-
tacker can still manage to carry out a successful attack, albeit with
low probability. At the same time, we see that attempting such an
attack without controlling at least 50% of the global hash power
is counter-productive in terms of committing blocks to the main
chain. Nevertheless, the data shows that an attacker is capable of
forcing a switch of honest nodes to the concealed chain after releas-
ing it, which opens the way to, e.g., the reordering of blocks and
transactions, while wasting the computational effort of competing
nodes.

5.3 Performance evaluation
To evaluate RBlockSim’s performance, a series of runs was per-
formed varying both the network size and the number of worker



SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Adriano Pimpini and Alessandro Pellegrini

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

%
 o
f a

tta
ck
er
 b
lo
ck
s i
n 
m
ai
n 
ch

ai
n

Tolerance 1
Tolerance 2
Expected

(a) 51% - 100 Nodes

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

%
 o
f a

tta
ck
er
 b
lo
ck
s i
n 
m
ai
n 
ch

ai
n

Tolerance 1
Tolerance 2
Expected

(b) 51% - 1,000 Nodes

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

%
 o
f a

tta
ck
er
 b
lo
ck
s i
n 
m
ai
n 
ch

ai
n

Tolerance 1
Tolerance 2
Expected

(c) 51% - 10,000 Nodes

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

%
 o
f a

tta
ck
er
 b
lo
ck
s i
n 
m
ai
n 
ch

ai
n

Expected
Tol. 1 Depth 1
Tol. 1 Depth 2
Tol. 1 Depth 3
Tol. 2 Depth 1
Tol. 2 Depth 2
Tol. 2 Depth 3

(d) Selfish mining - 100 Nodes

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

%
 o
f a

tta
ck
er
 b
lo
ck
s i
n 
m
ai
n 
ch

ai
n

Expected
Tol. 1 Depth 1
Tol. 1 Depth 2
Tol. 1 Depth 3
Tol. 2 Depth 1
Tol. 2 Depth 2
Tol. 2 Depth 3

(e) Selfish mining - 1,000 Nodes

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

%
 o
f a

tta
ck
er
 b
lo
ck
s i
n 
m
ai
n 
ch

ai
n

Expected
Tol. 1 Depth 1
Tol. 1 Depth 2
Tol. 1 Depth 3
Tol. 2 Depth 1
Tol. 2 Depth 2
Tol. 2 Depth 3

(f) Selfish mining - 10,000 Nodes

Figure 4: Comparing Attacker Hash Rate and Block Success Rate

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

Se
lfi
sh
 m

in
in
g 
su
cc
es
s r

at
e Tol. 1 Depth 2

Tol. 1 Depth 3
Tol. 2 Depth 2
Tol. 2 Depth 3

(a) 100 Nodes

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

Se
lfi
sh
 m

in
in
g 
su
cc
es
s r

at
e Tol. 1 Depth 2

Tol. 1 Depth 3
Tol. 2 Depth 2
Tol. 2 Depth 3

(b) 1,000 Nodes

0.0 0.2 0.4 0.6 0.8 1.0
Attacker hashpower

0.0

0.2

0.4

0.6

0.8

1.0

Se
lfi
sh
 m

in
in
g 
su
cc
es
s r

at
e Tol. 1 Depth 2

Tol. 1 Depth 3
Tol. 2 Depth 2
Tol. 2 Depth 3

(c) 10,000 Nodes

Figure 5: Success rate of selfish mining attacks when varying node hash rate

threads for the simulation. The tested networks have been simu-
lated for 24 hours, with their sizes varying from 100 to 100,000
nodes. The results are reported in Figure 6.

Each data point represents the average of five runs, except for
100,000 nodes with a block interval of 13 seconds for thread counts
1, 4, and 8, which are single or double runs due to time constraints.

Figure 7 shows peak RAM usage across all runs, again vary-
ing worker threads, network sizes, and block generation interval.
CBlockSim reports a RAM usage of 4.5GB for a network of 10,000
nodes. For a network of 100,000 nodes, we observed a peak RAM
usage of 99.8 GB.

The graphs show how RBlockSim benefits from the multiple
threads made available to it while staying competitive at lower
thread counts. Performance peaks at 16 to 22 worker threads, after
which it degrades. This degradation is more noticeable on smaller
networks, with fewer nodes per worker thread. A lower number of
logical processes leads to an increase in clock skew, which leads to
an increased number of rollbacks and slows down the simulation.
Using a real implementation of gossiping as the communication
protocol between nodes further exacerbates these issues. Indeed,
since blocks are disseminated by gossip-forwarding them at each
node they reach, every block mined by node𝑚 results in a total of:



RBlockSim: Parallel and Distributed Simulation for Blockchain Benchmarking SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

Block Interval (seconds): 13 600

1 4 8 16
Number of Worker Threads

100

101

Ru
n 
Ti
m
e 
(s
ec
on
ds
) -
 lo
g 
sc
al
e CBlockSim

(a) 100 Nodes

1 4 8 16 22 44 66 88
Number of Worker Threads

101

102

103

Ru
n 

Ti
m

e 
(s

ec
on

ds
) -

 lo
g 

sc
al

e

CBlockSim

(b) 1,000 Nodes

1 4 8 16 22 44 66 88
Number of Worker Threads

102

103

Ru
n 

Ti
m

e 
(s

ec
on

ds
) -

 lo
g 

sc
al

e

CBlockSim

(c) 10,000 Nodes

1 4 8 16 22 44 66 88
Number of Worker Threads

103

104

105

Ru
n 
Ti
m
e 
(s
ec
on

ds
) -
 lo
g 
sc
al
e CBlockSim

(d) 100,000 Nodes

Figure 6: RBlockSim execution Wall Clock Times when varying worker threads, network sizes, and average block interval.
Each figure reports a different network size. The red dashed line indicates the time taken by CBlockSim [17] to simulate a
network of the same size. Figure 6a only goes up to 16 threads as performance degrades greatly when the number of worker
threads approaches that of logical processes, especially in cases of highly connected simulations.

𝑝𝑚 +
𝑁∑︁

𝑖=0,𝑖≠𝑚
𝑚𝑖𝑛(𝜙, 𝑝𝑖 ) (3)

simulation events generated, where 𝑝𝑖 is the number of peers of
node 𝑖 , and 𝜙 is the gossiping fanout. This number of events holds
regardless of the fact that nodes that have already seen the block
essentially ignore further instances of its propagation. In addition
to increasing the number of events to manage and propagate, this
also leads to an increased rollback cost. Indeed, rolling back a sin-
gle block mining event can result in a non-negligible number of
cascading rollbacks, depending on how fast (in Wall-Clock Time)
the event propagated to the other nodes.

Instead, the peak RAMusage graphs support the idea that RBlock-
Sim can simulate large networks using non-prohibitive amounts of
memory, which is readily available on modern personal computers.
More memory is needed for very large-scale networks (100,000
nodes and up), but it is important to note that the simulator can
also execute in a distributed environment using MPI. This renders
the simulation of very large networks viable not only on server-size
machines but also using consumer hardware: two widely available
machines with 32GB of RAM each can easily support the simulation
of a network with 100,000 nodes, a feat impossible to achieve at
this level of detail and speed without distributed simulation. Ad-
ditionally, heavier simulation models which bottleneck on RAM

bandwidth could benefit from being simulated on various machines,
reaping the twofold advantage of having reduced contention on
the memory bus and increased bandwidth at the same time.

1 4 8 16 22 44 66 88
Number of Worker Threads

0

10

20

30

40

Pe
ak

 R
AM

 u
sa
ge

 (G
B)

Nodes - Block Interval (sec.)
Nodes 100 - BI 600
Nodes 100 - BI 13
Nodes 1k - BI 600
Nodes 1k - BI 13

Nodes 10k - BI 600
Nodes 10k - BI 13
Nodes 100k - BI 600
Nodes 100k - BI 13

Figure 7: Peak ram usages across various configurations

In Figure 8, we show the aggregated RAM usage during the
execution of attack simulations, for different network sizes. As can
be seen, memory consumption is generally bounded, although in
the case of very large networks, e.g. with 100,000 nodes, a steady
memory consumption is reached only close to the simulation end.
These results highlight that RBlockSim can deliver performance
improvements while efficiently using the available resources.



SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Adriano Pimpini and Alessandro Pellegrini

0.0 0.2 0.4 0.6 0.8 1.0
Simulation Progress %

0

5

10

15

20

25

30

35

RA
M
 u
sa
ge

 (G
B)

1k nodes
10k nodes
100k nodes

Figure 8: Aggregated RAM usages for different network sizes

6 CONCLUSIONS
We have presented and benchmarked RBlockSim, a parallel, dis-
tributed, and high-performance simulation test bed for evaluating
blockchain systems and their resilience to attacks.

We introduced the various modules composing it, explained
their functionality, and provided an implementation that simulates
various aspects of the Bitcoin protocol.

We have shown that RBlockSim allows rapid simulations of
large-scale networks, providing an efficient solution for evaluating
different decisions regarding the protocol’s architecture in a much
shorter time frame than available alternatives. The possibility of
distributing the workload allows larger networks to be simulated
on widely available consumer machines, further reducing the entry
barriers of provisioning and maintenance costs.

REFERENCES
[1] Adel Albshri, Ali Alzubaidi, Bakri Awaji, and Ellis Solaiman. 2022. Blockchain

simulators: A systematic mapping study. In 2022 IEEE International Conference
on Services Computing (SCC). IEEE, Piscataway, NJ, USA, 284–294. https://doi.
org/10.1109/scc55611.2022.00049

[2] Maher Alharby and Aad van Moorsel. 2020. BlockSim: An Extensible Simulation
Tool for Blockchain Systems. Frontiers in Blockchain 3 (June 2020), 459097.
https://doi.org/10.3389/fbloc.2020.00028

[3] L Bononi, M Bracuto, G D’Angelo, and L Donatiello. 2006. Scalable and efficient
parallel and distributed simulation of complex, dynamic and mobile systems.
In Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for
Performance Evaluation of Complex Systems (FIRB-PERF’05). IEEE, Piscataway, NJ,
USA, 136–145. https://doi.org/10.1109/firb-perf.2005.17

[4] Vanessa Büsing-Meneses, Cristina Montañola-Sales, Josep Casanovas-Garcia,
and Alessandro Pellegrini. 2015. Analysis and optimization of a demographic
simulator for parallel environments. In Proceedings of the 2015 Winter Simulation
Conference (WSC). IEEE, Piascataway, NJ, USA, 3218–3219. https://doi.org/10.
1109/wsc.2015.7408478

[5] K M Chandy and J Misra. 1981. Asynchronous distributed simulation via a
sequence of parallel computations. Commun. ACM 24, 4 (April 1981), 198–206.
https://doi.org/10.1145/358598.358613

[6] Bo Cui and Yun Hu. 2024. BSELA: A blockchain simulator with event-layered
architecture. Future generations computer systems: FGCS 151 (Feb. 2024), 182–195.
https://doi.org/10.1016/j.future.2023.09.034

[7] Georgios Diamantopoulos, Rami Bahsoon, Nikos Tziritas, and Georgios Theodor-
opoulos. 2023. SymBChainSim: A novel simulation tool for dynamic and adaptive
blockchain management and its trilemma tradeoff. In Proceedings of the 2023
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-
PADS’23). ACM, New York, NY, USA, 118–127. https://doi.org/10.1145/3573900.

3591121
[8] Georgios Diamantopoulos, Nikos Tziritas, Rami Bahsoon, and Georgios Theodor-

opoulos. 2022. Digital twins for dynamic management of blockchain systems. In
2022 Winter Simulation Conference (WSC). IEEE, Piscataway, NJ, USA, 2876–2887.
https://doi.org/10.1109/wsc57314.2022.10015447

[9] Carlos Faria and Miguel Correia. 2019. BlockSim: Blockchain Simulator. In 2019
IEEE International Conference on Blockchain (Blockchain). IEEE, Piscataway, NJ,
USA, 439–446.

[10] Richard M Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM
33, 10 (Oct. 1990), 30–53. https://doi.org/10.1145/84537.84545

[11] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. 2016. On the Security and Performance of Proof
of Work Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16). Association for Computing
Machinery, New York, NY, USA, 3–16.

[12] Anjee Gorkhali, Ling Li, and Asim Shrestha. 2020. Blockchain: a literature review.
Journal of management analytics 7, 3 (July 2020), 321–343. https://doi.org/10.
1080/23270012.2020.1801529

[13] Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini, and
Francesco Quaglia. 2018. The Ultimate Share-Everything PDES System. In
Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation (SIGSIM-PADS ’18). ACM, New York, NY, USA, 73–84. https:
//doi.org/10.1145/3200921.3200931

[14] David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming
Languages and Systems 7, 3 (July 1985), 404–425. https://doi.org/10.1145/3916.
3988

[15] David R Jefferson and Peter D Barnes, Jr. 2022. Virtual time III, Part 1: Unified
Virtual Time synchronization for parallel discrete event simulation. ACM trans-
actions on modeling and computer simulation: a publication of the Association for
Computing Machinery 32, 4 (Oct. 2022), 1–29. https://doi.org/10.1145/3505248

[16] Kejun Li, Yunan Liu, Hong Wan, and Yining Huang. 2021. A discrete-event
simulation model for the Bitcoin blockchain network with strategic miners and
mining pool managers. Computers & operations research 134, 105365 (Oct. 2021),
105365. https://doi.org/10.1016/j.cor.2021.105365

[17] Xuyang Ma, Han Wu, Du Xu, and Katinka Wolter. 2022. CBlockSim: A Modular
High-Performance Blockchain Simulator. In 2022 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). IEEE, Piscataway, NJ, USA, 1–5. https:
//doi.org/10.1109/icbc54727.2022.9805504

[18] Federica Montesano, Romolo Marotta, and Francesco Quaglia. 2024. Spa-
tial/temporal locality-based load-sharing in speculative discrete event simulation
on multi-core machines. ACM transactions on modeling and computer simulation:
a publication of the Association for Computing Machinery 35, 1 (Jan. 2024), 30.
https://doi.org/10.1145/3639703

[19] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf.

[20] Remigijus Paulavičius, Saulius Grigaitis, and Ernestas Filatovas. 2021. A Sys-
tematic Review and Empirical Analysis of Blockchain Simulators. IEEE Access 9
(2021), 38010–38028.

[21] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2012. The ROme
OpTimistic Simulator: Core Internals and Programming Model. In Proceedings of
the 4th International ICST Conference on Simulation Tools and Techniques (SIMU-
TOOLS). ICST, Brussels, Belgium, 96–98. https://doi.org/10.4108/icst.simutools.
2011.245551

[22] Adriano Pimpini, Andrea Piccione, and Alessandro Pellegrini. 2022. On the
accuracy and performance of spiking neural network simulations. In Proceedings
of the 2022 IEEE/ACM 26th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT ’22). IEEE, Piscataway, NJ, USA, 96–103. https:
//doi.org/10.1109/ds-rt55542.2022.9932062

[23] Carlos Pinzón and Camilo Rocha. 2016. Double-spend attack models with time
advantange for bitcoin. Electronic notes in theoretical computer science 329 (Dec.
2016), 79–103. https://doi.org/10.1016/j.entcs.2016.12.006

[24] Edoardo Rosa, Gabriele D’Angelo, and Stefano Ferretti. 2019. Agent-Based Simu-
lation of Blockchains. In Communications in Computer and Information Science.
Springer Singapore, Singapore, 115–126. https://doi.org/10.1007/978-981-15-
1078-6_10

[25] Luca Serena, Gabriele D’Angelo, and Stefano Ferretti. 2022. Security analysis
of distributed ledgers and blockchains through agent-based simulation. Simul.
Model. Pract. Theory 114, 102413 (Jan. 2022), 102413.

[26] Yonatan Sompolinsky and Aviv Zohar. 2013. Accelerating bitcoin’s transaction
processing. Fast money grows on trees, not chains. IACR Cryptology ePrint
Archive 2013 (2013), 881.

[27] Gavis Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. https://ethereum.github.io/yellowpaper/paper.pdf.

[28] Karl Wust and Arthur Gervais. 2018. Do you Need a Blockchain?. In 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT). IEEE, Piscataway, NJ, USA,
45–54. https://doi.org/10.1109/cvcbt.2018.00011

https://doi.org/10.1109/scc55611.2022.00049
https://doi.org/10.1109/scc55611.2022.00049
https://doi.org/10.3389/fbloc.2020.00028
https://doi.org/10.1109/firb-perf.2005.17
https://doi.org/10.1109/wsc.2015.7408478
https://doi.org/10.1109/wsc.2015.7408478
https://doi.org/10.1145/358598.358613
https://doi.org/10.1016/j.future.2023.09.034
https://doi.org/10.1145/3573900.3591121
https://doi.org/10.1145/3573900.3591121
https://doi.org/10.1109/wsc57314.2022.10015447
https://doi.org/10.1145/84537.84545
https://doi.org/10.1080/23270012.2020.1801529
https://doi.org/10.1080/23270012.2020.1801529
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/3505248
https://doi.org/10.1016/j.cor.2021.105365
https://doi.org/10.1109/icbc54727.2022.9805504
https://doi.org/10.1109/icbc54727.2022.9805504
https://doi.org/10.1145/3639703
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.1109/ds-rt55542.2022.9932062
https://doi.org/10.1109/ds-rt55542.2022.9932062
https://doi.org/10.1016/j.entcs.2016.12.006
https://doi.org/10.1007/978-981-15-1078-6_10
https://doi.org/10.1007/978-981-15-1078-6_10
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1109/cvcbt.2018.00011

	Abstract
	1 Introduction
	2 Background and Scope
	3 Related Work
	4 RBlockSim Architecture
	4.1 Blockchain Management
	4.2 Block Generation/Proposal
	4.3 Transaction management
	4.4 Topology
	4.5 Network
	4.6 Fork resolution
	4.7 Byzantine Behaviour

	5 Experimental Evaluation
	5.1 Statistical Validation
	5.2 Byzantine Behaviour Simulation
	5.3 Performance evaluation

	6 Conclusions
	References

