
Practical Tie-Breaking for Parallel/Distributed Simulations

Andrea Piccione
Huawei Munich Research Center

andrea.piccione@huawei.com

Alessandro Pellegrini
Tor Vergata University of Rome

a.pellegrini@ing.uniroma2.it

Abstract—In this paper, we discuss a tie-breaking strategy
based on a bitwise comparison of event payload that allows
parallel and distributed discrete-event simulations to observe
a deterministic order in the execution of events, even in
the presence of event ties. This approach provides practical
usability whenever model-assisted tie-breaking is unavailable,
thus ensuring that multiple simulation executions provide
deterministic behaviour and repeatable results. Moreover, it
ensures that the selected order of events is also consistent
with sequential executions. We discuss the theory behind this
strategy and experimentally show that the performance drop
is imputable to event queue management when relying on tie-
breaking strategies like the ones discussed in this work.

1. Introduction

Simultaneous events [6] are a relevant problem for
discrete-event simulation (DES). In the physical world, the
occurrence of simultaneous events is something that the
physical system can handle autonomously by its very nature.
When attempting to translate the workings of the physical
world into a simulation model, the modeller must explicitly
handle simultaneous events. If simultaneous events are not
additive and commutative, processing them in a different
order may lead to different simulation results. In some cases,
choosing an incorrect order may lead to error conditions that
cause the simulation to fail. This concept is well understood
in the parallel/distributed simulation community [16], [21],
but in the case of simultaneous events, such error phenom-
ena can also occur in purely sequential simulations.

The only way to ensure that a simulation is correct in
the case of simultaneous events is to entrust the modeller,
through the use of a tie-breaking function, with the task of
finding a correct ordering for the invariants of the portion of
the world one is trying to simulate. For example, the works
in [3], [8] theorise the need to handle sets of simultaneous
events at the model level. Providing the event dispatcher
with a set makes it possible to ask the model to deal with
them in a manner consistent with its characteristics.

In the case of optimistic parallel/distributed simula-
tions [7], this approach may be hard to implement. The spec-
ulative nature of forward execution may still lead to handling
sets of events when they are not fully formed because an
antimessage could be received before the corresponding
positive one. However, in the case of sequential simulation,
this method may be sufficient to handle correctness, except
when some events in a set with the same timestamp generate
a new simultaneous event. From a practical point of view,

this interaction pattern is important, as it allows for the
implementation of sensing capabilities in the models [5],
which are relevant, e.g., for agent-based simulation [1]. This
is so relevant that, in seminal Time-Warp works, Jefferson
et al. [9] devised the concept of query messages to solve
the dichotomy between event sets and the need to access
portions of the simulation state in read-only.

The scenario in which the modeller has provided a tie-
breaking function capable of correctly handling simultane-
ous events may be ideal. We may assume that it is available
only when the simulation model is stable, complete, and
correct. Indeed, in the life cycle of a simulation model [18],
[22], the modeller may prioritise developing the core dynam-
ics of the model and delay implementing the tie-breaking
function. Similarly, if the model undergoes evolutionary
maintenance or is integrated into a simulation of simulations
to reuse existing models in larger models, the tie-breaking
function may need to be modified to restore correctness
properties, which may be time-consuming. In this case, the
modeller may decide to suspend the use of the current tie-
breaking function and redesign it later.

In this dynamic perspective on models, a significant con-
trast emerges between parallel and sequential executions of
the same model. Sequential models, despite the occurrence
of simultaneous events, can possess the unique quality of
exhibiting deterministic executions. On the contrary, when
the model is executed on parallel or distributed architectures,
two executions may yield different outcomes if simultaneous
events are not properly managed. This holds true even
when employing the same seed to configure pseudo-random
number generators for stochastic simulations.

This situation presents a clear problem. The modeller
may find it necessary to execute numerous runs with iden-
tical configurations in order to compare simulation results
for purposes such as debugging or performance evaluation.
In the case of parallel or distributed simulations, runtime
environment developers are thus compelled to explicitly
manage simultaneous events, even if the modeller has not
specified a model-oriented tie-breaking function.

In this paper, we explore theoretically and experimen-
tally a practical tie-breaking function based on a bitwise
comparison of the event payload that ensures the repro-
ducibility and repeatability of executions. Unlike existing
solutions in the literature, this approach enables the in-
corporation of domain information directly into the sim-
ulation model if required by the modeller. Consequently,
the established ordering ensures that ambiguity between

two simultaneous events arises only when the model itself
cannot differentiate between these distinct events, even at
the application level.

Specifically, our analysis reveals that, in paral-
lel/distributed execution, any uncertainty regarding the or-
dering of two events only occurs when the sequential model
is also faced with the task of determining the order between
two perfectly identical events. Notably, the discussed tie-
breaking strategy maintains the same event ordering re-
gardless of whether the model is executed sequentially or
in parallel, even when employing optimistic approaches.
Therefore, deterministic executions can be achieved even in
the case of parallel/distributed executions in the absence of
tie-breaking functions at the model level. This strategy may
suffer from incomplete information related to the delay in
receiving certain events. However, this phenomenon is inher-
ent in the concept of speculative simulation aggressiveness
and can therefore be solved by techniques already present
in the literature [9].

The remainder of the paper is structured as follows. In
Section 2, we formalise the problem we are dealing with and
provide useful insights into our methodology. Related work
is discussed in Section 3. We present the tie-breaking strat-
egy in Section 4 and report the results of our experimental
assessment in Section 5.

2. Problem Statement

In a DES, whether sequential or parallel, the simulation
state is updated by the execution of events that are the atomic
unit of processing. An event has an all-or-nothing nature: it
must be executed entirely or not at all. Therefore, the sim-
ulation state undergoes a set of updates each time an event
is processed. Given a simulation that begins with an initial
state S0, the execution of an event e1 at simulation time t1
can be seen as the application of a transition function f that
produces a state update, i.e.:

S1 = f(e1, S0) (1)

The succession of events leads to the final simulation
state S∗ through an iterative application of f :

S∗ = f(en, . . . , f(e2, f(e1, f(e0, S0)))) (2)

The order in which events are executed is determining
to attain a terminal state of the simulation of interest. Given
a sequence of events e1, e2, . . . , en, reversing the execution
of two events ei, ej with i ̸= j can cause an alteration in
the trajectory of the simulation. Indeed, if the events ei and
ej are not commutative with respect to the function f , i.e.
if f(ej , f(ei, Sh)) ̸= f(ei, f(ej , Sh)), it is easy to observe
that after a sequence of m events we have that:

Sm = f(em, . . . , f(ej , f(ei, . . . , f(e1, f(e0, S0))))) ̸=
S′
m = f(em, . . . , f(ei, f(ej , . . . , f(e1, f(e0, S0)))))

(3)

In the classical DES approach, the presence of a data
structure known as the future event set (FES) is essential.
The FES is commonly implemented as a priority queue,

LPi 2
5

5 LVT

LPj 3.5 LVT

Figure 1: Lack of strict total ordering. The two events at
logical time 5 should “happen” at the same time: it is
unspecified which of the two to dequeue first from the FES.

allowing queries to extract the event with the highest pri-
ority. Due to the temporal nature of simulations, priority is
typically associated with simulation time.

The concept of event simultaneity refers to a situation in
which, at a particular timestamp t̄, there exist two (or more)
events that need to be processed. This presents a challenge
when it comes to extracting events from the FES since two
events, e1 and e2, are associated with identical timestamps
t1 = t2 = t̄. In such cases, there is no strict total ordering
between e1 and e2 based on logical time alone. This scenario
is illustrated in Figure 1. Here, we consider the problem of
tie-breaking as the need to reconstruct a deterministic order
over all events, even when two or more are associated with
the same timestamp, formally:

Definition 2.1 (Tie-Breaking Oracle). The operation of ex-
tracting the next event from the Future Event Set is entrusted
to an oracle O which determines the next event e to be
executed to obtain a final simulation state S∗ consistent with
the behaviour of the real-world system being simulated.

It is evident that the model’s dynamics cannot be dis-
regarded when defining the oracle O. As a result, it has
been acknowledged in the literature [8] that the modeller
must provide a tie-breaking function to ensure the proper
implementation of O, especially when dealing with noncom-
mutative events. However, there may be situations where
the oracle O is unavailable due to factors related to the
simulation development cycle or the evolution/composition
of the model. From the perspective of model execution
support, it is still necessary to establish a deterministic total
order for the events in the FES.

We note that the output of a correct simulation must be
necessarily deterministic, even in the case of ties. Sequential
simulations suffer less than parallel/distributed simulations.
Indeed, determinism is a common property of FES im-
plementations; however, if the data structure employed for
the FES is unstable with respect to sorting, then even a
serial simulation may be nondeterministic. However, the
deterministic ordering that occurs during a sequential simu-
lation may not necessarily represent the characteristics of the
physical system being investigated. Therefore, for sequential
simulations, Definition 2.1 can be relaxed by introducing the
concept of partial oracle P according to the following

Definition 2.2 (Partial Tie-Breaking Oracle). The operation
of extracting the next event from the Future Event Set is
entrusted to a partial oracle P , which determines the next
event e to be executed so as to obtain a sequence of events
{e0, e1, . . . , en} to reach a final state of simulation S̃∗ such
that e0 ≺ e2 ≺ . . . ≺ en

where ≺ is some total order defined by the oracle on the
sequence of events. For what we have discussed above,
even if the FES is stable, it is possible that S̃∗ ̸= S∗—
hence the partiality of the oracle P . Anyhow, Definition 2.2
has an important property related to the reproducibility and
repeatability of executions in sequential simulations with
a stable FES. Since the oracle P chooses a sequence of
events in a deterministic manner, two different executions
configured exactly the same way will lead to the same
final state of simulation S̃∗. Any pseudo-random number
generator seeds in the case of stochastic models must also
be included in the model configuration.

We argue that, in the case of parallel/distributed simu-
lations, emulating the partial oracle P , according to Def-
inition 2.2, is complicated and also not useful. In fact,
the behaviour of P depends on the characteristics of the
sequential simulation implementation; in other words, it is
biased in a way that is not representative of the model
dynamics. Still, we are left with the problem of parallel
nondeterministic simulations. In fact, two different parallel
executions may lead to the scenario shown in Figure 2. Here,
we are depicting an extremely simple scenario in which
two users (modelled as two distinct LPs) contact the same
service over a network. Both requests arrive at the same
timestamp (t = 2). Assuming that the server has a delay
of 1 virtual second to process a request, the order in which
they are received affects the response time. Imagine that
user A can tolerate a delay of up to 2 seconds, while user
B can tolerate a delay of up to 3 seconds. In the case
of the scenario in Figure 2b, the result of the simulation
would be that the configuration does not respect the model’s
invariants, while in the execution in Figure 2c, the solution
would be acceptable. To illustrate the bias of the partial
oracle P , it is worth noting that one serial execution engine
might consistently and deterministically generate the output
shown in Figure 2b, while another serial engine implemen-
tation could consistently and deterministically replicate the
situation depicted in Figure 2c.

The processing and commit order of the events depend
on many factors external to the simulation, such as schedul-
ing dynamics at the operating system level or network laten-
cies. Therefore, to be able to guarantee the reproducibility
of executions even in parallel/distributed simulations, it is
necessary to find a strategy that does not rely on local
implementation properties such as the partial oracle P of
Definition 2.2.

3. Related Work

The handling of simultaneous events is an important
topic for DES that has received a lot of attention from
the community. Interestingly, the seminal contribution [11]
does not consider the problem of simultaneous events from
the point of view of models that may suffer from non-
commutativity in updating states. In fact, concerning simul-
taneous events, Lamport merely states that two contempo-
raneous events do not have an impact on mutual causality.
However, while not creating causality problems, two simul-
taneous events may lead to correctness issues with respect

to model characteristics, possibly leading to errors in results
or crashes in simulation [16]. In [7], the problem of simul-
taneous events is already made apparent in the context of
optimistic simulation. Indeed, the contribution showed how,
for concurrency control simulations in distributed databases,
it is possible to use the event source to resolve ties between
events.

Several proposals have addressed the construction of a
deterministic ordering based on additional bits used along-
side the timestamp [2], [10], [12], [13], [23], [24]. The main
difference between these proposals is from whence these
bits were taken. In [13], two fields are appended to the
application-defined time stamp, called the age and id; in
[10], a simulator priority and an event level (similar to the
age above) are used to add an ε-delay to the timestamp1;
in [23] the additional bits are based on user rankings and
a Lamport clock [11]; in [2] Hyperreal numbers are used
to determine infinitesimal time instants that can be used to
extend the standard notion of time; in [24] the timestamp
is coupled with a data structure that allows the modeller to
control the event order; in [12] controllable and deterministic
random-number generators are used. All these solutions,
independently of the level of transparency provided to the
modeller, can suffer (with different probability and under
different scenarios) from collisions that can make the order-
ing of events nondeterministic. Conversely, in our proposal,
such collisions are only observed in scenarios where the
simulation model trajectory would be totally unaffected.
Therefore, our solution remains deterministic also in the
case of collisions unless the model requires to explicitly
deal with superposition effects, in which case any form
of transparent platform-level tie-breaking cannot serve as
a solution to the problem.

Since the approach in [12] exploits controllable random-
number generators, it also allows exploring multiple order-
ing of events, thus enabling a broader statistical analysis
of models. This approach was also envisaged in previous
work [19], where the importance of studying the outcome
of multiple ordering of simultaneous events was highlighted.
Another relevant contribution from [12] is a variant of the
PHold benchmark [4] to study the behaviour of ties. We
leverage this model to test our implementation. In general,
we share the reproducibility and repeatability goals of [12],
although we follow a different path to tie-breaking.

The work in [23] also discusses the implications of ties
broken at the platform level when there are zero-look-ahead
messages. It identifies possible sources of causality incor-
rectness. The problems of zero-lookahead in the context of
the High-Level Architecture (HLA) are discussed in [5]; we
take care of them in Section 4.1.

In [25], the author claims that, in the case of simul-
taneous events, it would be correct to present averaged
results over all possible orderings. This kind of exploration
can be difficult or significantly expensive for large-scale
simulations. Moreover, the goal differs from ours, as we

1. We note that, while ensuring deterministic executions in parallel
scenarios, changing the timestamp of an event could deviate the results
from the sequential simulation.

A

B

LP0

LP1

LP2

(a) Simulated Scenario.

LP0 1.1 4 LVT

LP1 0.9 3 LVT

LP2
2

2 LVT

(b) First Possible Execution.

LP0 1.1 3 LVT

LP1 0.9 4 LVT

LP2
2

2 LVT

(c) Second Possible Execution.

Figure 2: Inconsistent Runs in a Parallel/Distributed Simulation.

strive to enforce reproducible and repeatable simulations
rather than exploring the space of possibilities.

Some proposals [8], [20] explicitly demand from the
modeller a solution to ties by delivering to the model sets
or bundles of events. The model must explicitly handle such
sets and process the events according to the model’s logic.
Similar approaches can be found in [3], where transition
collisions are considered a model’s responsibility and are
handled using the user-defined confluent transition function.
While completely non-transparent, these approaches also
allow accounting for the cumulated effects of tying events,
which is impossible when ties are broken at the simulator
level. In practise, these works advocate for the need for the
Oracle O as defined in Definition 2.1. Clearly, this approach
contrasts the practical goals of our proposal, especially when
the implementation of a model is unstable.

In [21], the authors discuss the tie-breaking functions
in the Time Warp Operating System (TWOS). Although
this descriptive work hints that the authors perform a bit-
wise comparison between event payloads to construct event
sets, few methodological and no implementation details are
provided. This lack of detail has led the work in [23] to
conclude that the approach is not correct. With the theo-
retical framework that we present in this paper, it becomes
clear how and when practical tie-breaking schemes, such as
the one we discuss, are correct and viable. Moreover, we
clarify why the event class (or type) is not necessary for
tie-breaking, differently from [21].

4. The Practical Tie-Breaking Technique

The tie-breaking mechanism that we propose and study
in this paper is based on the intuition that if two events
are indistinguishable by the simulation model, they can be
executed in any order without affecting the final state of the
simulation. The same concept also holds for sequences of
indistinguishable events. To better formulate our intuition,
we provide a definition of ties that is compatible with the
logical framework discussed in Section 2. Let e be a generic
event injected into the system, associated with the timestamp
te at which the event must be executed. A timestamp-based
tie follows the definition below.

Definition 4.1 (Timestamp-based Scheduling Equivalence).
Two events e1 and e2 are scheduling equivalent, namely
e1 ∼ e2, if te1 = te2 .

The goal of the Partial Oracle P discussed in Defini-
tion 2.2 is therefore to enhance the scheduling equivalence
from Definition 4.1 by enforcing an ordering ≺P that comes

from the rules enforced by P . Part of the body of work dis-
cussed in Section 3 has effectively tried to extend this notion
of timestamp-based scheduling equivalence by defining an
ordering ≺P that can be applied to a set of events ei such
that tei = tej∀i ̸= j. The simplest definition of ≺P that has
been considered in the early literature and in various early
implementations of PDES runtime environments extends the
previous definition of events, in various forms. In particular,
we can consider an event e as a tuple e = ⟨te, ce, se, de⟩,
where ce is the event class (also referred to as event type),
se is the sender of the event and de is its destination. We can
practically assume that we can build some (lexicographic)
ordering on ce, se, and de. Indeed, in many implementations,
these elements of the tuple are already numbers, but it is
straightforward to define some mapping to N or R that can
define an ordering over the values. Then, we can enhance
Definition 4.1 as follows:

Definition 4.2 (Enhanced Scheduling Equivalence). Two
events e1 and e2 are scheduling equivalent, namely e1 ∼ e2,
if te1 = te2 , ce1 = ce2 , se1 = se2 , de1 = de2 .

There are two important implications of Definition 4.2.
First, such a definition of equivalence may create a bias
with respect to the choices that the tie-breaking Oracle O
of Definition 2.1 might make. Indeed, regardless of the
ordering of the elements, P could choose differently from
O since, by definition, P is unaware of the dynamics of the
modelled system. For our practical purposes, this bias might
be tolerable: P is not intended to be a correct replacement
of O, but an acceptable approximation if O is not available.

The strongest implication, however, is that ≺P defined
in accordance with Definition 4.2 is a weak total order.
Therefore, using ≺P defined in this way does not solve
the problem at all since it is still possible to find two events
e1 ∼ e2 such that the scheduler of the runtime environment
is unable to make a deterministic choice, even if their pro-
cessing order could impact the simulation trajectory. Since
the goal of our approach is to support reproducibility and
replicability, Definition 4.2 is not sufficient.

As mentioned, several of the works discussed in Sec-
tion 3 have addressed this problem by implicitly providing
an extension of Definition 4.2 that allows this problem
to be addressed. In particular, it is possible to construct
an ordering ≺P that imposes a deterministic ordering by
extending the definition of the event e. Indeed, we can
consider an event e as a tuple e = ⟨te, ce, se, de, be⟩, where
be are arbitrary bits provided by the model developer that
implicitly describe the priority of e over other tying events.
Abiding by this definition, we can construct an improved

ordering ≺P leveraging the following

Definition 4.3 (User-Defined Enhanced Scheduling Equiv-
alence). Two events e1 and e2 are scheduling equivalent,
namely e1 ∼ e2, if te1 = te2 , ce1 = ce2 , se1 = se2 ,
de1 = de2 , be1 = be2 .

At first sight, this definition should solve the problem of
ties. Indeed, the modeller can set the value of be arbitrarily,
thus deciding what is the precedence between events. How-
ever, in our reference scenario, this strategy is highly ob-
jectionable for two reasons. The first concerns transparency
towards the modeller: if they are asked to provide additional
information to define an Oracle P that succeeds in resolving
any remaining ties, the authors of this work then wonder
why this strategy is better than explicitly requesting that the
Oracle O be realized directly. Indeed, as discussed in [8],
the quality of O is clearly superior to that of P , from a
modelling perspective. Reasoning on this aspect, a solution
defining an event e as the simpler tuple e = ⟨te, be⟩ may
also be a better solution, as it would eliminate the artificial
bias introduced by Definition 4.2. Moreover, in our reference
scenario, we consider the model as an evolving object, so
the properties according to which be should be valued could
easily change. Therefore, this is not a practical, life-cycle-
oriented approach to models.

As mentioned, this problem related to transparency to-
wards the modeller was addressed in [12] by deciding to
entrust the values of be to a pseudo-random number gen-
erator with special properties. This way, it is both possible
to explore alternative simulation trajectories and obtain re-
producible executions without bothering the modeller. We
follow an alternative path in our proposal as we reason about
indistinguishability between events.

Two events are actually indistinguishable if they expose
the exact same information to the simulation model. To
better formulate this concept, we redefine an event e as the
tuple e = ⟨te, pe⟩, where pe is the event’s payload2. We can
then define indistinguishable events as follows.

Definition 4.4 (Indistinguishable Events). Two events e1
and e2 are indistinguishable, namely e1 =? e2, if te1 = te2 ,
and pe1 = pe2 .

According to this definition, two events are indistin-
guishable when their timestamps and payloads are bitwise
identical. We do not consider the pair of LPs involved and
the event’s class as a necessary part of the event payload, as,
in the general case, they may not be needed by the model
logic. Moreover, if we take into account indistinguishable
events, it is not important to make a deterministic choice
as to which events execute first on different LPs: indeed,
given the concurrent nature of Time Warp, it is sufficient to
provide local guarantees—we discuss aspects of cross-LP
causality in Section 4.1.

It is interesting to ask what effects at the model level
such indistinguishability may entail. We note that the fol-
lowing property must hold.

2. We consider the event payload as the information that is included in
an event message, i.e. the collection of all the event properties observable
by the model.

Property 4.1. Regardless of the order in which a sequence
of indistinguishable events is processed, the simulation re-
sult is unchanged.

If, for a sequence of events, changing their processing
order changes the result of the simulation, that implies
that at least a pair of events e1, e2 in the sequence are
distinguishable by the model. In other words, a model could
use the difference in the observed information in e1, e2 to
order them deterministically. This choice would be part of
the perfect oracle O, but in its absence, we will show that a
simulation engine can always take a deterministic, although
biased, choice.

Finally, relying on Definition 4.4, we can build a total
ordering ≺L in the following way:

Definition 4.5 (Lexicographic Tie-breaking). Given two
events e1 and e2, e1 ≺L e2 ⇔ te1 < te2 ∨(te1 = te2 ∧pe1 ≤
pe2

From the point of view of the simulation engine, the pay-
load comparison does not need to understand the semantics
of its content, i.e., a simple bitwise comparison is sufficient
to always break ties3. We observe that, e1 ≺L e2∧e2 ≺L e1
if and only if e1 =? e2; in other words, our total order is
unable to order two events only if they are indistinguish-
able. This means that ≺L defines an order of events that
deterministically induces the same simulation trajectory. Our
approach also has the valuable property of being indepen-
dent of the initialisation order of the LPs. On the contrary,
employing an ordering based on any scheduling equivalence
defined above can result in a scenario where the initialisation
order determines the order of tied events scheduled by LPs
during initialisation. This makes the outcome of the whole
simulation dependent on the order of evaluation of LPs.

Model developers sometimes unknowingly rely on the
ordering implicitly guaranteed by some scheduling equiva-
lence property, which can lead to models that subtly depend
on this behaviour to function correctly. For instance, in an
agent-based model, an agent departure and return may be
scheduled at two randomly-sampled times t and t + δt,
respectively. If δt = 0, this would mean that the logical
dependence of the two events is encoded only in their
scheduling order. More complex interactions can lead to
difficult-to-debug issues where the model works correctly
in a sequential simulation but crashes in parallel execution.

By using our tie-breaking strategy, we can ensure that a
model functions consistently in both sequential and parallel
execution modes. If the sequential simulation that uses our
tie-breaking strategy runs correctly, then—assuming that
speculative simulation trajectories do not cause irreparable
side effects [16]—the parallel execution will also be correct.

4.1. Handling Cross-LP Causality

To understand the implications of our tie-breaking strat-
egy, we have to discuss the implications of our approach
when cross-LP interactions are observed. There are two

3. If the modeller wants to enforce a particular ordering, it is still possible
by tweaking the content of the payload.

LP0 1.9 LVT

LP1
3.5

3.5 LVT

LP2 1.7 LVT

Figure 3: Simultaneous events by different LPs.

LP0 B LVT

LP1

C
A LVT

Figure 4: Zero-Lookahead Cycle.

cases of interest here. The first is depicted in Figure 3, where
one LP is the target of two simultaneous events generated by
two different LPs. Our tie-breaking strategy leaves no doubt
in this case. If differences between events can be identified,
the ordering will be well-defined and reproducible. If the
events are indistinguishable, then Property 4.1 holds, and
the order in which these events are executed is irrelevant:
the simulation results will be unchanged.

A more interesting implication of our practical tie-
breaking methodology relates to zero-lookahead cycles. Let
us consider the scenario depicted in Figure 4. Here there is a
circular causal dependence A → B → C, which involves two
different LPs. Let us consider the most difficult problem,
i.e. when events A and C have empty payloads and the
other properties are the same. We observe that for a correct
simulation, we must have that A ≺L B and B ≺L C. Also,
our ordering ≺L defined according to Definition 4.5 is not
able to make a choice, i.e.: A =? C, so we must also have
B =? C and B =? A.

According to our defined total order, C would not be
a straggler for A. This property can be generalized, thus
stating that, if an LP has executed an event e1 and sub-
sequently receives an event e2 =? e1, the reception of e2
must not cancel the execution of e1. Apparently, this can
be regarded as contrary to the concept of reproducible and
repeatable execution. Once again, thanks to Property 4.1,
we consider the two executions (e1 before e2 and e2 before
e1) to be perfectly equivalent with respect to the final result
of the simulation.

Interestingly, Property 4.1 can also be applied to relax
the implementations of the data structures used for the FES.
Indeed, should A and C be reprocessed silently due to
the receipt of a straggler, it is irrelevant whether they are
reprocessed in the order A, C or in the order C, A. This
is a strong implication of Property 4.1: indeed, should the
events be reprocessed in the order C, A we would be faced
with a causality violation that can be ignored.

If, on the other hand, the two events are distinguishable,
then a deterministic order can be imposed to decide if the
execution is consistent or not. The reasoning we have just
set out applies to zero-lookahead cycles, and by extension, it
can be applied to any form of zero-lookahead events. There-
fore, we can exploit the definition of indistinguishability

between events to solve the management of zero-lookahead
events locally as well.

4.2. Implementation Details

One advantage of our proposed tie-breaking strategy
is that it can be evaluated completely locally to the LP,
therefore making it suitable for parallel and distributed
simulations. Implementing this approach in an existing sim-
ulation engine only requires a few changes. In conservative
simulations, the scheduling policy needs to be expanded
so as to consider the bitwise comparison of the payloads
in case of event ties. In optimistic simulations, it is also
necessary to include the extended tie-breaking logic in the
straggler detection mechanism. No other significant changes
are needed.

One important caveat to note with this tie-breaking
method is that in practical implementations, especially in
low-level languages like C, the determinism of bitwise com-
parisons can be skewed by uninitialized data contained in the
event payload. This issue can arise due to several reasons,
such as the model failing to initialize some members of the
event payload, the presence of padding bytes in the event
payload structure, or the model writing uninitialized bytes
in the event payload.

Although addressing these issues may demand effort
from the model developer, there are several straightforward
strategies that can be useful for their mitigation. For ex-
ample, padded data structures can be detected at compile
time using GCC’s -Wpadded flag. During debugging, tools
such as Valgrind [15] can be employed to verify whether a
tie has been broken due to uninitialised bytes. Programming
languages may offer additional alternative solutions to some
of the issues mentioned earlier. For example, in C++, a
padding-free comparison can be implemented using tem-
plate meta-programming techniques such as those provided
by the Boost.PFR library.

4.3. Relations with Other Tie-Breaking Schemes

Breaking ties by comparing event payloads bitwise is ef-
fective but may result in an event order that is not meaning-
ful model-wise. In addition, as discussed above, modellers
are accustomed to the use of event classes to handle potential
ties. However, this problem can be solved easily. Indeed, it
is sufficient for the modeller to insert into the model payload
the additional information (such as the event class) that it
intends to be used to break the ties. By doing so, we can
elegantly solve the problem outlined earlier with the agent-
based model by assigning two different classes to depart
and return events. Our experience with model development
suggests that prioritizing specific event classes over others
can already solve most of the issues related to tied events.

From this discussion, it is therefore clear that our prac-
tical tie-breaking approach is not at odds with other system-
level solutions to solve this problem. In fact, it can be
viewed as a generalisation of those approaches. Any of
the strategies based on Properties 4.1–4.3 (and proposals

based on additional bits discussed in Section 3) can be re-
implemented within an ordering defined according to our
strategy.

However, there are two ways to materialise these re-
lations. The simplest involves realising the change at the
runtime environment level: the environment developer can
transparently insert within events any information they wish
to be considered by the tie-breaking approach we have
presented. With this strategy, different properties can be
guaranteed transparently to the modeller.

Nevertheless, this possibility poses a problem as it in-
troduces a bias that the modeller may not be aware of,
similar to many methods discussed in Section 3. In con-
trast, our strategy avoids introducing biases stemming from
simulation engine details. Therefore, the second way is to
let the modeller explicitly include in the event payload as
much information as they deem useful for ordering the
events, with proper encoding. In this way, it is possible
to create simulation environments that are anyhow correct
and support repeatable and replicable executions. The model
developer still has control over the choices made by the
simulator.

Conversely, if a model is unaware of the attributes of our
tie-breaking policy, it will not enhance the events with tie-
breaking information and will not establish a meaningful
order among the members of its event payloads. In such
a scenario, tie-breaking is biased, but this stems solely
from the way the model generates events, and the resulting
ordering still remains deterministic. In this sense, the prac-
ticality of our approach is greater, as it allows transparent
and non-transparent approaches to be combined in a single
implementation.

5. Experimental Assessment

For our experimental assessment, we implemented the
proposed tie-breaking strategy in ROOT-Sim [17], a parallel/
distributed discrete event simulator. Our evaluation focuses
on two aspects: the performance impact and the effect on
model accuracy when compared to a version of the simulator
that treats tied events as part of the same equivalence class,
resulting in their execution in any order they are delivered.
The experimental evaluation was run on a machine equipped
with two Intel® Xeon™ e5-2699v4 processors @2.0 GHz,
each consisting of 22 physical cores and 44 hyperthreads,
for a total of 44 physical cores and 88 hyperthreads. It has
256 GB of RAM, even though the maximum size of the
resident set utilized by the runs is approximately 42GB.

5.1. Testbed Applications

We evaluated three models and aimed to use config-
urations similar to [12]. Table 1 provides an overview of
the four model configurations. Results are averaged over 20
runs, with the highest observed coefficient of variation being
approximately 0.05, indicating reasonably reliable results.

The first considered model is the well-known PHold
synthetic benchmark [4]. It models a simple communication
pattern where LPs send messages to other LPs at random

TABLE 1: Model configurations.

Model #LPs Remote events Committed events

PHOLD 221 10% ∼ 527M
ETIES-easy 65536 50% ∼ 393M
ETIES-hard 131072 10% ∼ 1100M
TBC 16384 ∼ 80% ∼ 739M

times. The model is characterized by its simplicity and
scalability, making it a popular choice for testing parallel
simulation frameworks.

The event-ties (E-TIES) model is a synthetic benchmark
that investigates how simulation engines handle large vol-
umes of tied events. It operates in rounds that are triggered
every unit of virtual time, where each LP starts one or more
chains of tied events. If an LP receives an event as part of
a chain, it can extend it or terminate it if a pre-configured
length is reached. Additionally, if an LP A terminates a
chain and happens to be the first chain initiated in that round
by another LP B, then A sends an event to B to schedule
the next round, effectively closing the chain. The logical
dependence chains in this model are long and can stress-
test tie-breaking implementations.

We examined two E-TIES configurations with distinct
features, as presented in Table 1. The easy configuration
was designed such that in each round, each LP only initiates
a single chain of events with a maximum length of two.
On the other hand, the hard configuration involves each LP
producing three chains of length five, which results in far
more demanding tie-breaking activities.

The tuberculosis (TBC) model [14] is a real-world agent-
based Susceptible-Infected-Recovered (SIR) model that fo-
cuses on the spread of epidemics in large populations.
Agents move around a geographical area consisting of
several LPs, with each LP maintaining a record for each
agent. The individuals in the model can be in the healthy,
infected, sick (active TBC), under treatment, or cured state.
The model also considers individual parameters like age,
origin, risk factors (such as smoking), and immunosuppres-
sion, with the presence or absence of lung cavitation being
considered after infection. We simulate two million agents,
for a total logical time of one thousand simulated days.

For each configuration, we show four different plots. In
order from left to right, we have:

1) the event processing time in seconds, which does
not include initialisation and finalization costs;

2) the speedup computed over the corresponding serial
configuration;

3) the efficiency, i.e., the percentage of committed
events over the total number of executed events;

4) the cost per event in nanoseconds, divided between
the actual event processing and event extraction
costs. We measure those using the rdtsc instruc-
tion available on most x86 CPUs.

We note that, in ROOT-Sim, both the serial and par-
allel engines eagerly insert scheduled events in the Future
Event Set; therefore, event insertion operations are already
included in the event processing costs.

5.2. Experimental Results

The results of the PHold model in Figure 5 show that
there is no significant difference between the two configu-
rations, as expected4. The tie-breaking logic is not stressed
extensively, as timestamp deltas are drawn from an exponen-
tial distribution, and randomisation of timestamps across 64-
bit floating point samples is sufficient to avoid event ties.
Moreover, PHold may not be the best choice to evaluate
the characteristic of our tie-breaking policy because, in its
classic formulation, its events are all indistinguishable. The
serial runtime shows unusually high event extraction costs,
which is unsurprising given that the ROOT-Sim serial engine
is optimised for smaller-scale models.

In contrast, the E-TIES model presents a more diverse
trend, even in its easy configuration (Figure 6), highlighting
the cost of using a tie-breaking strategy. Ignoring ties pro-
vides a significant advantage, especially at low core counts,
yet both configurations exhibit good performance. However,
the overall speedup indicates a favourable trend for the tie-
breaking configuration. Possibly, the configuration without
tie-breaks cannot scale further because the parallelism of the
model is already being vastly exploited.

We can draw two notable observations. First, the serial
execution of E-TIES easy exhibits lower event processing
costs than PHold, despite its more complex logic. One
reason for this is that when E-TIES is executed without
tie-breaking logic, inserting events into the heap typically
requires very few operations because the events are placed
at the end of the heap. Likewise, in tie-breaking executions,
the chain position identifier is used as the event type.
Most newly-scheduled chain events do not happen before
those in the queue, resulting in event insertions that require
only a limited number of operations. Conversely, in PHold,
timestamps are sampled from an exponential distribution:
they are better distributed across an interval of logical time.
As a result, logarithmic heap costs are observed since heap
bubbling operations are necessary during insertions.

The other interesting fact is the vast difference in event
extraction costs, which could explain the observed per-
formance gap between the two parallel configurations. To
further prove this, efficiency is mostly conserved between
the two configurations, with only a slight increase in the
number of rollbacks, possibly due to the stricter causality
requirement imposed by our event ordering.

The results of the more demanding version of E-
TIES, shown in Figure 7, reinforce these findings, show-
ing that ignoring ties results in even better performance.
As more events are tied, extraction costs increase signifi-
cantly, strengthening the argument that queue management
is the main factor that affects performance. Nevertheless,
the speedup shows that both configurations scale well with
a larger model. At the same time, the efficiency confirms
that the lower performance of tie-breaking runs is not due
to an increase in rollbacks.

Finally, we observe that the experimental results of the
TBC model in Figure 8 suggest that tie-breaking may have

4. The minimum at 14 worker threads is related to the double ring of
the Intel Broadwell-EP CPU used in the experimentation

a limited impact on performance for real-world models.
While a noticeable difference can be observed at lower
thread counts, the added cost of tie-breaking is effectively
parallelised away with higher core count configurations. The
evaluation of PHold and TBC shows that our proposal has
a negligible cost with few or no event ties but a high cost
when ties are prevalent. We have shown that this is not due
to parallelisation inefficiencies, but rather because the FES
of the simulation engine is effectively doing more work in
the attempt to provide the correct event extraction ordering.

This increased cost is inevitable when using a priority
queue that relies on element comparisons. Such a data struc-
ture requires at least one operation involving a logarithmic
number of comparisons with respect to the events in the
queue. Even if the modeller writes an efficient event compar-
ison function, the event inspection cost would still be much
higher than the timestamp comparison, often requiring only
a few machine instructions. Furthermore, existing priority-
queue data structures that do not involve direct timestamp
comparisons are unsuitable for this purpose. For example, in
a calendar queue, all tied events would end up in the same
bucket, resulting in disastrous linear extraction times.

In other words, it seems that running a parallel simula-
tion full of tied events with the requirement of deterministic
executions may result in much more stress on queue man-
agement operations. As a solution, it may be possible to
alleviate this burden by assigning the responsibility of re-
ordering messages with the same timestamp to the straggler
detection system. Although interesting, our initial investiga-
tion of this approach suggested that the associated cost of
more frequent rollbacks trumps any other performance gain.

Moving to the second part of our evaluation, we consider
how the lack of tie-breaking affects a model’s dynamics.
For this analysis, we used the output produced by the TBC
model. To extract the relevant data from the simulation, each
LP in TBC schedules an event at regular intervals, which
saves the count of the five classes of agents to a buffer that
belongs to the LP’s state. Upon simulation completion, the
agent counts from each LP are merged by timestamp to
produce a comprehensive evolution timeline of agent states.

The outcomes depicted in Figure 9 demonstrate no no-
table variation in the results among the different types of
executions5. This may lead one to believe that tie-breaking
is insignificant in real-world scenarios. However, two factors
should be considered. First, this model was chosen for
its resistance to ties, enabling non-tie-broken executions
to run without errors. Secondly, each model run produced
slightly different trajectories, even with an identical pseudo-
random generator seed. In contrast, runs with tie-breaks
are entirely deterministic for the same pseudo-random seed.
As mentioned, deterministic simulation runs are valuable,
particularly during model debugging.

Second, as previously noted, models that do not heavily
use tie-breaking logic do not experience a significant de-
crease in performance. Thus, it may be beneficial to maintain
the enhanced tie-breaking feature enabled anyway.

5. The number of healthy individuals is negligible, given the pandemic-
like scenario, making them mostly invisible in the plots.

2 5 8 11 14 18 22
Worker threads

0

200

400

600

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

80

90

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

250

500

750

1000

1250

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 5: Results for PHold model

2 5 8 11 14 18 22
Worker threads

0

50

100

150

200

250

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

80

90

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

250

500

750

1000

1250

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 6: Results for event-ties model, easy configuration

2 5 8 11 14 18 22
Worker threads

0

200

400

600

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

80

90

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

250

500

750

1000

1250

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 7: Results for event-ties model, hard configuration

6. Conclusions
We have explored a simple yet effective tie-breaking

technique that enables replicable and repeatable executions
of concurrent simulations, in a way similar to what would
be observed in a sequential execution using the same tech-
nique. Our approach is easy to implement for both model
developers and simulation engine designers. Although our
strategy may not be the optimal solution from a modelling
point of view, it still serves as a fundamental tool to
implement a suitable model-specific tie-breaking strategy.
Our experimental results showed that the cost of using our
technique is negligible for models with infrequent event ties.
We provide insights into the performance implications for
models with many ties. Most importantly, we demonstrated
that, in any case, our technique does not hinder parallel-
scaling properties.

In conclusion, we have discovered that in certain situa-
tions, the tie-breaking processing may not be required, even
for practical applications. Nevertheless, we believe that for
these models, the expense of implementing tie-breaking is
minimal, and as a result, we suggest keeping it turned on.

References
[1] S. Abar, G. K. Theodoropoulos et al., “Agent based modelling and

simulation tools: A review of the state-of-art software,” Computer
Science Review, vol. 24, pp. 13–33, 2017.

[2] F. J. Barros, “On the representation of time in modeling & simula-
tion,” in 2016 Winter Simulation Conference, T. M. K. Roeder, P. I.
Frazier et al., Eds. Piscataway, NJ, USA: IEEE, Dec. 2016, pp.
1571–1582.

[3] A. C. Chow, “Parallel DEVS: A parallel, hierarchical, modular mod-
eling formalism and its distributed simulator,” Transactions of the
Society for Computer Simulation, vol. 13, no. 2, pp. 55–68, Jul. 1996.

[4] R. M. Fujimoto, “Performance of time warp under synthetic work-
loads,” in Distributed Simulation, ser. PADS ’90, D. Nicol, Ed. San
Diego, CA, USA: Society for Computer Simulation International,
1990, pp. 23–28.

[5] ——, “Zero lookahead and repeatability in the high level architec-
ture,” Georgia Institute of Technology, Tech. Rep., 1999.

[6] D. Jefferson and H. Sowizral, “Fast concurrent simulation using the
time warp mechanism. part I. local control,” The Rand Corporation,
Santa Monica, CA, USA, Tech. Rep. N-1906-AF, Dec. 1982.

[7] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming
Languages and Systems, vol. 7, no. 3, pp. 404–425, Jul. 1985.

[8] D. R. Jefferson and P. D. Barnes, “Virtual time III, part 1: Unified
virtual time synchronization for parallel discrete event simulation,”

2 5 8 11 14 18 22
Worker threads

0

100

200

300

400

500

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

80

90

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

250

500

750

1000

1250

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 8: Results for TBC model

0.0

0.8

1.6

Se
ria

l

0.0

0.8

1.6

Se
ria

l n
o

TB

0 200 400 600 800 1000
0.0

0.8

1.6

22
 th

re
ad

s

0 200 400 600 800 1000
0.0

0.8

1.6

22
 th

re
ad

s n
o

TB

A
ge

nt
s (

in
 m

ill
io

ns
)

Simulated day

Healthy Infected Sick Treated Treatment

Figure 9: Evolution of the TBC model

ACM Transactions on Modeling and Computer Simulation, vol. 32,
no. 4, pp. 1–29, Sep. 2022.

[9] D. R. Jefferson, B. Beckman et al., “Time warp operating system,” in
Proceedings of the eleventh ACM Symposium on Operating systems
principles, ser. SOSP ’87. New York, NY, USA: Association for
Computing Machinery, Nov. 1987, pp. 77–93.

[10] K. H. Kim, Y. R. Seong et al., “Ordering of simultaneous events in
distributed DEVS simulation,” Simulation practice and theory, vol. 5,
no. 3, pp. 253–268, Mar. 1997.

[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
Jul. 1978.

[12] N. McGlohon and C. D. Carothers, “Toward unbiased deterministic
total orderings of parallel simulations with simultaneous events,” in
Proceedings of the 2021 Winter Simulation Conference, ser. WSC
’21, S. Kim, B. Feng et al., Eds. Piscataway, NJ, USA: IEEE, Dec.
2021, pp. 1–15.

[13] H. Mehl, “A deterministic tie-breaking scheme for sequential and
distributed simulation,” in Proceedings of the Multiconference on
Advances in Paralleland Distributed Simulation, ser. PADS ’91, V. K.
Madisetti, D. Nicol, and R. M. Fujimoto, Eds. San Diego, CA, USA:
Society for Computer Simulation, 1992, pp. 199–200.

[14] C. Montañola-Sales, J. F. Gilabert-Navarro et al., “Modeling tuber-
culosis in barcelona. a solution to speed-up agent-based simulations,”
in Proceedings of the 2015 Winter Simulation Conference, ser. WSC,
L. Yilmaz, W. K. V. Chan et al., Eds. Piscataway, NJ, USA: IEEE,
Dec. 2015, pp. 1295–1306.

[15] N. Nethercote and J. Seward, “Valgrind: A program supervision
framework,” Electronic notes in theoretical computer science, vol. 89,
pp. 44–66, 2003.

[16] D. M. Nicol and X. Liu, “The dark side of risk (what your mother
never told you about time warp),” in Proceedings of the 11th Work-
shop on Parallel and distributed simulation, ser. PADS ’97. Wash-
ington, DC, USA: IEEE Computer Society, Jun. 1997, pp. 188–195.

[17] A. Pellegrini, R. Vitali, and F. Quaglia, “The ROme OpTimistic
simulator: Core internals and programming model,” in Proceedings
of the 4th International ICST Conference on Simulation Tools and
Techniques, ser. SIMUTOOLS. Brussels, Belgium: ICST, Apr. 2012,
pp. 96–98.

[18] L. F. Perrone, “On the evolution toward computer-aided simulation,”
in Modeling and Simulation-Based Systems Engineering Handbook,
D. Gianni, A. D’Ambrogio, and A. Tolk, Eds. Boca Raton, FL,
USA: CRC Press, 2014, pp. 95–118.

[19] P. Peschlow and P. Martini, “Efficient analysis of simultaneous events
in distributed simulation,” in Proceedings of the 11th International
Symposium on Distributed Simulation and Real-Time Applications,
ser. DS-RT’07. Piscataway, NJ, USA: IEEE, Oct. 2007, pp. 244–
251.

[20] B. Preiss, “The YADDES distributed discrete event simulation spec-
ification language and execution environment,” in Proceedings of
the 1989 Multiconference on Distributed Simulation, ser. PADS ’89,
B. Unger and R. M. Fujimoto, Eds. San Diego, CA, USA: Sociesty
for Computer Simulation International, 1989, pp. 139–144.

[21] P. L. Reiher, F. Wieland, and P. Hontalas, “Providing determinism
in the time warp operating system-costs, benefits, and implications,”
in IEEE Workshop on Experimental Distributed Systems. IEEE
Comput. Soc, 1990, pp. 113–118.

[22] A. Ruscheinski and A. Uhrmacher, “Provenance in modeling and
simulation studies — bridging gaps,” in Proceedings of the 2017
Winter Simulation Conference, ser. WSC ’17, Wai Kin (Victor),
A. D’Ambrogio et al., Eds. Piscataway, NJ, USA: IEEE, Dec. 2017,
pp. 872–883.

[23] R. Rönngren and M. Liljenstam, “On event ordering in parallel
discrete event simulation,” in Proceedings 13th Workshop on Parallel
and Distributed Simulation, ser. PADS ’99. Piscataway, NJ, USA:
IEEE Comput. Soc, 2003, pp. 1–8.

[24] M. Schordan, T. Oppelstrup et al., “Reversible languages and incre-
mental state saving in optimistic parallel discrete event simulation,”
in Reversible Computation: Extending Horizons of Computing, ser.
Lecture notes in computer science. Cham: Springer International
Publishing, 2020, pp. 187–207.

[25] F. Wieland, “The threshold of event simultaneity,” in Proceedings of
the 11th workshop on Parallel and Distributed Simulation, ser. PADS
’97. USA: IEEE Computer Society, Jun. 1997, pp. 56–59.

