
Speculative Distributed Simulation of
Very Large Spiking Neural Networks

Adriano Pimpini
∗

pimpini@diag.uniroma1.it

Sapienza, University of Rome

Rome, Italy

Andrea Piccione
∗

piccione@diag.uniroma1.it

Sapienza, University of Rome

Rome, Italy

Bruno Ciciani

ciciani@diag.uniroma1.it

Sapienza, University of Rome

Rome, Italy

Alessandro Pellegrini

a.pellegrini@ing.uniroma2.it

University of Rome “Tor Vergata”

Rome, Italy

ABSTRACT

Spiking Neural Networks are a class of Artificial Neural Networks

that closely mimic biological neural networks. They are particularly

interesting because of their potential to advance research in several

fields, both because of better insights on neural behaviour (ben-

efiting medicine, neuroscience, psychology) and the potential in

Artificial Intelligence. Their ability to run on a low energy budget

once implemented in hardware makes them even more appealing.

However, because of their behaviour that evolves with time, when

a hardware implementation is not available, their output cannot

simply be computed with a one-shot function (however complex),

but instead they need to be simulated.

Simulating Spiking Neural Networks is exceptionally costly,

mainly due to their sheer size. Many current simulation meth-

ods have trouble scaling up on more powerful systems because

of conservative synchronisation methods. Scalability is often of-

fered through approximation of the actual results. In this paper, we

present a modelling methodology and runtime-environment sup-

port adhering to the Time Warp synchronisation protocol, which

enables speculative distributed simulation of Spiking Neural Net-

work models with improved accuracy of the results. We discuss

the methodological and technical aspects that will allow effective

speculative simulation and present an experimental assessment

on large virtualised environments, which shows the viability of

simulating networks made of millions of neurons.

CCS CONCEPTS

• Computing methodologies → Discrete-event simulation;

Distributed simulation; •Hardware→Neural systems; • Soft-

ware and its engineering → Synchronization.

KEYWORDS

Spiking Neural Networks, Parallel Discrete Event Simulation, Spec-

ulative Simulation, Time Warp.

∗
Both authors contributed equally to the paper.

SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in SIGSIM Conference on
Principles of Advanced Discrete Simulation (SIGSIM-PADS ’22), June 8–10, 2022, Atlanta,
GA, USA, https://doi.org/10.1145/3518997.3531027.

ACM Reference Format:

Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini.

2022. Speculative Distributed Simulation of Very Large Spiking Neural Net-

works. In SIGSIM Conference on Principles of Advanced Discrete Simulation
(SIGSIM-PADS ’22), June 8–10, 2022, Atlanta, GA, USA. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3518997.3531027

1 INTRODUCTION

The interest in Spiking Neural Networks (SNNs) has increased in

the last decade [19]. Their momentum is strongly related to their

expressive capabilities, as they allow them to mimic biological neu-

ral networks closely. This characteristic makes SNNs a perfect tool

for research activities in disparate fields, such as medicine, neuro-

science, or psychology, and provides a non-negligible potential in

Artificial Intelligence. At the same time, their significantly-reduced

energy requirements open the way for specialised hardware appli-

cations in the form of neuromorphic chips [21, 38, 40]. These chips
are regarded as one of the essential future steps in computing, as

they introduce a level of parallelism, with reduced energy demand,

that does not exist in today’s hardware, including GPUs, FPGAs,

and most AI accelerators.

Neuromorphic systems, in general, have an increased value due

to their capability to perform processing asynchronously. Indeed,

they rely on event-driven processing models to tackle complex

computing problems, in a way similar to the human brain, which

uses only a subset of its neurons and synapses to carry out tasks at

maximum efficiency.

SNNs encode data in a temporal domain known as the spike
train [6]. Due to this behaviour that evolves with time, their output

cannot be simply computed with a one-shot function, however

complex, but instead they need to be simulated. The event-driven

processing model of SNNs makes them a perfect match with Dis-

crete Event Simulation (DES) techniques. Nevertheless, simulating

SNNs is exceptionally computationally intensive due to their sheer

size and scale. This is reflected in non-negligible running times,

making it difficult to obtain relevant simulation results reasonably

in time. As an example [33], simulating 250ms of activity for a

network of 11,250 neurons/127 million synapses on the well-known

NEST simulator [18] can take more than 30 seconds on a single

CPU core. At the same time, the research community is striving to

simulate networks of size comparable to the mammalian brain’s,

containing on the order of 10
7
to 10

11
neurons, with thousands of

https://doi.org/10.1145/3518997.3531027
https://doi.org/10.1145/3518997.3531027


SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini

synapses per neuron on average [2, 24, 25, 28], which are considered

very large networks.

The computational demand of large-scale SNN simulation is ad-

dressed by the vast majority of existing simulators by employing

parallel/distributed execution. This is done by exploiting multicore

CPUs (also in distributed environments) or by relying on accelera-

tors such as GPUs [4, 7, 13, 15, 26, 32, 33, 52] or FPGAs [12, 47, 51].

Nevertheless, we observe that the trouble at scaling up faced by

most state-of-the-art SNN simulation methods may be due to their

use of conservative synchronisation. Indeed, in parallel/distributed

simulation terminology, the typical execution scheme adopted by

SNN simulators is to rely on Parallel Discrete Event Simulation

(PDES) with a synchronous conservative synchronisation scheme

using the YAWNS algorithm [34].

However, SNN models have, in general, a low rate of neuron

activity at any given time, which is strictly connected to their brain-

inspired nature, which uses only a subset of the neurons for a given

task. This space/time partitioning of the activities makes it perfectly

suitable for exploiting speculative simulation adhering to the Time

Warp synchronisation protocol [27]. This choice could produce non-

negligible simulation speedups, especially on large-scale computing

infrastructures, as it has been shown that speculative PDES can be

deployed on millions of (distributed) CPU cores [3].

At the same time, spikes carry a piece of information which is

either binary (i.e., a neuron has spiked) or with a tiny payload (e.g.,

the intensity of the spike) depending on the nature of the model and

its implementation—in general, the behaviour of spikes is somewhat

homogeneous in a simulation. Similarly, the state of each neuron

is reduced in size, and the time complexity of the execution of a

single event can be significantly fine-grained. These aspects could

make the employment of Time Warp-based PDES suboptimal, as

the housekeeping cost might not be paid off by forward-processing

activities [17].

In this paper, we present modelling methodologies and PDES

runtime-environment support for SNN models based on the ROOT-

Sim Simulation Framework [37], which employs the Time Warp

synchronisation protocol to enhance the scalability of simulations.

Our approach has a twofold goal. On the one hand, we tackle the

complexity of deploying an SNNmodel on top of a speculative PDES

runtime environment. Themodeller should not need to worry about

where the synapses are kept or how they are organised, nor should

they care about the fact that spikes are, in fact, events that need to

be sent (logically) one by one or, even worse, they should not need

to schedule an event to check whether a spike should happen or not.

Ideally, the modeller should be tasked with as few programming

related actions as possible, made as simple as possible.

On the other hand, we focus on simulation accuracy. Indeed,

many approaches relying on (time-stepped) synchronisation algo-

rithms consider a fixed lookahead (typically set on the order of

tenths of milliseconds). In this way, the simulation results approxi-
mate the actual results. This is a well-known limitation [23] related

to classes of neuron models with linear subthreshold dynamics,

wherein some circumstances even some spikes can be missed. Our

modelling methodology leverages the nature of discrete events

compared with an innovative numerical method and ad-hoc events

management strategies, allowing us to obtain precise simulation re-

sults. Also, we apply this approach to exponential synapses, which

are much more complex than jump synapses typically dealt with in

the literature.

We released our implementation as open-source software
1
. The

remainder of this paper is organised as follows. Section 2 discusses

our research background, while Section 3 presents related work.

Our simulation methodology and related runtime support are dis-

cussed in Section 4. The results of our experimental assessment are

provided in Section 5.

2 BACKGROUND AND MOTIVATIONS

In this section, we discuss the background and motivations of our

proposal. We first provide a recap of Time Warp synchronisation in

Section 2.1, while in Section 2.2 we highlight the essential charac-

teristics of SNNs, emphasising the hindrances when transitioning

these models to Time Warp-based PDES runtime environments.

2.1 Time Warp Synchronisation

In PDES, the simulation model is partitioned into multiple Logical

Processes (LPs), each associated with its own view of simulation

time, known as Local Virtual Time (LVT). The LVT tracks the com-

putation advancement locally along the logical-time axis. The exe-

cution of an event can mark an LP state update and makes the LVT

jump to the timestamp of the processed event. It is the responsibil-

ity of the underlying runtime environment to track changes of the

LVT of some LP when dispatching the event to be processed [16].

While processing an event, new timestamped events destined to

any concurrent LP can be generated and injected into the system.

At the same time, state transitions caused by event processing at

the different LPs can occur concurrently.

Classical PDES relies on correctness rules that enforce non-

decreasing timestamp-ordered state transitions at the different

simulation objects [16]. Under this enforcement, each LP in the

system has a coherent view of the flow of logical time.

In the speculative (optimistic) approach to synchronisation, also

known as TimeWarp [27], events are typically stored by the runtime

environment into per-LP event lists, each of which is logically

partitioned into a future-event list and a past-event list. The future-
event list stores events not yet processed, while the past-event list

records already-processed events. Each LP is eligible for dispatching

along some thread running within the PDES platform unless its

future-event list is empty. Once dispatched, the LP can process the

minimum-timestamp event kept by its future-event list. Such an

event is then moved to the past-event list.

In Time Warp, an LP is scheduled for execution without any

safety verification of causal consistency of its next-to-be-processed

event. Hence, timestamp-order violations might arise since an LP

may receive an event (produced by another LP) with a timestamp

lower than its LVT. If a timestamp-order violation is detected, all

the events executed out of timestamp order are rolled back by the

runtime environment—they are moved back from the past-event

list to the future-event list. Also, the LVT of the LP is pushed back

to the timestamp of the last event executed in the correct order,

and the LP’s state is restored to its value prior to the timestamp

order violation, which is achieved by either relying on traditional

1
The source code and reproducibility package is available at https://doi.org/10.5281/

zenodo.6475218.

https://doi.org/10.5281/zenodo.6475218
https://doi.org/10.5281/zenodo.6475218


Speculative Distributed Simulation of Very Large Spiking Neural Networks SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA

checkpointing methods (see, e.g., [42, 43]) or through reverse com-

puting approaches (see, e.g., [9, 14]), where reverse versions of the

event processing routines are executed when rolling back processed

events.

Restoring the system to a correct state entails restoring indi-

vidual LP states independently, with no risk of a domino effect.

In particular, if dependencies occurred due to the scheduling of

some event between a rolling back 𝐿𝑃𝑎 and another one 𝐿𝑃𝑏 , these

dependencies are undone via so-called anti-events2. More in detail,

an anti-event is generated for each event injected by 𝐿𝑃𝑎 during

the portion of the computation to be rolled back, and is used to

retract the initially injected event. The recipient 𝐿𝑃𝑏 also rolls back

after receiving an anti-event associated with an already-executed

event. Instead, if the event has not yet been executed, the anti-event

has the only effect to “annihilate” the initially injected event. This

operation typically occurs within the runtime environment. After

rolling back, any LP resumes the execution of the events from its

future-event list.

2.2 Spiking Neural Networks

Spiking Neural Networks (SNNs) are a class of Artificial Neural

Networks (ANNs) that closely mimic natural neural networks. This
capability is achieved by using spiking neurons, which communi-

cate by sending signals (spikes) through synapses. Spiking neurons

are stateful, and the synapses connecting them can be too.

Unlike what happens in other classes of ANNs, spiking neu-

rons fire only when their membrane potential reaches a particular
threshold value. When a spiking neuron fires, it generates a spike

propagated to the neurons it is connected to, which react by increas-

ing or decreasing their membrane potential accordingly, over time.

However, before reaching other neurons, the spike passes through

synapses, which are weighted and introduce a transmission delay.
Indeed, a fundamental aspect that differentiates SNNs from other

ANNs is the role time plays. This leads to a higher fidelity execution

of the neural network at the price of higher computational costs.

Spiking-neuron models are derived from experimental observa-

tion of natural neurons’ behaviour. Since the neurons react to and

communicate through electrical stimuli, they can be modelled as

circuits. The structure and parameters of the circuits are derived

by feeding the neuron with different input currents and seeing the

response to the various stimuli. We know that neurons’ plasma

membrane isolating properties give rise to a capacitance (mem-

brane capacitance𝐶𝑚) and that the potential between the two sides

of the membrane (that we refer to as membrane potential 𝑉𝑚) is

what kick-starts the action potential propagation once it reaches

a target threshold value 𝑉𝑡ℎ . Furthermore, we know that in the

absence of stimuli, the membrane potential resets to a resting value

𝑉𝑟 ; this also holds after the action potential is generated (which we

also refer to as firing or spiking) and the sodium-potassium pump

is done reverting the neuron to its resting state, that is, after the

refractory period 𝜏𝑟𝑒 𝑓 is elapsed.

Additionally, for the membrane potential to rise, there has to

be some kind of input current 𝐼 , which is the sum of the stimuli

coming from presynaptic neurons, and that an external current 𝐼𝑒𝑥𝑡
can be supplied (e.g. for experimental observation). This series of

2
An anti-event is a “negative copy” of the corresponding event, or of its digest.

observations gives some clues about what to look for when creating

a biological neuron model. Furthermore, the capacitance alone

makes it evident that a spiking neuron is stateful (the minimum

state being just the membrane potential at a given time), and such

a state evolves with time. This hints at a fundamental aspect of

SNNs: to be run on computers, networks of spiking neurons have

to be simulated through time. This means that running an SNN on

a computer can be a costly endeavour.

If running an SNN is so much more computationally expensive

than other ANNs, why should we focus on them? The first reason

is obvious and possibly already satisfactory on its own: we want

to eventually be able to efficiently and precisely simulate a human

brain (or parts of it) to be able to study in detail its behaviour in

various experiments or to understand how modifications in the

structure or physical aspects of its components would impact it.

Neurological research would gain a powerful tool to test and val-

idate hypotheses; medicine would be helped in diagnosing and

treating brain diseases.

The second reason is that, since spiking neurons are modelled

as electronic circuits, they can easily be implemented in hard-

ware. A series of neuromorphic chips have already been commer-

cialised [1, 10, 11]. While the design of these chips can directly

benefit from simulation studies, their hardware implementation

becomes incredibly cost-effective, also energy- and performance-

wise. Additionally, a series of advantages arise with respect to all

other ANNs. First and foremost, neuromorphic chips suffer from

no approximation: since the electronic components are physically

present, there is no approximation stemming from the precision

limit inherent in computer simulations. Second, the computation is

inherently and naturally parallel, making the execution of parallel

algorithms more effective (e.g., compared to the synchronisation

cost paid on more traditional Von-Neumann computing architec-

tures).

Finally, current runtime environments for SNNs simulations are

mostly time-stepped, carrying out the simulation by computing

the state of all neurons/synapses at every small increment of time.

Updating all states at each timestamp means updating objects that

are doing nothing, too, introducing costs that could be avoided.

Moreover, the time step (which is typically fixed in a simulation run)

determines the actual accuracy of the simulation results. Conversely,

by resorting to speculative PDES, the accuracy of the simulation

is increased thanks to the timestamp advancement, which better

captures the evolution of simulation time. Moreover, it is possible

to use the available computing resources better, ignoring inactive

neurons at any given simulation phase.

3 RELATEDWORK

Several works have proposed techniques to speed up or scale out

SNN simulations. Notably, in [39], the authors have shown that

relying on speculative PDES simulation using the Time Warp syn-

chronisation protocol can lead to non-minimal performance im-

provement, especially in scenarios where only a subset of neurons,

in a specific time window, are actively sending spikes to each other.

While this work mainly focuses on the TrueNorth Leaky Integrate

and Fire (TNLIF) [11] architecture, the seminal results in this pa-

per can be deemed general. We complement the results in this



SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini

work by showing techniques that allow providing performance

improvements when a large number of neurons are active, and by

experimentally studying the performance when varying several

parameters of the SNN models.

In [33] the authors show the viability of running SNN simulations

on top of heterogeneous hardware, possibly composed of CPUs,

GPUs and FPGAs. The main contribution in this work is identifying

portions of code in an SNNmodel that is repeatedly used in multiple

simulations and/or runtime environments. This code is manually

ported to the different hardware architectures. Conversely, the

code specifically bound to the model is automatically transformed

towards the target architecture. While we do not explicitly target

heterogeneous hardware in our proposal, we leverage the idea that

there is a clear separation between the runtime support and the

actual SNNmodel. This allows us to introduce several optimisations

at the runtime environment level to benefit multiple simulation

scenarios.

Several works (see, e.g., [23, 30, 35]) have tackled the accuracy

of SNN simulations by either numerical approaches or parameter

estimation. In our contribution, we follow the path of bridging the

gap between continuous simulation and discrete-event simulation

by showing that, by manipulating differential equations to compute

the next-spiking time, it is possible to exploit several optimisations

at the runtime environment level to deliver non-negligible scalabil-

ity improvements. This is a research path already explored in [49],

although we show that this technique can also lead to interesting

scalability results in worst-case scenarios and using more com-

plex instantaneous raise/exponential decay synapses, with proper

management of the discrete events by the runtime environment.

Some of the techniques introduced in our PDES environment

have already been proven valuable in other scenarios. In particular,

we extensively rely on the capability of the runtime environment

to retract already-injected events without invoking any code from

the SNN model. In [20], the authors have shown that this approach

can deliver significant performance improvements also when simu-

lating large biochemical networks. We also rely on the capability

of the PDES runtime environment to deliver the same event to mul-

tiple destination LPs in a publish/subscribe fashion. This approach
is clearly related to one-to-many communication primitives offered

by the MPI specification [22], although we have to consistently take

into account the possibility that some or all the events injected in

the simulation according to this scheme might be subject to roll-

backs. Carefully managing these rollbacks has a direct effect on the

overall performance.

The relevance of large-scale SNNs simulation is also reflected in

the availability of multiple tools to design experiments and obtain

simulation data. Several SNN simulators have been proposed in the

literature, frequently focusing on scalability to large networks.

Among them, Brian [48], Neuron [8], and NEST [18] are the

most promising ones concerning either simulation performance or

usability—they all offer some form of Python bindings. At the same

time, a common feature for these simulation runtimes environments

is that they use time-stepped simulation algorithms with limited

lookahead.

Brian [48], implemented in python, has ease of use as its primary

focus while sporting a series of interesting facilities that allow for

high flexibility and performance. The configuration of a model

run on Brian is based on a string representation of the differential

equations describing the neuron/synapses state and their evolution.

These strings are parsed using SymPy [31], a library for symbolic

mathematics. The code to run the simulation is compiled on the

fly when initialising the simulation. Nevertheless, the execution is

purely sequential at the present date.

Neuron [8], written for the most part in C and C++, has its main

focus on biologically-accurate simulation. In this sense, it provides

facilities to observe also internal aspects of neurons and synapses,

such as the model’s electrical, chemical, and topological evolution.

The simulator can describe ion concentrations and the functioning

of ion gates, the dynamics of ion diffusion, and more. It ships with a

3D library to model various parts of the cell soma, dendrites, axons,

along with their 3D position and orientation, both in the neuron

and in space.

On the deployment side, Neuron supports running simulations

on clusters through MPI. However, when running on multicores,

Neuron does not exploit the worker thread paradigm, but the vari-

ous kernel instances are run as separate processes, and MPI is used

to connect them, leading to a worse performance with respect to

what would be achieved using worker threads and using MPI only

to reach physically remote nodes.

NEST [18] comes prepacked with “over 50 neuron models, many

of which have been published” and “over 10 synapse models” that

can also be used to implement new custom neuron and synapse

models. NEST can run parallel simulations through OpenMP. Dis-

tributed simulations are also supported, and MPI is used to take

care of message passing between multiple computational nodes.

Neurons are instantiated only on the node on which they belong,

while synapses are handled at the receiving node’s end for matters

of synapse plasticity.

Other established simulators, such as CARLsim [13], NCS [26],

NeMo [15], Nengo [4], HRLSim [32], and PCSIM [36] support multi-

threaded execution on CPUs, some of them with support for exe-

cution on multiple nodes. GeNN [52] can be executed on a single

GPU. Some simulators additionally support the execution in GPU

clusters [13, 15, 26, 32, 52]. CARLsim [13] and NCS [26] support a

CPU-GPU co-execution.

4 SIMULATING LARGE SNNS

An SNN simulation can be seen as a collection of simulations of

individual neurons that interact by the exchange of spikes. The

changes in neuron state may trigger the emission of a spike deliv-

ered to the connected neurons. Since the spikes must be considered

in the target neurons’ future state updates, a neuron’s state can

only be consistently updated once it has received all spikes with

smaller timestamps.

The computation of neuron state updates and the delivery of the

generated spikes are the two principal operations implemented by

SNN simulation platforms. Since most of them employ a timestep-

driven approach, commonly used neuron models have been picked

favoring those handily computable via some iterative numerical

procedure, such as the Euler method.



Speculative Distributed Simulation of Very Large Spiking Neural Networks SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA

Anyhow, the conservative synchronisation scheme typically em-

ployed by SNN simulators cannot efficiently deal with arbitrarily-

low synaptic delays, which would otherwise force a costly syn-

chronisation and spike delivery operation after each timestep. For

this reason, many models include a minimum fixed delay in spikes

transmission to reduce the necessary synchronisation steps and

improve spike delivery performance.

Many SNNmodels having been formulated with mainly the time-

stepped approach in mind. Moreover, to the best of our knowledge,

the only SNN synapse model used in (P)DES are jump synapses.

When a jump synapse transmits a spike, it is instantaneously applied

to the membrane in a Dirac-delta fashion, resulting in a jump in the

membrane potential. This behaviour is highly convenient for PDES

simulations as it requires no further computation and perfectly fits

the DES paradigm: if a spike results in the membrane potential

surpassing the threshold, the neuron spikes, otherwise it does not.

In this work, we transition to the optimistic PDES paradigm

instantaneous raise/exponential decay synapses, commonly called

just exponential synapses. This type of synapse does not directly act

on themembrane potential, but rather, it generates an instantaneous

increase in the incoming current the neuron receives. The current’s

effects are applied over time to the membrane potential: the latter

rises over time, charging similarly to an electronic capacitor. At the

same time, the current’s intensity decreases exponentially with time.

This means the neuron might spike in the future, the hypothetical

spike time (if any) has to be computed via numerical methods, and

the resulting event enqueued.

In the following, we explain the steps needed to represent this

spiking model in a PDES runtime successfully, and we then describe

the extensions to the traditional PDES facilities required to speed

up the spike delivery for SNNs.

4.1 Neuron Models for PDES SNN Simulations

Neuron models are commonly expressed as a set of differential

equations that describe the behaviour of its membrane potential and

synaptic currents. Given a known neuron state, generating discrete-

event spikes require computing the next spike timing. Therefore

we need to solve the state equations explicitly.

While the modeling approach that we present here is general, we

exemplify it by showing how we can manipulate a common kind

of neurons to be simulated on top of a speculative PDES runtime

environment adhering to the Time Warp synchronization protocol.

We focus here on the Leaky Integrate and Fire (LIF) neuronmodel,

which, conveniently, is also one of the most commonly used in large

SNN simulations. Equations (1) describe the subthreshold dynamics

of the neuron, that is the evolution of its state in the absence of

emitted spikes, where 𝑉 (𝑡) is the membrane potential, and 𝐼 (𝑡) is
the current flowing inside the neuron across the membrane.

d𝑉 (𝑡)
d𝑡

=
−𝑉 (𝑡) +𝑉𝑟

𝜏𝑚
+ 𝐼 (𝑡) + 𝐼𝑒𝑥𝑡

𝐶𝑚

d𝐼 (𝑡)
d𝑡

= − 𝐼 (𝑡)
𝜏𝑠𝑦𝑛

(1)

The positive quantities 𝜏𝑚 , 𝜏𝑠𝑦𝑛 , 𝐶𝑚 represent the membrane

time constant, the synaptic time constant and the membrane capac-

itance, respectively. The quantity 𝐼𝑒𝑥𝑡 is a constant external current

stimulus, while 𝑉𝑟 is the reset potential. For a more thorough dis-

cussion on the meaning of these parameters, the reader can refer

to [6].

The non-linear spike behaviour works as follows: if, at any time

𝑡 ,𝑉 (𝑡) overcomes a voltage threshold𝑉𝑡ℎ , the neuron emits a spike,

then𝑉 (𝑡) is forcefully reset at voltage𝑉𝑟 for a period of time 𝜏𝑟 , the

so-called refractory period. Spikes are delivered to post-synaptic

neurons with a delay in virtual time and an effect established by the

synapse model. Many large simulations employ a simple synapse

model, characterised by a fixed transmission delay 𝑡𝑡𝑟𝑎𝑛𝑠 and a

weight 𝑤 . By using this simple model, a spike causes the post-

synaptic neuron to instantaneously increase its 𝐼 (𝑡) by𝑤 .

Solving Equations (1) in 𝑉 (𝑡) and 𝐼 (𝑡) yields Equations (2).

𝑉 (𝑡) = 𝐼0𝐴1𝑒
− Δ𝑡

𝜏𝑠𝑦𝑛 + (𝑉0 −𝐴2 − 𝐼0𝐴1)𝑒−
Δ𝑡
𝜏𝑚 +𝐴2

𝐼 (𝑡) = 𝑒
− Δ𝑡

𝜏𝑠𝑦𝑛 𝐼0

(2)

In these equations,𝑉0 and 𝐼0 represent the state of the neuron at

time 𝑡0, while the two constants𝐴1 and𝐴2 have been introduced for

the sole purpose of readability: their expansions are found in Equa-

tions (3). Constants 𝐴0 and 𝐴2 can be computed once at simulation

startup.

𝐴1 =
1(

1

𝜏𝑚
− 1

𝜏𝑠𝑦𝑛

)
𝐶𝑚

𝐴2 = 𝑉𝑟 + 𝜏𝑚
𝐼𝑒𝑥𝑡

𝐶𝑚

(3)

To compute the next spike timing, it would be sufficient to solve

Equations (2) in 𝑡 with 𝑉 (𝑡) = 𝑉𝑡ℎ . Unfortunately, the general case

solution is not analytical, we must therefore resort to relatively

expensive numerical methods.Wewant to avoid their use; therefore,

we will now carry out further analysis.

It is possible to distinguish between self-spiking and nonself-

spiking neurons. If, for a given neuron, its set of parameters satisfies

the condition in Equation (4), the neuron is self-spiking. In other

words, it spikes periodically on its own, without needing to receive

spikes in input.

lim

𝑡→∞
𝑉 (𝑡) = 𝐴2 > 𝑉𝑡ℎ (4)

In this case, using the bisection method, we can compute once

at startup the constant 𝜏𝑠𝑒𝑙 𝑓 , the self spike timing in absence of

synaptic inputs, i.e. 𝐼 (𝑡0) = 0,𝑉 (𝑡0) = 𝑉𝑟 . To find a suitable win-

dow for the bisection method, we can simply consider the interval

[𝑡0, 𝑡𝑙𝑎𝑟𝑔𝑒 ], with 𝑡𝑙𝑎𝑟𝑔𝑒 chosen large enough so that𝑉 (𝑡𝑙𝑎𝑟𝑔𝑒 ) > 𝑉𝑡ℎ :

such a value must exist, since the condition in Equation (4) holds

and, with these conditions, 𝑉 (𝑡) is monotonic increasing.

For a nonself-spiking neuron, assuming the absence of incoming

spikes, we can derive a simple procedure to establish whether it will

emit a spike in the future. In Equations 5 we provide the definition

and the explicit value of the constant 𝐼𝑡ℎ . The monotonic decreasing

property of the 𝐼 (𝑡) state equation guarantees that 𝐼0 > 𝐼𝑡ℎ is a

necessary (but not sufficient) condition for a nonself-spiking neuron

to spike in the future.

𝐼𝑡ℎ := 𝐼 (𝑡) | 𝑉 (𝑡) = 𝑉𝑡ℎ ∧ d𝑉 (𝑡)
d𝑡

= 0

𝐼𝑡ℎ = 𝐶𝑚
𝑉𝑡ℎ −𝑉𝑟

𝜏𝑚
− 𝐼𝑒𝑥𝑡

(5)



SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini

If a nonself-spiking neuron satisfies the necessary spike con-

dition, we can compute 𝑡𝑡ℎ , the time needed to decay from 𝐼0 to

𝐼𝑡ℎ , as shown in Equation 6. If 𝑉 (𝑡𝑡ℎ) < 𝑉𝑡ℎ then we can conclude

that the neuron does not spike, otherwise it will spike at time

𝑡𝑠𝑝𝑖𝑘𝑒 ∈ [𝑡0, 𝑡𝑡ℎ].

𝑡𝑡ℎ = − ln

(
𝐼𝑡ℎ

𝐼0

)
𝜏𝑠𝑦𝑛 (6)

This result holds because we have𝑉 (𝑡0) < 𝑉𝑡ℎ and𝑉 (𝑡𝑡ℎ) ≥ 𝑉𝑡ℎ
therefore, given the continuity of the 𝑉 (𝑡), at least one 𝑡𝑠𝑝𝑖𝑘𝑒 ∈
[𝑡0, 𝑡𝑡ℎ] must exist. We thus compute 𝑡𝑠𝑝𝑖𝑘𝑒 using the bisection

method—we noted that higher-order numerical methods such as

the Newton method are not always numerically stable during our

experimental phase. Otherwise, if 𝑉 (𝑡𝑡ℎ) < 𝑉𝑡ℎ , then 𝑉 (𝑡) < 𝑉𝑡ℎ
for all 𝑡 ∈ [𝑡0, 𝑡𝑡ℎ]: the neuron did not and will not spike in absence

of further stimuli since 𝐼 (𝑡) < 𝐼𝑡ℎ for all 𝑡 > 𝑡𝑡ℎ .

The proof that 𝑡𝑠𝑝𝑖𝑘𝑒 is unique in the [𝑡0, 𝑡𝑡ℎ] interval is more

involved, so we will only sketch the main idea. Using the definition

of 𝐼𝑡ℎ it is possible to show that
d𝑉 (𝑡 )
d𝑡

= 0 for exactly one 𝑡𝑑 ∈
[𝑡0, 𝑡𝑡ℎ], where𝑉 (𝑡) reaches its maximum. We have that

d𝑉 (𝑡0)
d𝑡

> 0

and
d𝑉 (𝑡𝑡ℎ)

d𝑡
≤ 0. Also, since

d𝑉 (𝑡 )
d𝑡

is continuous, we can conclude

that 𝑉 (𝑡) is monotonous increasing in [𝑡0, 𝑡𝑑 ] and monotonous

decreasing in [𝑡𝑑 , 𝑡𝑡ℎ]; 𝑡𝑠𝑝𝑖𝑘𝑒 is therefore unique and lies in the

interval [𝑡0, 𝑡𝑑 ].
For self-spiking neurons, we assume that most of the time, they

will spike approximately every 𝜏𝑠𝑒𝑙 𝑓 seconds: so we search the spike

window by increasing tentatively 𝑡𝑡ℎ by 𝜏𝑠𝑒𝑙 𝑓 . To compute a precise

𝑡𝑠𝑝𝑖𝑘𝑒 , we use the bisection method as well.

4.2 From Neurons to Logical Processes

To transition an SNN simulation to the optimistic PDES paradigm,

we must partition its state into independent Logical Processes (LPs).

In this work, we assume that synapses state is static, which is

not a very limiting factor since many large SNN models in the

literature embrace this limitation. With this in mind, the natural

way to map neurons to LPs would be a one-to-one mapping. Clearly,

it is possible to collect together more neurons inside a single LP,

but we expect that such a strategy may only be worthwhile if it

can be guaranteed that neurons grouped inside the same LP are

tightly connected; or else, for example, a straggler event directed at

a neuron would cause the rollback of other neurons grouped with it

that would not have otherwise rollbacked. Therefore in this work,

also for simplicity reasons, we employed the natural one-to-one

mapping. Nonetheless, we think that the potential trade-off offered

by a non-trivial neuron-to-LP mapping is an interesting one that

may be featured in future work.

In the following sections, we will assume that we target a dis-

tributed simulation environment running on multiple computing

nodes, each hosting several processing threads. We also assume, for

the sake of simplicity, that the binding of LPs to processing threads

is established at simulation startup and fixed for the simulation

duration.

4.3 Dynamic Spiking Events

We have shown earlier how to determine the next spike timing

𝑡𝑠𝑝𝑖𝑘𝑒 for a LIF neuron with the condition that, in the meanwhile,

such neuron does not receive any spike. In a discrete event simu-

lation, we would schedule a new event 𝐸 with time 𝑡𝑠𝑝𝑖𝑘𝑒 which

represents the spike potentially emitted in the future. If the neuron

receives a spike before 𝑡𝑠𝑝𝑖𝑘𝑒 , its previously computed spike timing

would not be consistent anymore with the newly induced state

change, and therefore we would need to somehow invalidate or

retract the event 𝐸.

A working solution to this problem consists in augmenting the

neuron state with an epoch number, which is increased every time

the neuron receives a spike. The potential spike emission events

are tagged with the current epoch number. When a potential spike

emission event has to be processed, the model checks if the neuron

epoch number is consistent with the event’s one. If it is not, it is

simply ignored and discarded. While, on paper, this approach seems

reasonable, its application to SNN simulations fails miserably. Each

neuron state change would schedule a new future spike event, and,

given the high out-degree of neurons (as mentioned earlier, in the

order of thousands), every time a neuron were to actually spike, all

of the receiving neurons would have to update their states: the event

queue would end up being hogged by invalidated spike events. Most

of the processing time would be spent discarding invalid events at

the model level.

Our proposed solution consists in providing the model developer

with dynamic spiking events, i.e. with the possibility of schedul-

ing retractable events i.e. events that can be arbitrarily removed

from the events queue or whose timestamp can be changed at will.

These operations are supported at the runtime environment level.

Future spike emission events can be effectively represented as re-

tractable events. In the context of SNN simulations, each neuron

needs a maximum of one retractable event destined to itself. This

consideration significantly simplifies the implementation of this

new mechanism. Each thread simply has a private queue that han-

dles the retractable events associated with the neurons bound to it.

The private queue is implemented as a k-heap data structure which

allows efficient priority changes and removal of events. In order

to extract a new event, each thread chooses the lowest timestamp

between the normal events queue and its private retractable events

queue.

In order to correctly handle rollbacks, when computing the

checkpoint of an LP, we must also include their currently active

retractable event. With this precaution, when an LP must roll back

to a previous state, it can correctly restore its retractable message.

4.4 Publish/Subscribe Events

The use of retractable messages effectively reduces the number

of events delivered at the simulation model during the simulation

run, but it does not impact the number of events used to convey

the actual spikes. Each time a neuron spikes, many events corre-

sponding to the out-degree of the neuron must be generated and

delivered one by one to the proper LP, possibly over the network if

the targeted LP is residing on another physical node. An early exper-

imental assessment showed that this was a significant performance

bottleneck.

For this reason, we came up with a new feature that allows an LP

to publish special events to which other LPs may subscribe. During
simulation initialisation, neurons can subscribe to the ones they are



Speculative Distributed Simulation of Very Large Spiking Neural Networks SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA

Figure 1: Publish/subscribe events in a distributed environ-

ment. In this example, the publisher LP generates only two

events, instead of nine.

connected to. During the actual simulation, neurons will emit spikes

in the form of published events. With this contract in place, the

simulation runtime can significantly reduce the number of events

actively transmitted around.

To simplify our system implementation’s description, we say

that a processing thread is subscribed to an LP if any bound LPs are

subscribed to it. Similarly, a computing node is subscribed to an LP

if any hosted processing thread is subscribed to it. Our implemen-

tation expects a single function that specifies the publish/subscribe

graph. Each processing thread involved in the simulation initialises

the internal data structures based on the relevant subset of informa-

tion in the graph. In particular, each LPmaintains a list of references

to the local processing threads and remote nodes subscribed to it.

Also, each node hosts a global table that maps identifiers of pub-

lisher LPs to a list of references to the local processing threads and

related LPs subscribed to it.

As exemplified in Figure 1, publish/subscribe events can reduce

the number of events exchanged by processing units dramatically.

When an LP publishes a new event, the simulation framework only

generates and delivers the events as specified in its subscription list,

sending one copy per local subscriber thread and one per remote

subscribed node, minimising the number of messages transferred,

both locally and over the network. When a processing thread ex-

tracts a publish/subscribe event, it simply needs to get the list of

subscribed LPs from the global table to forward them a copy of the

event.

The management of the rollback operation for publish/subscribe

events can be realised according to the traditional scheme supported

by Time Warp synchronisation, i.e. by relying on anti-events. In-

deed, publish/subscribe anti-events are no different from regular

events, especially after a single publish/subscribe event is materi-

alised into multiple copies for each subscribed LP. Our implementa-

tion keeps track of the local events generated by publish/subscribe

events so that their anti-events do not need copies delivered to

each subscribed LP. This helps reduce the overhead of anti-events

delivery and also simplifies fossil collection operations.

Table 1: Connectivity map for the synthetic benchmark.

to

L1e L1i L2e L2i L3e L3i

from In 0.292 0.192 0.049 0.237 0.169 0.115

L1e 0.224 0.293 0.106 0.254 0.438 0.099

L1i 0.135 0.025 0.409 0.25 0.309 0.271

L2e 0.165 0.177 0.122 0.032 0.491 0.3

L2i 0.448 0.319 0.08 0.207 0.225 0.201

L3e 0.395 0.123 0.265 0.215 0.476 0.174

L3i 0.223 0.276 0.358 0.028 0.065 0.188

5 EXPERIMENTAL RESULTS

We present an experimental assessment of the proposed approach.

The results have been obtained by relying on a set of virtual ma-

chines on AmazonWeb Services. In particular, we have used various

configurations of m5.4xlarge instances (equipped with 16 virtual

cores), m5.8xlarge instances (equipped with 32 virtual cores), and

m5.24xlarge instances (equipped with 96 virtual cores). Our pro-

posal has been implemented within the ROme OpTimistic Simulator

(ROOT-Sim) [37].We compare our results with both Brian and NEST,

both from a correctness point of view and from a performance/

scalability perspective. All results are averaged over 5 different

runs. The same sequence of random numbers has been used in the

experiment.

5.1 Benchmarks

To study our proposal’s correctness and performance/scalability, we

have considered two synthetic SNN models, one real-world model,

and a standard benchmark used in the literature.

The first synthetic benchmark is a network of 1,000 LIF neurons,

divided into one input layer and three “passive” layers, each of

which has two populations, one excitatory and one inhibitory. The

input layer has 100 excitatory LIF neurons, each of which receives a

constant current input, and each of the three layers has 200 excita-

tory and 100 inhibitory LIF neurons. It employs a connectivity map

(reported in Table 1) to connect the populations. This configuration

aims to model a small network to compare the data for correctness

against state-of-the-art simulators.

The second synthetic benchmark is a network composed of only

two neurons, an input one 𝑁1 and an output one 𝑁2. 𝑁1 receives a

constant external current of 1,800 mV, and its output is propagated

to 𝑁2 through an exponential synapse with a weight of 5,000. 𝑁2

receives no other input. The output of 𝑁2 is monitored, and its

spikes are collected. The simplicity of this network allows us to

evaluate simulation accuracy.

The real-world model that we consider is Potjans and Dies-

mann’s [41], depicted in Figure 2. It is an accurate model of the local

cortical microcircuit entailing four layers of the cortex, named 2/3,

4, 5, and 6, each with an excitatory and an inhibitory neuron popula-

tion. Layers are connected according to the “connection probability
of a connection” that “defines the probability that a neuron in the

presynaptic population forms at least one synapse with a neuron in

the post-synaptic population. A connectivity map is defined by the

64 connection probabilities between the 8 considered cell types”.

The synapses in the model are static. The number of neurons per

population is chosen according to [5], totalling 77,169 neurons. Fur-

thermore, every layer can receive a background input in the form



SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini

Figure 2: Potjans and Diesmann’s Model definition. Exci-

tatory populations are represented by triangles, and in-

hibitory populations are circles. Image taken from [41].

0 50 100 150 200 250
Spiking Rates (Hz)

input

L1e

L1i

L2e

L2i

L3e

L3i

Po
pu

la
tio

n

(a) ROOT-Sim.

0 50 100 150 200 250
Spiking Rates (Hz)

input

L1e

L1i

L2e

L2i

L3e

L3i

Po
pu

la
tio

n

(b) Brian.

Figure 3: Spiking rates (Hz) for 1000 neurons model.

of a continuous current and input from an external thalamocorti-

cal neuron population. The thalamic neurons are implemented as

Poisson neurons [46] with a fixed spiking rate.

The standard benchmark that we have used is inspired by a study

on signal propagation in LIF models [50]. This benchmark [6] con-

siders current-based (CUBA) synaptic interactions in a network of

300,000 LIF neurons, separated into two populations of excitatory

and inhibitory neurons, forming 80% and 20% of the neurons, re-

spectively. All neurons are connected randomly using a connection

probability of 2%.

5.2 Correctness and Accuracy Results

To verify the correctness of our proposal, we have run the synthetic

model both on ROOT-Sim and Brian. This benchmark allows us to

validate the ensemble behaviour of the network and the behaviour

on differently timed spikes. In Figure 3 we report a boxplot of

spiking frequencies of every population. As we can see from the

figure, the spiking frequencies closely resemble one another. The

difference is likely related to the fact that we do not employ a

time-stepped simulation, i.e. our results do not suffer from any

approximation in the spiking time. This result shows how the LIF

model presented in this paper can be deemed correct, even when

employed in non-minimal networks with neurons handling spikes

coming in varied patterns from many other neurons.

Table 2: Neurons and populations parameter specification.

Populations and inputs

Name L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th

Population size, N 20683 5834 21915 5479 4850 1065 14395 2948 902

External inputs, 𝑘𝑒𝑥𝑡 1600 1500 2100 1900 2000 1900 2900 2100 n/a

Neuron Model

Name Value Description

𝜏𝑚 10 ms Membrane time constant

𝜏𝑟𝑒 𝑓 2 ms Absolute refractory period

𝜏𝑠𝑦𝑛 0.5 ms Postsynaptic current time constant

𝐶𝑚 250 pF Membrane capacity

𝑉𝑟𝑒𝑠𝑒𝑡 −65 mV Reset potential

𝑉𝑡ℎ −50 mV Fixed firing threshold

𝜃 15 Hz Thalamic firing rate during input period

Table 3: Connectivity and Synaptic parameter specification.

Connectivity

from

L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th

to L2/3e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0 0.0

L2/3i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0 0.0

L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0 0.0983

L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0 0.0619

L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0 0.0

L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0 0.0

L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225 0.0512

L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144 0.0196

Name Value Description

𝑤 ± 𝛿𝑤 87.8 ± 8.8 pA Excitatory synaptic strengths

𝑔 −4 Relative inhibitory synaptic strength

𝑑𝑒 ± 𝛿𝑑𝑒 1.5 ± 0.75 ms Excitatory synaptic transmission delays

𝑑𝑖 ± 𝛿𝑑𝑖 0.8 ± 0.4 ms Inhibitory synaptic transmission delays

We have also considered the Potjans and Diesmann model to

confirm these results. This model is highly relevant, with its imple-

mentation being part of the examples in the NEST simulator, and

has been replicated in 2018 by Shimoura et al. [45] in an implementa-

tion for the Brian simulator. We have compared our implementation

of this model with the implementations in both NEST and Brian.

For the sake of comparison clarity, we report in Table 2 the neuron

parameters (population size for each population, external inputs

for e each population, and the neuron’s physical properties), while

Table 3 contains the connectivity map and the synaptic connection

parameters used in all three models.

The simulation results are shown in Figure 4, again in the form

of boxplots showing the observed spiking rates. Similarly to the

previous benchmark, we observe that the results are extremely

close. Again, the slight difference can be related to the increased

accuracy that our solution can offer with respect to a time-stepped

simulation.

In Figure 5 we report the accuracy results for the 2-neuron model.

In particular, for this simple model, we have generated the timing

of 𝑁2’s spike train via numerical methods with a tolerance of 10
−7

milliseconds . It has been used as a reference for themodel simulated

both on NEST and ROOT-Sim, where we have collected data for 1

second of simulated time. In the Figure, we report the absolute error

for each 𝑖-th spike in the train. While the accumulated error grows

linearly for both the simulation method used by NEST and ROOT-

Sim, it is clear that the error in the NEST model is significantly

higher, totalling 15 ms of error over 1 second of simulated neuronal



Speculative Distributed Simulation of Very Large Spiking Neural Networks SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA

(a) ROOT-Sim. (b) Brian (taken from [45]). (c) NEST (taken from [41]).

Figure 4: Spiking rates (Hz) for Potjans and Diesmann’s model.

0 10 20 30 40 50 60 70
Spike number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ab
so
lu
te
 e
rro

r (
m
s)

ROOT-Sim
NEST

Figure 5: Accuracy results with a 2-neuron model.

activity (ROOT-Sim shows an error reduction of ∼ 90% compared

to NEST), with a simple network composed of only two neurons in

a very short time window. This error is also reflected in the number

of spikes—NEST cannot simulate the total number of spikes in the

considered simulation window.

5.3 Performance Results

To assess the performance and scalability of our proposal, we have

relied on the Potjans and Diesmann’s and CUBA models, and com-

pared against state-of-the-art NEST implementations. In Figure 6

we report the total execution time (in seconds) for both benchmarks

when varying the number of threads on a 96-vCPU m5.24xlarge

instance. We have also studied both simulators’ performance when

varying the total amount of interconnections in the network, i.e.

running from the full load (as in the original benchmark) down to

25% of the total number of connections among neurons.

In both scenarios, we see that NEST performance is mostly inde-

pendent of the number of threads used and the number of consid-

ered connections
3
. This is related to the approximated time-stepped

nature of the simulation algorithm. Indeed, most of the time is spent

by the NEST kernel advancing through the different steps and syn-

chronising the various threads (through OpenMP [44]).

3
For the sake of readability, we report only the curve related to the full connection

configuration for NEST, but the results with a reduced density of the graph do not

change at all.

16 24 32 40 48 56 64 72 80 88 96
Worker Threads

0

250

500

750

1000

1250

1500

W
al
l C

lo
ck
 T
im

e 
(s
)

ROOT-Sim
ROOT-Sim (75%)
ROOT-Sim (50%)

ROOT-Sim (25%)
NEST

(a) CUBA.

16 24 32 40 48 56 64 72 80 88 96
Worker Threads

0

500

1000

1500

2000

W
al
l C

lo
ck
 T
im

e 
(s
)

ROOT-Sim
ROOT-Sim (50%)

NEST

(b) Potjans and Diesmann’s.

Figure 6: Single-node Scalability (m5.24xlarge).

Conversely, our implementation exhibits a performance improve-

ment that grows with the number of parallel threads used. At max-

imum parallelism, our simulations deliver a performance improve-

ment of 4x in both benchmarks. More interestingly, the scalability

trend shows that the minimum in the simulation time curve has

not been reached yet, suggesting that the amount of parallelism

that the Time Warp simulation can exploit is still non-minimal.

While the constant execution time of NEST consistently outper-

forms our implementation in the case of a smaller network (Potjans

and Diesmann’s model in Figure 6b), in the case of a larger network,

NEST’s performance starts to degrade at around 56 threads, when

our solution starts to outperform it. This is an indication that, if

larger networks were to be simulated, our solution could provide



SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini

reduced simulation times—again, also offering results that are pre-

cise. This is a significant result, as the research community has

the ambitious goal of “simulating the brains of mammals with a

high level of biological accuracy and, ultimately, to study the steps

involved in the emergence of biological intelligence” [29].

We have also studied the performance and scalability of our

proposal, again against NEST, in a distributed environment, relying

on MPI for both simulators. We have performed a strong scalabil-

ity assessment, keeping fixed the size of the networks simulated

by both benchmarks and varying the number of nodes from 4 to

32. We have used a set of m5.4xlarge instances (Figure 7) and a

set of m5.8xlarge instances (Figure 8). These virtual machines are

equipped with 16 and 32 virtual cores, respectively—we have used

up to 512 distributed virtual cores, mimicking a tiny-scale super-

computer. By the results in Figure 6, this is a worst-case scenario

for our implementation, as NEST is still outperforming ROOT-Sim

on a single node in both configurations for both benchmarks.

From the results, we anyhow observe that the scalability trends

of both ROOT-Sim and NEST are comparable for the CUBA bench-

mark (Figures 7a and 8a). This is an indication that our proposal

(particularly concerning retractable messages and publish/subscribe

events) can dampen out the performance penalty observed on the

single node in the case of a distributed simulation. Conversely,

in the case of a smaller network (Figures 7b and 8b) the NEST

implementation does not scale, probably due to synchronization

overhead, although, in most of the configurations, it is still able to

deliver better performance results—again, sacrificing preciseness.

To better understand the dynamics of our PDES speculative

simulation with respect to NEST’s time-stepped simulation, we

have also carried out an experiment using the large network in

CUBA benchmark when varying the network activity, i.e. the total

number of spikes in the simulation. From the results reported in

Figure 9, we see that NEST is also showing a performance that is

independent of the amount of activity in the network (Figure 9b),

while the Time Warp simulation based on ROOT-Sim can exploit

this reduced amount of interactions. This is an expected result,

given the nature of both simulation methodologies. At the same

time, it is interesting to note that when the number of nodes is

reduced, the benefit is increased (see Figure 9a). This is related

to the fact that more LPs are bound to the same thread when the

number of nodes is smaller. In this scenario, the publish/subscribe

messaging mechanism that we have devised is likely to pay off

more. This indicates that if larger networks have to be simulated

on a same-scale machine, the performance improvement offered by

this runtime support can be non-minimal.

Finally, to shed light on the reason behind the performance

gap between the ROOT-Sim implementation and the NEST one (al-

though we recall that the results have been obtained in a worst-case

scenario), we report in Figure 10 a breakdown of the time spent

in the initialisation phase vs the simulation phase for the CUBA

benchmark on the cluster of m5.8xlarge virtual machines. As it

can be seen, the simulation pays a non-negligible almost-constant

time spent in the initialisation phase, while the simulation phase

is scaling significantly. This indicates that if more effective initial-

isation strategies are devised, our approach might also improve

performance when simulating smaller-scale networks.

4 8 12 16 20 24 28 32
Nodes

0

100

200

300

400

W
al
l C

lo
ck
 T
im

e 
(s
)

ROOT-Sim NEST

(a) CUBA.

4 8 12 16 20 24 28 32
Nodes

0

100

200

300

400

500

600

W
al
l C

lo
ck
 T
im

e 
(s
)

ROOT-Sim NEST

(b) Potjans and Diesmann’s.

Figure 7: Distributed Scalability (m5.4xlarge).

4 6 8 10 12 14 16
Nodes

0

100

200

300

400

W
al
l C

lo
ck
 T
im

e 
(s
)

ROOT-Sim NEST

(a) CUBA.

4 6 8 10 12 14 16
Nodes

0

100

200

300

400

500

600

W
al
l C

lo
ck
 T
im

e 
(s
)

ROOT-Sim NEST

(b) Potjans and Diesmann’s.

Figure 8: Distributed Scalability (m5.8xlarge).

6 CONCLUSIONS AND FUTUREWORK

Wehave presented amethodology and technical support to run SNN

models on top of Time Warp-based PDES runtime environments.

The main results of our contribution are related to the capability



Speculative Distributed Simulation of Very Large Spiking Neural Networks SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA

4 6 8 10 12 14 16
Nodes

0

50

100

150

200

250

W
al
l C

lo
ck
 T
im

e 
(s
)

100.0%
84.0%
72.0%
64.0%

58.0%
53.0%
37.0%
29.0%

(a) ROOT-Sim.

4 6 8 10 12 14 16

Nodes

0

25

50

75

100

125

150

175

W
al
l C

lo
ck
 T
im

e 
(s
)

100.0%
84.0%
72.0%
64.0%

58.0%
53.0%
37.0%
29.0%

(b) NEST.

Figure 9: Performance when Varying Network Activity

(m5.8xlarge).

4 6 8 10 12 14 16
Nodes

0

50

100

150

200

250

W
al

l C
lo

ck
 T

im
e 

(s
)

100.0%
84.0%
72.0%
64.0%
58.0%
53.0%
37.0%
29.0%

Initialization
Simulation

Figure 10: Initialisation vs Simulation Time (m5.8xlarge).

of the PDES simulations to deliver more accurate results with re-

spect to state-of-the-art SNN simulators while providing scalability

trends showing that, if extremely large-scale networks are to be

simulated, our approach can outperform the same state-of-the-art

runtime environments. At the same time, our experimental assess-

ment has shown that some models’ configuration parameters make

traditional time stepped simulations outperform PDES simulations

run on general-purpose runtime environments. We have also iden-

tified a potential bottleneck that plays as a show-stopper to deliver

timely simulation results. Investigating how to improve this part of

the overall simulation will be dealt with in future work.

REFERENCES

[1] Arnon Amir, Pallab Datta, William P Risk, Andrew S Cassidy, Jeffrey A Kusnitz,

Steve K Esser, Alexander Andreopoulos, Theodore M Wong, Myron Flickner, Ro-

drigo Alvarez-Icaza, Emmett McQuinn, Ben Shaw, Norm Pass, and Dharmendra S

Modha. 2013. Cognitive computing programming paradigm: A Corelet Language

for composing networks of neurosynaptic cores. In Proceedings of the The 2013
International Joint Conference on Neural Networks (IJCNN). IEEE, Piscataway, NJ,
USA, 1–10. https://doi.org/10.1109/IJCNN.2013.6707078

[2] Rajagopal Ananthanarayanan, Steven K Esser, Horst D Simon, and Dharmendra S

Modha. 2009. The cat is out of the bag: cortical simulations with 10
9
neurons,

10
13

synapses. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (Portland, Oregon) (SC). ACM, New York, NY,

USA, 1–12. https://doi.org/10.1145/1654059.1654124

[3] Peter D Barnes, Christopher D Carothers, David R Jefferson, and Justin M LaPre.

2013. Warp speed: executing time warp on 1,966,080 cores. In Proceedings of
the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
(Montréal, Québec, Canada) (SIGSIM PADS ’13). ACM, New York, NY, USA, 327–

336. https://doi.org/10.1145/2486092.2486134

[4] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C

Stewart, Daniel Rasmussen, Xuan Choo, Aaron Russell Voelker, and Chris Elia-

smith. 2014. Nengo: a Python tool for building large-scale functional brain models.

Frontiers in neuroinformatics 7 (2014), 13. https://doi.org/10.3389/fninf.2013.00048

[5] T Binzegger. 2004. A Quantitative Map of the Circuit of Cat Primary Visual

Cortex. Journal of Neuroscience 24 (2004), 8441–8453. https://doi.org/10.1523/

JNEUROSCI.1400-04.2004

[6] Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Bee-

man, James M Bower, Markus Diesmann, Abigail Morrison, Philip H Good-

man, Frederick C Harris, Jr, Milind Zirpe, Thomas Natschläger, Dejan Pecevski,

Bard Ermentrout, Mikael Djurfeldt, Anders Lansner, Olivier Rochel, Thierry

Vieville, Eilif Muller, Andrew P Davison, Sami El Boustani, and Alain Des-

texhe. 2007. Simulation of networks of spiking neurons: a review of tools and

strategies. Journal of computational neuroscience 23, 3 (Dec. 2007), 349–398.

https://doi.org/10.1007/s10827-007-0038-6

[7] Kristofor D Carlson, Michael Beyeler, Nikil Dutt, and Jeffrey L Krichmar. 2014.

GPGPU accelerated simulation and parameter tuning for neuromorphic appli-

cations. In Proceedings of the 19th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, Piscataway, NJ, USA, 570–577. https://doi.org/10.

1109/ASPDAC.2014.6742952

[8] Nicholas T Carnevale and Michael L Hines. 2006. The NEURON Book. Cambridge

University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511541612

[9] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.

Efficient Optimistic Parallel Simulations Using Reverse Computation. ACM
Transactions on Modeling and Computer Simulation 9 (1999), 224–253. https:

//doi.org/10.1145/347823.347828

[10] Andrew S Cassidy, Rodrigo Alvarez-Icaza, Filipp Akopyan, Jun Sawada, John V

Arthur, Paul A Merolla, Pallab Datta, Marc Gonzalez Tallada, Brian Taba, Alexan-

der Andreopoulos, Arnon Amir, Steven K Esser, Jeff Kusnitz, Rathinakumar

Appuswamy, Chuck Haymes, Bernard Brezzo, Roger Moussalli, Ralph Bellofatto,

Christian Baks, Michael Mastro, Kai Schleupen, Charles E Cox, Ken Inoue, Steve

Millman, Nabil Imam, Emmett Mcquinn, Yutaka Y Nakamura, Ivan Vo, Chen

Guok, Don Nguyen, Scott Lekuch, Sameh Asaad, Daniel Friedman, Bryan L Jack-

son, Myron D Flickner, William P Risk, Rajit Manohar, and Dharmendra S Modha.

2014. Real-Time Scalable Cortical Computing at 46 Giga-Synaptic OPS/Watt

with 100× Speedup in Time-to-Solution and 100,000× Reduction in Energy-to-

Solution. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE, Piscataway, NJ, USA,
27–38. https://doi.org/10.1109/SC.2014.8

[11] Andrew S Cassidy, Jun Sawada, Paul Merolla, John V Arthur, Rodrigo Alvarez-

Icaza, Filipp Akopyan, Bryan L Jackson, and Dharmendra S Modha. 2016.

TrueNorth: A High-Performance, Low-Power Neurosynaptic Processor for Multi-
Sensory Perception, Action, and Cognition. Technical Report. Almaden Research

Center, IBM Research.

[12] Kit Cheung, Simon R Schultz, and Wayne Luk. 2016. NeuroFlow: A General

Purpose Spiking Neural Network Simulation Platform using Customizable Pro-

cessors. Frontiers in neuroscience 9 (Jan. 2016), 1–15. https://doi.org/10.3389/

fnins.2015.00516

[13] Ting-Shuo Chou, Hirak J Kashyap, Jinwei Xing, Stanislav Listopad, Emily L

Rounds, Michael Beyeler, Nikil Dutt, and Jeffrey L Krichmar. 2018. CARLsim 4:

An Open Source Library for Large Scale, Biologically Detailed Spiking Neural

Network Simulation using Heterogeneous Clusters. In Proceedings of the 2018
International Joint Conference on Neural Networks (IJCNN). IEEE, Piscataway, NJ,
USA, 1–8. https://doi.org/10.1109/IJCNN.2018.8489326

[14] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Trans-

parently Mixing Undo Logs and Software Reversibility for State Recovery in

Optimistic PDES. ACM Transactions on Modeling and Computer Simulation 27, 2

(May 2017), 1–26. https://doi.org/10.1145/3077583

https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.1145/1654059.1654124
https://doi.org/10.1145/2486092.2486134
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1109/ASPDAC.2014.6742952
https://doi.org/10.1109/ASPDAC.2014.6742952
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1145/347823.347828
https://doi.org/10.1145/347823.347828
https://doi.org/10.1109/SC.2014.8
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.1109/IJCNN.2018.8489326
https://doi.org/10.1145/3077583


SIGSIM-PADS ’22, June 8–10, 2022, Atlanta, GA, USA Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini

[15] Andreas K Fidjeland, Etienne B Roesch, Murray P Shanahan, and Wayne Luk.

2009. NeMo: A Platform for Neural Modelling of Spiking Neurons Using GPUs.

In Proceedings of the 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, Piscataway, NJ, USA, 137–144.
https://doi.org/10.1109/ASAP.2009.24

[16] Richard M Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM
33, 10 (Oct. 1990), 30–53. https://doi.org/10.1145/84537.84545

[17] RichardMFujimoto. 1990. Performance of TimeWarpUnder SyntheticWorkloads.

In Proceedings of the SCS Multiconference on Distributed Simulation, David Nicol

(Ed.). Society for Computer Simulation International, San Diego, CA, USA, 23–28.

[18] Marc-Oliver Gewaltig and Markus Diesmann. 2007. NEST (NEural Simulation
Tool). Vol. 2. Scholarpedia, Chapter 4. https://doi.org/10.4249/scholarpedia.1430

[19] Samanwoy Ghosh-Dastidar and Hojjat Adeli. 2009. Spiking neural networks.

International journal of neural systems 19 (2009), 295–308. https://doi.org/10.

1142/S0129065709002002

[20] A Goldberg, John A P Sekar, and Jonathan R Karr. 2020. Exact Parallelization of

the Stochastic Simulation Algorithm for Scalable Simulation of Large Biochemical

Networks. (2020). arXiv:2005.05295 [q-bio.MN]

[21] Samuel Greengard. 2020. Neuromorphic chips take shape. Commun. ACM 63, 8

(July 2020), 9–11. https://doi.org/10.1145/3403960

[22] William Gropp. 2012. MPI 3 and Beyond: Why MPI Is Successful and What Chal-

lenges It Faces. In Recent Advances in the Message Passing Interface, Jesper Larsson
Träff, Siegfried Benkner, and Jack J Dongarra (Eds.). Lecture Notes in Computer

Science, Vol. 7490. Springer International Publishing, Berlin Heidelberg, Germany,

1–9. https://doi.org/10.1007/978-3-642-33518-1_1

[23] Alexander Hanuschkin, Susanne Kunkel, Moritz Helias, Abigail Morrison, and

Markus Diesmann. 2010. A general and efficient method for incorporating precise

spike times in globally time-driven simulations. Frontiers in neuroinformatics 4
(Oct. 2010), 1–19. https://doi.org/10.3389/fninf.2010.00113

[24] Suzana Herculano-Houzel. 2012. The remarkable, yet not extraordinary, human

brain as a scaled-up primate brain and its associated cost. Proceedings of the
National Academy of Sciences of the United States of America 109, Supplement 1

(June 2012), 10661–10668. https://doi.org/10.1073/pnas.1201895109

[25] Suzana Herculano-Houzel and Jon H Kaas. 2011. Gorilla and Orangutan Brains

Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution.

Brain, behavior and evolution 77 (2011), 33–44. https://doi.org/10.1159/000322729

[26] Roger V Hoang, Devyani Tanna, Laurence C Jayet Bray, Sergiu M Dascalu, and

Frederick C Harris. 2013. A novel CPU/GPU simulation environment for large-

scale biologically realistic neural modeling. Frontiers in neuroinformatics 7 (2013),
10. https://doi.org/10.3389/fninf.2013.00019

[27] David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming
Languages and Systems 7, 3 (July 1985), 404–425. https://doi.org/10.1145/3916.

3988

[28] Susanne Kunkel, Maximilian Schmidt, Jochen M Eppler, Hans E Plesser, Gen

Masumoto, Jun Igarashi, Shin Ishii, Tomoki Fukai, Abigail Morrison, Markus

Diesmann, andMoritz Helias. 2014. Spiking network simulation code for petascale

computers. Frontiers in neuroinformatics 8 (Oct. 2014), 78. https://doi.org/10.

3389/fninf.2014.00078

[29] Henry Markram. 2006. The blue brain project. Nature reviews. Neuroscience 7, 2
(Feb. 2006), 153–160. https://doi.org/10.1038/nrn1848

[30] Cyrille Mascart, Gilles Scarella, Patricia Reynaud-Bouret, and Alexandre Muzy.

2021. Scalability of large neural network simulations via activity tracking with

time asynchrony and procedural connectivity. (June 2021). https://doi.org/10.

1101/2021.06.12.448096

[31] Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B

Kirpichev, Matthew Rocklin, Amit Kumar, Sergiu Ivanov, Jason K Moore, Sar-

taj Singh, Thilina Rathnayake, Sean Vig, Brian E Granger, Richard P Muller,

Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-

dregosa, Matthew J Curry, Andy R Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru

Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. 2017. SymPy:

symbolic computing in Python. PeerJ Computer Science 3 (Jan. 2017), 1–27.

https://doi.org/10.7717/peerj-cs.103

[32] Kirill Minkovich, Corey M Thibeault, Michael John O’Brien, Aleksey Nogin,

Youngkwan Cho, and Narayan Srinivasa. 2014. HRLSim: a high performance

spiking neural network simulator for GPGPU clusters. IEEE transactions on neural
networks and learning systems 25, 2 (Feb. 2014), 316–331. https://doi.org/10.1109/

TNNLS.2013.2276056

[33] Quang Anh Pham Nguyen, Philipp Andelfinger, Wentong Cai, and Alois Knoll.

2019. Transitioning Spiking Neural Network Simulators to Heterogeneous Hard-

ware. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (Chicago, IL, USA) (SIGSIM-PADS). ACM, New York, NY, USA,

115–126. https://doi.org/10.1145/3316480.3322893

[34] David M Nicol. 1993. The cost of conservative synchronization in parallel discrete

event simulations. J. ACM 40, 2 (April 1993), 304–333. https://doi.org/10.1145/

151261.151266

[35] Daniele M Papetti, Simone Spolaor, Daniela Besozzi, Paolo Cazzaniga, Marco

Antoniotti, and Marco S Nobile. 2020. On the automatic calibration of fully

analogical spiking neuromorphic chips. In Proceedings of the 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE, Piscataway, NJ, USA, 1–8.
https://doi.org/10.1109/IJCNN48605.2020.9206654

[36] Dejan Pecevski. 2009. PCSIM: A Parallel Simulation Environment for Neural

Circuits Fully Integrated with Python. Frontiers in neuroinformatics 3 (2009), 15.
https://doi.org/10.3389/neuro.11.011.2009

[37] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2012. The ROme

OpTimistic Simulator: Core Internals and Programming Model. In Proceedings of
the 4th International ICST Conference on Simulation Tools and Techniques (SIMU-
TOOLS). ICST, Brussels, Belgium, 96–98. https://doi.org/10.4108/icst.simutools.

2011.245551

[38] Matthew D Pickett, Gilberto Medeiros-Ribeiro, and R Stanley Williams. 2013.

A scalable neuristor built with Mott memristors. Nature materials 12 (2013),

114–117. https://doi.org/10.1038/nmat3510

[39] Mark Plagge, Christopher D Carothers, Elsa Gonsiorowski, and Neil Mcglohon.

2018. NeMo: A Massively Parallel Discrete-Event Simulation Model for Neuro-

morphic Architectures. ACM Transactions on Modeling and Computer Simulation
28 (2018), 1–25. https://doi.org/10.1145/3186317

[40] Chi-Sang Poon and Kuan Zhou. 2011. Neuromorphic Silicon Neurons and Large-

Scale Neural Networks: Challenges and Opportunities. Frontiers in neuroscience
5 (2011), 108. https://doi.org/10.3389/fnins.2011.00108

[41] Tobias C Potjans and Markus Diesmann. 2014. The Cell-Type Specific Cortical

Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network

Model. Cerebral cortex 24 (2014), 785–806. https://doi.org/10.1093/cercor/bhs358

[42] Bruno R Preiss, Wayne M Loucks, and Ian D Macintyre. 1994. Effects of the

Checkpoint Interval on Time and Space in Time Warp. ACM Transactions on
Modeling and Computer Simulation 4 (1994), 223–253. https://doi.org/10.1145/

189443.189444

[43] Francesco Quaglia and Andrea Santoro. 2003. Non-Blocking Checkpointing

for Optimistic Parallel Simulation: Description and an Implementation. IEEE
Transactions on Parallel and Distributed Systems 14 (2003), 593–610.

[44] Sanjiv Shah and Mark Bull. 2006. OpenMP. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing (Tampa, Florida) (SC). ACM, New York, NY, USA,

13. https://doi.org/10.1145/1188455.1188469

[45] Renan O Shimoura, Nilton L Kamiji, Rodrigo F O Pena, Vinicius L Cordeiro,

Cesar C Ceballos, Romaro Cecilia, and Antonio C Roque. 2018. [RE] The Cell-Type

Specific Cortical Microcircuit: Relating Structure And Activity In A Full-Scale

Spiking Network Model. Zenodo 34 (2018), 1537–1557. https://doi.org/10.5281/

ZENODO.1244116

[46] Donald L Snyder and Michael I Miller. 2012. Random Point Processes in Time and
Space (second ed.). Springer, New York, NY, USA. https://doi.org/10.1007/978-1-

4612-3166-0

[47] Athul Sripad, Giovanny Sanchez, Mireya Zapata, Vito Pirrone, Taho Dorta, Sal-

vatore Cambria, Albert Marti, Karthikeyan Krishnamourthy, and Jordi Madrenas.

2018. SNAVA—A real-time multi-FPGA multi-model spiking neural network

simulation architecture. Neural networks: the official journal of the International
Neural Network Society 97 (Jan. 2018), 28–45. https://doi.org/10.1016/j.neunet.

2017.09.011

[48] Marcel Stimberg, Romain Brette, and Dan F M Goodman. 2019. Brian 2, an

intuitive and efficient neural simulator. eLife 8, e47314 (Aug. 2019), e47314.

https://doi.org/10.7554/eLife.47314

[49] Gianluca Susi, Pilar Garcés, Emanuele Paracone, Alessandro Cristini, Mario

Salerno, Fernando Maestú, and Ernesto Pereda. 2021. FNS allows efficient event-

driven spiking neural network simulations based on a neuron model supporting

spike latency. Scientific reports 11, 1 (June 2021), 12160. https://doi.org/10.1038/

s41598-021-91513-8

[50] Tim P Vogels and L F Abbott. 2005. Signal Propagation and Logic Gating in

Networks of Integrate-and-Fire Neurons. The Journal of neuroscience: the official
journal of the Society for Neuroscience 25, 46 (Nov. 2005), 10786–10795. https:

//doi.org/10.1523/JNEUROSCI.3508-05.2005

[51] RunchunMWang, Chetan S Thakur, and André van Schaik. 2018. An FPGA-Based

Massively Parallel Neuromorphic Cortex Simulator. Frontiers in neuroscience 12
(April 2018), 213. https://doi.org/10.3389/fnins.2018.00213

[52] Esin Yavuz, James Turner, and Thomas Nowotny. 2016. GeNN: a code generation

framework for accelerated brain simulations. Scientific reports 6 (Jan. 2016), 18854.
https://doi.org/10.1038/srep18854

https://doi.org/10.1109/ASAP.2009.24
https://doi.org/10.1145/84537.84545
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065709002002
https://arxiv.org/abs/2005.05295
https://doi.org/10.1145/3403960
https://doi.org/10.1007/978-3-642-33518-1_1
https://doi.org/10.3389/fninf.2010.00113
https://doi.org/10.1073/pnas.1201895109
https://doi.org/10.1159/000322729
https://doi.org/10.3389/fninf.2013.00019
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/3916.3988
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1038/nrn1848
https://doi.org/10.1101/2021.06.12.448096
https://doi.org/10.1101/2021.06.12.448096
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/TNNLS.2013.2276056
https://doi.org/10.1109/TNNLS.2013.2276056
https://doi.org/10.1145/3316480.3322893
https://doi.org/10.1145/151261.151266
https://doi.org/10.1145/151261.151266
https://doi.org/10.1109/IJCNN48605.2020.9206654
https://doi.org/10.3389/neuro.11.011.2009
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.1038/nmat3510
https://doi.org/10.1145/3186317
https://doi.org/10.3389/fnins.2011.00108
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1145/189443.189444
https://doi.org/10.1145/189443.189444
https://doi.org/10.1145/1188455.1188469
https://doi.org/10.5281/ZENODO.1244116
https://doi.org/10.5281/ZENODO.1244116
https://doi.org/10.1007/978-1-4612-3166-0
https://doi.org/10.1007/978-1-4612-3166-0
https://doi.org/10.1016/j.neunet.2017.09.011
https://doi.org/10.1016/j.neunet.2017.09.011
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1038/s41598-021-91513-8
https://doi.org/10.1038/s41598-021-91513-8
https://doi.org/10.1523/JNEUROSCI.3508-05.2005
https://doi.org/10.1523/JNEUROSCI.3508-05.2005
https://doi.org/10.3389/fnins.2018.00213
https://doi.org/10.1038/srep18854

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Time Warp Synchronisation
	2.2 Spiking Neural Networks

	3 Related Work
	4 Simulating Large SNNs
	4.1 Neuron Models for PDES SNN Simulations
	4.2 From Neurons to Logical Processes
	4.3 Dynamic Spiking Events
	4.4 Publish/Subscribe Events

	5 Experimental Results
	5.1 Benchmarks
	5.2 Correctness and Accuracy Results
	5.3 Performance Results

	6 Conclusions and Future Work
	References

