
Hybrid Speculative Synchronisation for
Parallel Discrete Event Simulation

Andrea Piccione
piccione@diag.uniroma1.it
Sapienza, University of Rome

Rome, Italy

Philipp Andelfinger
philipp.andelfinger@uni-rostock.de

University of Rostock
Rostock, Germany

Alessandro Pellegrini
a.pellegrini@ing.uniroma2.it

University of Rome Tor Vergata
Rome, Italy

ABSTRACT
Parallel discrete-event simulation (PDES) is a well-established fam-
ily of methods to accelerate discrete-event simulations. However,
the available algorithms vary substantially in the performance
achievable for different models, largely preventing generic solutions
applicable by modellers without expert knowledge. For instance, in
TimeWarp, the processing elements execute events asynchronously
and speculatively with high aggressiveness, leading to frequent and
costly rollbacks if misspeculations occur often. In contrast, syn-
chronous approaches such as the new Window Racer algorithm
exhibit a more cautious form of speculation. In the present paper,
we combine these two fundamentally different algorithms within
a single runtime environment, allowing for a choice of the best
algorithm for different model segments. We describe the architec-
ture and the algorithmic considerations to support the efficient
coexistence and interaction of the algorithms without violating the
correctness of the simulation. Our experiments using a synthetic
benchmark and an epidemics model show that the hybrid algorithm
is less sensitive to its configuration and can deliver substantially
higher performance in models with varying degrees of coupling
among entities compared to each algorithm on its own.
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• Computing methodologies→ Discrete-event simulation;
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→ Parallel computing models; Distributed computing models.
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1 INTRODUCTION
Parallel Discrete Event Simulation (PDES) is an umbrella term en-
compassing an ensemble of techniques and methodologies to ef-
ficiently support large-scale simulations in parallel or distributed
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environments. PDES has seen an explosion of proposals to im-
prove simulation performance over the past 40 years [15] and a
wide range of application scenarios that exploit it to reduce model
time-to-solution.

A broad spectrum of different algorithms and protocols can sup-
port the execution of PDES simulations [41]. This spectrum is char-
acterised by different attributes, mainly related to the possibility
of temporarily transitioning the simulation state into an incorrect
configuration. At the highest classification level, we differentiate
between conservative and optimistic protocols. The former guaran-
tee that no portion of the simulation state is ever incorrect. The
latter admit transient situations of incorrectness that are corrected
a posteriori by reconstructing a previous correct state using state
saving [32], reverse computation [5], or combinations thereof [7].

Optimistic simulations are further characterised by different lev-
els of aggressiveness and risk [40]. Aggressiveness refers to how
far forward the speculative portion of the simulation is tentatively
carried out. Ideally, the speculative portion is later committed, thus
improving the performance of the simulation. The concept of risk,
on the other hand, refers to the exchange of events that were gen-
erated speculatively and may thus represent transient errors [40].
Such transient errors can cascade across processing elements and
require dedicated handling as part of the rollback mechanism.

Within the spectrum of optimistic synchronisation protocols,
Time Warp [20] exhibits the highest degree of aggressiveness and
risk. Many variants to the Time Warp protocol have been proposed
in the literature, showing that optimisation possibilities are many,
as shown in Figure 1. For example, the cancelback protocol [21] can
limit aggressiveness if certain portions of the simulation are too
far from the commit horizon and the system’s memory pressure is
too high. In [44], a protocol is constructed that allows events to be
sent only if they are guaranteed to be valid, thus being risk-free, at
the cost of drastically reduced aggressiveness. This protocol was
extended in [45], allowing sending only events generated by those
closest to the commit horizon, to reduce the rollback probability.

As shown when comparing optimistic and conservative algo-
rithms [4], the performance of optimistic algorithms depends heav-
ily on the simulation model. For example, it was shown in [2] that
the same model could benefit from different levels of optimism
depending on its configuration. Jefferson [22] showed the feasibil-
ity and benefits of exploiting different synchronisation protocols
simultaneously through mode switches at runtime. In this way, it
is possible to work on the various attributes of the simulation to
maximise performance while limiting the possible adverse effects of
optimism. Jefferson’s work [22] focuses on the coexistence of Time
Warp with conservative protocols, thus exploiting the extremes of
the spectrum of possibilities. Conversely, this paper explores the
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Figure 1: (Partial) Spectrum of PDES Synchronisation Protocols.

coexistence of two optimistic synchronisation algorithms within a
single runtime environment. Our main contributions are two-fold:

• We present an architecture and algorithmic mechanisms to
support the coexistence and seamless interaction of the asyn-
chronous TimeWarp algorithm with the recent synchronous
Window Racer algorithm [1], a new window-based synchro-
nisation algorithm.
• Experimental results demonstrate the benefits of this kind of
hybrid synchronisation scheme when executing simulation
models with spatially varying dynamics.

In addition, we also present a preliminary study of the potential
of runtime switching between execution modes. In this context,
simulations can reconfigure themselves to reduce adverse effects
depending on models’ runtime execution dynamics. This scenario
opens up the possibility of augmenting our approach with auto-
nomic decision policies that allow configuring at runtime the exe-
cution environment to the grain of the individual simulation entity.
While a full cost model to inform run-time algorithm selections at
runtime will be the subject of future work, Window Racer has been
shown to outperform Time Warp in model configurations where
events frequently occur with very short delays [1].

Our preliminary results show the potential of this approach in
terms of increased performance and simulation efficiency. Our ap-
proach can also control thrashing phenomena, often observed with
particular workloads in simulations based on Time Warp [43]. This
is of value to modellers, allowing them to take advantage of PDES
without worrying about the execution modes supported by runtime
environments. In this way, the modeller can focus their work on
defining the model, effectively delegating the cost of supporting
the execution to the runtime environment, which is known not to
always be possible in the context of PDES simulations [30].

The rest of this paper is structured as follows. In Section 2 we
overview the two synchronisation protocols we fuse in our pro-
posal. Section 3 discusses related work. Our hybrid synchronisation
protocol and the supporting architecture are presented in Section 4.
Section 5 presents the experimental assessment of our proposal.

2 BACKGROUND
2.1 Time Warp
The Time Warp synchronisation protocol [20] is used in PDES to
achieve eventual event safety, ensuring that the order of events is
eventually consistent across all processors. The global simulation
is partitioned into a set of non-overlapping entities (also named
logical processes, LPs), which maintain their own local virtual time
(LVT). The LVT is the time the entity believes the simulation is

currently at. Different entities can have a different LVT value at the
same wall-clock time instant.

The Time Warp protocol is considered optimistic because it
allows entities to proceed with their simulation even if they do
not have all the necessary information, i.e. even if all required
events have not yet been received. This is a concept also known
as aggressiveness. Entities may send messages to one another to
exchange information, but they are not blocked from proceeding
with the simulation. This can lead to increased performance but also
increases the probability of causality violations. Any actions taken
in error can be undone using rollbacks to restore consistency. If an
entity discovers that it processed events in the wrong order, it can
undo its actions and restore the simulation to a previous state. This
allows the simulation to continue from a consistent point rather
than allowing errors to propagate.

A key concept in Time Warp is the Global Virtual Time (GVT),
which acts as a common clock that all simulation entities share
in the simulation. It represents the minimum of all the local LVT
across all entities and in-transit messages [12]. GVT helps ensure
consistency in the simulation by allowing entities to identify which
events cannot be undone by any straggler event. In addition, GVT
plays a crucial role in garbage collection activities. Time Warp re-
quires maintaining information related to already-processed events
and past simulation states, as long as they belong to the speculative
part of the simulation trajectory. Buffers associated with a times-
tamp before the GVT can be safely garbage collected. The GVT also
discriminates tentative actions, such as producing output or mate-
rialising errors. Its computation is time-consuming and can impact
the overall simulation performance. As we will show, integrating
different speculative synchronisation protocols can also be a source
of optimisation to the GVT computation.

2.2 Window Racer
Window Racer (WR) [1] is a recent synchronous optimistic syn-
chronisation algorithm for shared-memory architectures. Due to
its cautious form of optimism, it is well-suited for models in which
state transitions are tightly coupled across entities and frequently
occur with short delays, which pose challenges to Time Warp [2].

Inspired by Steinman’s Breathing Time Buckets (BTB) [45], WR
alternates between an execute and commit phase. As in BTB, each
processing element (PE) is assigned a portion of the simulation en-
tities. In both algorithms, at the end of the execute phase, a newly
determined GVT decides which state transitions can be committed.
However, important differences lie in the granularity and policy
according to which the new GVT is determined. In BTB, the new
GVT is simply the earliest timestamp of any event that crosses PE
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Algorithm 1Main loop of the Window Racer algorithm.
1: global 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← +∞
2: global 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← −∞
3: per-thread 𝑐𝑒𝑙 ← PriorityQueue( )
4: per-thread 𝑢𝑒𝑙 ← PriorityQueue( )
5: procedure ProcessWindow( )
6: while not reached termination criterion do
7: do atomically:
8: 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← ComputeGlobalMinimumTimestamp( )
9: 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 + 𝜏0
10:11: while GetTimestamp(EarliestEvent(𝑢𝑒𝑙 ∪ 𝑐𝑒𝑙 )) < 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 do
12: 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ← Pop(𝑡ℎ𝑟𝑒𝑎𝑑.𝑢𝑒𝑙 ∪ 𝑡ℎ𝑟𝑒𝑎𝑑.𝑐𝑒𝑙 )
13: Lock(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 .𝑒𝑛𝑡𝑖𝑡𝑦)
14: if RegisterEvent(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 .𝑒𝑛𝑡𝑖𝑡𝑦, 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ) then
15: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 ← ProcessEvent(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 )
16: 𝑐𝑒𝑙 ← 𝑐𝑒𝑙 ∪ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠
17: Unlock(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 .𝑒𝑛𝑡𝑖𝑡𝑦)
18: 𝑢𝑒𝑙 ← ∅
19: ThreadBarrier( )
20: for each 𝑒𝑛𝑡𝑖𝑡𝑦 do
21: if |𝑒𝑛𝑡𝑖𝑡𝑦.𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 | = 0
22: or GetTimestamp(LatestState(𝑒𝑛𝑡𝑖𝑡𝑦)) < 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 then
23: 𝑒𝑛𝑡𝑖𝑡𝑦.𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 ← ∅
24: 𝑒𝑛𝑡𝑖𝑡𝑦.𝑠𝑡𝑎𝑡𝑒_𝑙𝑖𝑠𝑡 ← ∅
25: continue
26: Rollback(𝑒𝑛𝑡𝑖𝑡𝑦,𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑)
27: for each 𝑒𝑣𝑒𝑛𝑡 ∈ 𝑒𝑛𝑡𝑖𝑡𝑦.𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 do
28: if GetGenerationTime(𝑒𝑣𝑒𝑛𝑡 )< 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑

29: and GetTimestamp(𝑒𝑣𝑒𝑛𝑡 ) ≥ 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 then
30: 𝑢𝑒𝑙 ← 𝑢𝑒𝑙 ∪ 𝑒𝑣𝑒𝑛𝑡
31: 𝑒𝑛𝑡𝑖𝑡𝑦.𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 ← ∅
32: 𝑒𝑛𝑡𝑖𝑡𝑦.𝑠𝑡𝑎𝑡𝑒_𝑙𝑖𝑠𝑡 ← ∅
33: ThreadBarrier( )

boundaries. This permits a clear delineation of the execute and com-
mit phases, allowing the execute phase to proceed without any PE
interaction. However, when simulating systems of entities that in-
teract globally and with short delays, the resulting synchronisation
windows can become exceedingly small.

WR alleviates this issue by loosening the entity-to-PE assignment
in the execute phase. Algorithms 1 and 2 show WR’s main loop,
entity-level locking, and GVT negotiation as pseudo-code. Each PE
maintains a unconditional event list (uel) holding events guaranteed
to be committed at some point throughout the simulation, and an
conditional event list (cel) holding events generated in the current
round’s execute phase, some of which may have been generated in
error and may never be committed. At the beginning of the execute
phase, each PE considers the local entities’ events in timestamp
order. However, any newly generated events are also executed,
regardless of the target entity’s PE assignment. Race conditions
are ruled out by acquiring a lock on an event’s target entity before
saving the entity’s state, appending the event to a per-entity event
list, and executing the event. This allows PEs to execute entire
chains of dependent events without handing the execution off to
other PEs or separating the execution into multiple rounds.

Throughout this execution scheme, the PEs negotiate the new
GVT based on entity-level straggler events. When a straggler with
timestamp 𝑡 is encountered, the target entity is rolled back to its
latest state earlier than 𝑡 , and the new GVT is updated to exclude
the earliest event displaced by the straggler. Through this process,
the value of the global variable holding the new GVT gradually
decreases throughout the execution phase, allowing PEs to imme-
diately cease execution when their earliest event is past the new
GVT. The algorithm’s name is inspired by the PEs’ “race” to fit as

Algorithm 2 Entity locking and update of the window bound.
1: procedure RegisterEvent(𝑒𝑛𝑡𝑖𝑡𝑦, 𝑒𝑣𝑒𝑛𝑡 )
2: Append(𝑒𝑛𝑡𝑖𝑡𝑦.𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 )
3: if GetTimestamp(𝑒𝑣𝑒𝑛𝑡 ) ≥ 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 then
4: return false
5: if GetTimestamp(𝑒𝑣𝑒𝑛𝑡 ) < LatestChangeTimestamp(𝑒𝑛𝑡𝑖𝑡𝑦) then
6: 𝑟𝑒 𝑓 𝑆𝑡𝑎𝑡𝑒 ← GetEarlierState(𝑒𝑛𝑡𝑖𝑡𝑦, 𝑒𝑣𝑒𝑛𝑡 )
7: 𝑛𝑒𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← GetTimestamp(𝑟𝑒 𝑓 𝑆𝑡𝑎𝑡𝑒 )
8: do atomically:
9: 𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← min(𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑,𝑛𝑒𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 )
10: Rollback(𝑒𝑛𝑡𝑖𝑡𝑦, GetTimestamp(𝑟𝑒 𝑓 𝑆𝑡𝑎𝑡𝑒))
11: return true
12: SaveState(𝑒𝑛𝑡𝑖𝑡𝑦)
13: return true

many events as possible into a gradually closing synchronisation
window.

In the commit phase, PEs iterate through all local entities. If
necessary, the entities are rolled back to the GVT, and any events
from their event lists created prior to the GVT but with timestamps
beyond the GVT are inserted into the PEs’ unconditional event list.

As a consequence of its strictly synchronous execution scheme,
Window Racer limits the deviation of threads from the GVT. Our
aim in combining the algorithm with Time Warp is to limit mis-
speculations in tightly coupled dynamics through Window Racer’s
cautious form of optimism, while more loosely coupled model seg-
ments can benefit from Time Warp’s aggressiveness.

3 RELATEDWORK
The literature offers a wealth of work attempting to control or ex-
ploit aggressiveness and risk in speculative simulations. The first
class of proposals is related to the throttling of simulation entities
straying too far from the commit horizon. In this class, proposals
such as Bounded Time Warp [47] and window-based throttling [39]
limit optimistic processing by defining a static optimism window.
The main problem with these proposals is the possibility that dif-
ferent simulation models (or even individual entities in the same
model) may require different window sizes for optimal performance.
An incorrectly sized window can drastically reduce performance.
Adaptive Time Warp [3] controls optimism by forcing a simulation
entity that experiences many rollbacks to freeze for a time 𝐵𝑊 .
Determining 𝐵𝑊 is complex, often leading to configurations that
may not maximise speedup. Furthermore, as discussed in [39, 47],
the value of 𝐵𝑊 may be different for each simulation entity.

Penalty Based Throttling [39] activates the entities that receive
the fewest antimessages, associating them with a penalty that cap-
tures the number of antimessages received. In a complex simulation,
all simulation entities can have a non-negative penalty at a particu-
lar time instant, leading to an excessive reduction in aggressiveness.

A second class of proposals uses the concept of dynamically
adapted windows to determine which events can be executed while
limiting the incidence of rollbacks. Breathing Time Warp [45] com-
bines Breathing Time Buckets [44] and Time Warp. While Breathing
Time Buckets only allows events to be sent when they are valid (thus
with very low aggressiveness), Breathing TimeWarp is based on the
principle that events closer to the GVT have a lower probability of
being cancelled. Therefore,𝑁1 events close to the GVT are optimisti-
cally executed, and 𝑁2 events after that point are executed using
Breathing Time Buckets.Adaptive Bounded Time Windows [31] uses
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the concept of useful work. Windows are sized to maximise speed.
Adaptive Time-Ceiling [26] is based on a similar concept, although
window sizes are chosen from a set of discrete values. The hybrid
synchronisation algorithm proposed in the present paper is related
to Breathing Time Warp in its combination of a window-based
optimistic synchronization algorithm with Time Warp. However,
we take a fundamentally different approach: while Breathing Time
Warp combines two algorithms in time by alternating between
the two, we combine these algorithms in space, i.e., different pools
of simulation entities are handled by the two algorithms, which
coexist and interact. The architectural and algorithmic consider-
ations required to facilitate this coexistence comprise the main
contributions of our paper.

A third class of works deals with aggressiveness and risk employ-
ing scheduling policies. After the seminal work in [23] has shown
that Time Warp simulations are conservative optimal, although
subject to stragglers that can still hamper performance, many pro-
posals have dealt with heuristics to schedule entities based on their
rollback behaviour and productive work. Useful work [33] is a per-
formance index based on control theory that enables scheduling
policies to control the optimism of a time warp simulation, reduce
the rollback frequency, and reduce memory usage and wasted looka-
head computation as a secondary effect. Approximate time [14] is
a partial order of events that allows the exploitation of temporal
uncertainty to reduce the rollback probability. Events are not asso-
ciated with a single timestamp but rather with an interval. Over-
lapping events can be reordered to provide equivalent schedules to
avoid executing a rollback operation upon receiving a straggler mes-
sage. A similar objective is pursued through symbolic execution [49],
in which a group of uncertain cases are jointly simulated in the
same run to explore possible configuration parameter intervals.
Aggressiveness/Risk Effects-based Scheduling (ARES) [8] controls
optimism by scheduling with a higher priority the simulation enti-
ties whose next event has a lower probability of being eventually
rolled back. This is done by selecting a set of candidate simulation
entities with a low probability of being eventually undone; then, it
chooses an entity among the candidates to minimise the number
of new events to be notified. Share-Everything PDES [19] exploits a
short-framed temporary binding between simulation entities and
worker threads. The proposal exploits a per-node global future
event set that can be concurrently exploited to determine the next
event closest to the commit horizon. This approach can reduce the
incidence of rollbacks and the generation of stragglers thanks to
its controlled aggressiveness.

In some works, hybrid approaches have been proposed that
add optimism to conservative algorithms. SRADS with local roll-
back [10] and speculative computing [28] optimistically process
unsafe events locally, thus confining rollbacks to local entities.
Breathing Time Buckets [44] is similar to SRADS but can dynam-
ically vary the conservative time windows based on global and
local event horizons. This technique performs poorly under small
lookahead conditions, and the GVT must be computed with no in-
transit messages. Bounded lag restriction [24] uses the measure of
the minimum distance between entities to decide safe events based
on programmer-provided apriori lower bounds between causally
related events. The rollback relaxation [50] and unsynchronised
parallel simulation techniques [38] relax causality constraints for

memoryless logical processes or completely ignore causality vio-
lations for queueing models to reduce the rollback overhead. The
final results may be imprecise, and in general, these techniques
cannot be applied to all classes of simulation models.

Also, proposals related to load sharing and load balancing, such
as [17, 26, 31, 48] can reduce the number of rollbacks, thanks to
improved exploitation of local synchronisation based on smallest-
timestamp first scheduling. These proposals have performance in
mind and implicitly try to limit optimism globally. Nevertheless,
secondary effects should be dealt with explicitly.

In general, all these classes of proposals are generally still bound
to a single family of optimistic execution. They provide performance
improvements under specific workloads and can cope well with
simulation scenarios that show characteristic behaviour of the pa-
rameters and aspects taken into account when the algorithms, even
adaptive ones, were designed. Nevertheless, the degree of adaptivity
that they can handle could be improved. In this paper, we overcome
this general limitation by showing how different scheduling and
synchronisation schemes with different levels of aggressiveness
and with or without risk can be combined. Even if we only combine
two different algorithms, the architecture is general and can be
extended to include additional ones. Furthermore, we show exper-
imentally how our proposal can effectively handle a challenging
class of models for traditional optimistic PDES simulation since
the dynamics change significantly within the same model due to
configuration parameters [2].

A proposal sharing our ultimate goal is Virtual Time III [22],
where a unification framework between conservative and optimistic
synchronisation is proposed. This framework considers conserva-
tive algorithms as accelerators to TimeWarp, given the non-existent
overhead introduced to forward execution. Therefore, Virtual Time
III enables some simulation entities to execute conservatively, while
others execute optimistically, at the same time. In this context, some
entities are subject to throttling due to the execution in conserva-
tive mode. There are three differences between Virtual Time III
and Time Racer. First, we highlight the benefits of mixing multiple
optimistic protocols to exploit aggressiveness and risk to different
extents in the same simulation run. Second, we allow a group of
worker threads to run cooperatively groups of simulation entities
(with an 𝑀 : 𝑁 mapping), while Virtual Time III still considers
the traditional 1 : 𝑁 mapping between worker threads and enti-
ties. Last, we provide a reference implementation and experimental
assessment, which is lacking in [22].

4 HYBRID SPECULATIVE SYNCHRONISATION
The Window Racer (WR) algorithm presented in [1] uses 𝑛 threads
to carry out the simulation of 𝑘 simulation entities cooperatively.
Conversely, in the classical Time Warp (TW) implementation [20],
there is a binding between a worker thread and a set of simulation
entities—this binding can be fixed or temporary, as in the case of
load-balancing policies such as those presented in [17, 42, 48].

Let us consider for now a single simulation node inwhich𝑚 cores
are used to perform processing and housekeeping tasks. Allowing
the coexistence of different synchronisation algorithms, such as
WR and TW, requires that a number 𝑛 ≤ 𝑚 of threads, at a given
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instant in time, performs the tasks required by the WR algorithm,
while the remaining𝑚 − 𝑛 threads execute TW’s activities.

Given that both synchronisation algorithms can execute a com-
plete simulation alone, the integration is trivial if there is no interac-
tion between the simulation entities managed by either algorithm.
Conversely, as soon as a simulation entity schedules an event to an-
other entity handled by a thread running the other algorithm—we
name it a cross-algorithm interaction—, care must be taken to ensure
this interaction does not create any inconsistency in the speculative
simulation trajectory. In the following, we describe the methodol-
ogy to support a correct and efficient integration between the two
synchronisation algorithms for cross-algorithm interactions.

4.1 Cross-Algorithm Priority Inversion
A cross-algorithm event scheduling might require reconstructing
a previous simulation state if the event is a straggler for the re-
cipient. If a TW thread manages the destination simulation entity,
the scenario poses no harm: a traditional rollback operation can
restore the previous consistent state from which to restart the ex-
ecution. Conversely, rollbacks are exclusively local to a window
in the original WR algorithm. Therefore, when the processing of
a window is completed, the events associated with that window
are immediately committed—WR does not need a dedicated algo-
rithm to calculate the Global Virtual Time (GVT) as in the case of
TW. A straggler received by a WR thread from a TW one requires
additional information to reconstruct a previous consistent state.

When a thread running inWRmode receives a straggler message,
there are two cases to consider. In the first case (see Figure 2a), the
straggler hits before the beginning of the current or a previous
window. In this case, the solution we adopt considers the entire
WR window as an atomic unit of execution. All events are undone,
and the simulation restarts from a previous window.

In the second case, the straggler falls within the current window
(see Figure 2b). In this case, there is no need to flush the entire
window. Indeed, all the events executed before the straggler are still
(speculatively) correct. Therefore, in this case, we simply update
the window’s upper bound, closing the window at the straggler’s
timestamp. All inconsistent events will be undone.

To support the invalidation of an entire window, we keep check-
points also for previous windows, which was unneeded in the
original WR algorithm. As a first approximation, to support the
cancellation of a window, we could take a snapshot of all simula-
tion entities associated with the 𝑛 threads executing in WR mode
before a new window starts. This approach achieves correct exe-
cution: should a straggler be received, window cancellation can
be supported by restoring the state of all entities involved. How-
ever, it may be sub-optimal for several reasons. First, windows may
be extremely short, thus requiring many checkpoints. Indeed, as
shown in [2], WR performance may suffer if simulation entities are
significant numbers and have a very high message exchange rate.

In the Time Warp literature, however, the problem of selecting a
checkpointing interval appropriate to the dynamics of the model
has been extensively addressed (e.g., in [2, 11]). These techniques
generally involve the possibility of simulation model states being
organised in arbitrarily complex data structures, e.g. based on the
use of dynamic memory, as in [9, 35]. Therefore, in our integration,

the management of checkpoints is entrusted to an autonomic check-
point manager [36] that determines, during the execution of the
simulation, which is the most convenient time instant for captur-
ing a snapshot of the simulation state of an entity. This strategy
brings about an important change to the WR algorithm: in this way,
the need to capture a snapshot before the execution of each event
disappears. However, in this way, it is necessary to introduce the
execution of a coasting forward phase in WR as well to allow the
realignment of a simulation state if a rollback occurs. This strategy
applies also to window-local rollbacks.

Therefore, it is necessary to properly manage the simulation’s
Past Event Set (PES) to properly allow the reprocessing of events if
a rollback occurs and a consistent previous simulation state needs
to be reconstructed. Unlike the Future Event Set (FES), the PES
needs to maintain per-entity information, as a rollback affects one
single entity. Therefore, a different PES is used for each entity. As
a data structure, our integration relies on a doubly-linked list for
the PES. The use of this data structure is different from the FES
since its purpose is to support the efficient execution of coasting
forward. This operation is linear by nature: once the first event to
be reprocessed by a particular simulation entity has been identified,
all subsequent events must be reprocessed in order. Hence, the
advantage of using a list of events for each simulation entity.

An important aspect of our integration concerns the calculation
of the GVT. Since the simulation involves threads executing the TW
algorithm, it is not possible to disregard classical GVT calculation
algorithms that determine a lower bound of the real GVT value
(e.g., [16, 27, 34, 46]). However, in this GVT calculation, inspect-
ing the PES of all entities is not necessary. Indeed, it is possible
to exploit the concept of window atomicity: all entities managed
by WR threads enjoy the automatic GVT reduction inherent in
the WR algorithm. Therefore, it will be necessary to calculate the
GVT reduction between the logical times of all entities managed
according to the TW scheme and the initial timestamp of the last
correctly processed WR window.

4.2 Event Generation and Scheduling
Another aspect to deal with in integrating the algorithms is man-
aging the generation of new events and their scheduling activities.
In particular, given the different aggressiveness of the TW and WR
algorithms, we have decided to organise FES differently for the
threads running the two. For both algorithms, FESs are priority
queues implemented using 𝑘-heaps, as they have experimentally
shown good performance in the case of disparate workloads [37].
In particular, by using a 𝑘-heap, extracting the next event to be
executed has a constant cost, which is particularly important in the
case of the 𝑛 threads executing the WR algorithm.

Indeed, for the 𝑛 WR threads, a single shared FES is used. While
this choice requires access synchronisation (e.g. through spinlocks),
the advantage lies in that the 𝑛 threads can effectively cooperate
in the execution of events that fall within the various windows.
Conversely, the TW threads use a single FES for all the associated
simulation entities. This strategy deviates from classical solutions
in the literature, in which a single queue is provided for each simu-
lation entity. However, as shown in [37], fewer queues can lead to
non-negligible performance benefits. The lack of a per-simulation
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(b) Straggler In the Middle of a Window.

Figure 2: Straggler Messages Invalidating Window Racer Windows.

entity FES requires determining, upon event schedule, what is the
proper FES to insert the newly-generated event into. We support
this mapping by using a hash table that associates the unique id of
an entity with the FES that maintains the events to be processed.

During the execution of events, newly-generated events are
handled differently depending on their source, destination, and
timestamp. Events generated by TW threads are immediately deliv-
ered to the relevant FES—if they are stragglers, they will cause a
rollback. If they fall into the current WR window, they determine
an update of the upper bound of the window—this is the scenario
we already depicted in Figure 2b. Conversely, all events generated
by a WR thread are inserted in a per-thread output queue.

Logically, this output queue has a dual purpose. On the one hand,
it buffers events that could be undone should a local rollback to the
window cancel the processing of the generated event. On the other
hand, it maintains causality information for all those events sent to
TW threads: in the event of a window rollback, all those messages
will have to be cancelled with anti-messages.

At the end of the execution of the window, all entity events
handled by WR threads in the output queue are placed in the co-
operative FES of WR threads. Other messages are retained in the
output queue until the GVT overtakes the entire window. At that
point, the traditional fossil collection operation [20] allows the mem-
ory buffers to be retrieved. This dualistic use of the output queue
allows the different degrees of aggressiveness, proper of the two
WR and TW algorithms, to be handled correctly.

Overall, the operations carried out by WR threads are reported
in Algorithm 3. The global FES (line 2) is shared among all worker
threads cooperating to process the current window (line 3). The
WR threads maintain a per-thread output queue (line 4) that is used
in conjunction with the FES to determine when the processing of
the current window is over and what is the next event to schedule
(lines 5–10). As discussed, the output queue is also used to keep
track of all the generated events (line 22, 24).

Given the cooperative nature ofWR, wemust ensure that a single
simulation entity is not concurrently executed by two different
worker threads. To this end, we employ a locking mechanism based
on atomic read-modify-write instructions that ensure that only a
single worker thread will take care of an entity if two events are
extracted concurrently—lines 12, 14, 23.

If a straggler message is received, the worker thread managing
the entity hit by the straggler will reduce the window size (lines
13–19). The update of the upper bound must be done atomically,
because multiple threads may be managing stragglers at the same
time. In the case of concurrent update, the minimum among all
the new tentative values should be stored. Therefore, we rely on
a Compare-and-Swap based retry loop, thus implementing a non-
blocking update.

The window is completely processed when the next event to be
processed is scheduled at a timestamp beyond the window’s upper
bound (line 5). At this point, the threads should deliver the events
still present in the output queue to the FES (lines 27–31).

4.3 Dynamic execution mode switching
An important aspect of managing a hybrid synchronisation mech-
anism such as the one proposed in this work is the possibility of
dynamically switching from one execution mode to another. Indeed,
as was shown in [2], depending on the dynamics of the simulation
model, different synchronisation modes may prove to be successful.
Clearly, in a general simulation, it is possible for these dynamics
to change, just as it is possible for different parts of the model to
behave differently. Therefore, to maximise performance, it is desir-
able that the number 𝑛 of threads running in a given mode changes
during the same simulation.

The different nature of the two synchronisation algorithms con-
sidered in this work requires certain precautions to make this tran-
sition effective. Let us first consider the simplest case in which a
thread executing in TW mode must switch to WR mode. The or-
ganisation of FESs described above requires that, in the transition,
a TW thread inserts all future events of its FES into the one shared
between all threads executing in WR mode.

Transitioning from TW to WR mode must be performed with
minimal invasiveness to WR execution. If a TW thread merely mod-
ifies the FES of WR threads, artificial rollbacks may be introduced.
Conversely, WR’s windowed nature allows exploiting the upper
bound to discriminate between messages that may or may not gen-
erate a rollback. The thread that wants to migrate from TW to WR
execution, therefore, can adopt the scheme shown in Algorithm 4.

Initially, the migrating thread signals the start of the transition,
forcing the WR threads to wait at the end of the current window. It
then checks the upper bound value of the current window. If this
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Algorithm 3Window Management Algorithm
1: global 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← +∞ ⊲ Visible to all worker threads
2: global 𝑝𝑎𝑠𝑡𝑊 𝑖𝑛𝑑𝑜𝑤𝑠 ← Stack( ) ⊲ Past committed windows
3: global 𝐹𝐸𝑆𝑊𝑅 ← PriorityQueue( ) ⊲ Window Racer Future Event Set
4: per-thread 𝐹𝐸𝑆𝑇𝑊 ← PriorityQueue( ) ⊲ Time Warp Future Event Set
5: global 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘𝑊 𝑖𝑛𝑑𝑜𝑤 ← 𝑓 𝑎𝑙𝑠𝑒 ⊲ If set, an older window will be restored
6: procedure ProcessWindow( )
7: 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 ← PriorityQueue( ) ⊲ Events generated in the current window
8: while Next(𝐹𝐸𝑆𝑊𝑅 ) < 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 OR Next(𝑜𝑢𝑡𝑝𝑢𝑡𝑄) < 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 do ⊲ 𝐹𝐸𝑆𝑊𝑅 is accessed atomically
9: if Next(𝑜𝑢𝑡𝑝𝑢𝑡𝑄) < Next(𝐹𝐸𝑆𝑊𝑅 ) then
10: 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ←Pop(𝑜𝑢𝑡𝑝𝑢𝑡𝑄)
11: else
12: 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ← Pop(𝐹𝐸𝑆𝑊𝑅 )
13: 𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦 ← GetEntityOf(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 )
14: Lock(𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦) ⊲ Mark the simulation entity as being processed by a WR thread
15: if GetTimestamp(𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦.𝑙𝑎𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡 ) > GetTimestamp(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 .𝑡𝑖𝑚𝑒) then ⊲ Straggler detected
16: UnLock(𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦)
17: if GetOriginPartition(𝑒𝑣𝑒𝑛𝑡 ) = 𝑇𝑊 then
18: 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘𝑊 𝑖𝑛𝑑𝑜𝑤 ← 𝑡𝑟𝑢𝑒

19: do atomically:
20: if 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 > GetTimestamp(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ) then
21: 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ← GetTimestamp(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 )
22:23: break
24: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 ← ProcessEvent(𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ) ⊲ Calls the model event handler and returns the generated events
25: UnLock(𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦)
26: 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 ← 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 ∪ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠
27: ThreadBarrier( ) ⊲ Window is over
28: if 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘𝑊 𝑖𝑛𝑑𝑜𝑤 then
29: 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 ← ∅
30: do
31: 𝑤𝑖𝑛𝑑𝑜𝑤𝑇𝑜𝑅𝑒𝑠𝑡𝑜𝑟𝑒 ← Pop(𝑝𝑎𝑠𝑡𝑊 𝑖𝑛𝑑𝑜𝑤𝑠)
32: while 𝑤𝑖𝑛𝑑𝑜𝑤𝑇𝑜𝑅𝑒𝑠𝑡𝑜𝑟𝑒 ≥ 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑

33: for each 𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦 do
34: Rollback(𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦, 𝑤𝑖𝑛𝑑𝑜𝑤𝑇𝑜𝑅𝑒𝑠𝑡𝑜𝑟𝑒)
35: ThreadBarrier( )
36: 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘𝑊 𝑖𝑛𝑑𝑜𝑤 ← 𝑓 𝑎𝑙𝑠𝑒

37: return
38: 𝑝𝑎𝑠𝑡𝑊 𝑖𝑛𝑑𝑜𝑤𝑠 ← 𝑝𝑎𝑠𝑡𝑊 𝑖𝑛𝑑𝑜𝑤𝑠 ∪ {𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 }
39: for each 𝑒𝑣𝑒𝑛𝑡 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 s.t. GetGenerationTime(𝑒𝑣𝑒𝑛𝑡 ) < 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 do
40: if GetDestinationPartition(𝑒𝑣𝑒𝑛𝑡 ) = 𝑇𝑊 then
41: 𝐹𝐸𝑆𝑇𝑊 ← 𝐹𝐸𝑆𝑇𝑊 ∪ {𝑒𝑣𝑒𝑛𝑡 }
42: else
43: 𝐹𝐸𝑆𝑊𝑅 ← 𝐹𝐸𝑆𝑊𝑅 ∪ {𝑒𝑣𝑒𝑛𝑡 }
44: 𝑜𝑢𝑡𝑝𝑢𝑡𝑄 ← ∅
45: for each entity do
46: Rollback(𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦, 𝑤𝑖𝑛𝑑𝑜𝑤𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑)
47: FossilCollection(𝑠𝑖𝑚𝐸𝑛𝑡𝑖𝑡𝑦)
48: ThreadBarrier( )

value is less than the time of the next event in its FES, all the events
to be processed belong to the next window. Therefore, the thread
moves its events into the WR’s FES.

Conversely, if its next event has a timestamp less than the upper
bound, we are in the scenario of Figure 2. Here, if the thread were
to insert new events into the WR queue, it could generate a priority
inversion concerning the activities of the 𝑛 threads executing inWR
mode. Therefore, the migrating TW thread appropriately exploits
the aggressiveness of Time Warp, as shown in Algorithm 4: it will
continue to process events in the FES until the logical time of the
next event does not exceed the upper bound of the current window.
The procedure’s termination is guaranteed by the signalling flag
forcing the WR threads to wait for the conclusion of the transition.

This migration approach could lead to high costs if handled
incorrectly. Indeed, WR threads may have to wait a long time for
the migrating TW thread to complete its realignment. Therefore,
when choosing a thread to switch from TW to WR mode, selecting
a thread further along in logical time than the current window is

crucial. If no such thread exists, the one with the next event closest
in logical time to the end of the current window should be chosen.
This aspect, as well as the choice of when to make the transition
and the number of TW threads involved, requires the definition of
an autonomic policy outside this work’s scope.

Switching from WR execution mode to TW requires more care.
Threads executing in WR mode have no inherently bound simula-
tion entities: events associated with a given entity can be coopera-
tively executed by multiple threads in alternation. If a WR thread
is to turn into a TW thread, it becomes necessary to manage the
output queue discussed above appropriately. Including all current
messages in the output queue in the various FESs would not be con-
sistent with its handling as described above. Conversely, we place
all events destined for an entity running on TW threads (including
the thread performing the mode change) in the corresponding FESs.
On the other hand, the output queue is assigned to a WR thread,
which will carry on its management in a manner consistent with
what is described in Section 4.2.
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Algorithm 4Mode Switch from TW to WR
global 𝑛𝑒𝑒𝑑_𝑠𝑤𝑖𝑡𝑐ℎ

global 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑
global 𝑤𝑎𝑟𝑝_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡
global 𝑟𝑎𝑐𝑒𝑟_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡
procedure DoSwitch( )

if NOT 𝑛𝑒𝑒𝑑_𝑠𝑤𝑖𝑡𝑐ℎ then
return

if ThreadType( ) =𝑊𝐴𝑅𝑃 OR
NOT ThreadId( ) = 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 then
return

ThreadBarrier( )
if ThreadId( ) = 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 then

if ThreadType( ) =𝑊𝐴𝑅𝑃 then
𝑤𝑎𝑟𝑝_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑤𝑎𝑟𝑝_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 − 1
𝑟𝑎𝑐𝑒𝑟_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑟𝑎𝑐𝑒𝑟_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
SetThreadType(𝑅𝐴𝐶𝐸𝑅)

else
𝑤𝑎𝑟𝑝_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑤𝑎𝑟𝑝_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
𝑟𝑎𝑐𝑒𝑟_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑟𝑎𝑐𝑒𝑟_𝑡ℎ𝑟𝑒𝑎𝑑𝑠_𝑐𝑜𝑢𝑛𝑡 − 1
SetThreadType(𝑊𝐴𝑅𝑃 )

𝑛𝑒𝑒𝑑_𝑠𝑤𝑖𝑡𝑐ℎ ← 𝐹𝑎𝑙𝑠𝑒

ThreadBarrier( )

4.4 Going Distributed
Using our hybrid synchronisation scheme in a distributed setup
is straightforward. WR is designed for execution in shared mem-
ory, whereas TW is inherently capable of handling the causality
violations that may arise from a distributed execution. Therefore,
the hybrid scheme we have described can be immediately used on
distributed deployments due to the presence of TW.

Considering windows as atomic processing units ensures that,
unlike the original proposal in [1], if a straggler message is received
prior to a window, it will be cancelled entirely.

In a distributed deployment, therefore, the fact that there are
multiple concurrent instances of the WR algorithm running on
multiple nodes does not require making these instances aware
of the presence of the others. If WR threads receive a straggler
message, they will work together to restore an earlier state of the
window affected by the straggler, resuming execution.

5 EXPERIMENTAL ASSESSMENT
In this section, we detail the setup and the results of the experi-
mental assessment we carried out for our proposal. We have not
considered distributed simulations due to the assumption of shared
memory in the WR algorithm. As mentioned in Section 4.4, the
execution dynamics in a distributed setup would heavily rely on
the TW algorithm, thus subsuming results already known in the
Time Warp literature.

As a first testbed application, we have used the classical PHold
benchmark [13], a synthetic model that creates a series of events
exchanged between simulation entities. It allows controlling sim-
ulation parameters such as the number of entities, events’ delay,
and workload distribution across the overall simulation. The sec-
ond benchmark we used is a simulation model of the epidemic
spread of contagion [2], an extension of the traditional agent-based
formulation of the susceptible-infected-recovered (SIR) model [25].

Our analysis was conducted using a machine equipped with
two AMD® EPYC™ 7452 processors @ 2.9 GHz, each consisting
of 32 physical cores and 64 hyperthreads, for a total of 64 physical
cores and 128 hyperthreads—hyperthreads were turned off in the

experimental assessment. The machine is equipped with 256 GB of
RAM. All experimental results are averaged over 20 different runs.

5.1 Testbed Applications Configuration
For PHold, we have simulated a total of 131,072 simulation entities
mapped to a variable number of threads in multiple runs. The enti-
ties are divided into a high- and a low-activity partition, the former
composed of 64 entities and the latter of the remaining 131,008.
With a 50% probability, an entity randomly selects a destination for
an event in the high-activity partition. This way, we can mimic a
scenario where a part of the simulation has a higher load.

Depending on the number of threads, there could be a significant
skew on the logical clocks of the entities that could increase the
rollback probability. The high-activity partition suffers most from
rollbacks because of the denser concentration of events that a single
straggler can undo.

We considered the SIRS variant for the epidemiologic model,
where recovered agents eventually revert to the vulnerable state.
Each agent is located in one of an adjustable number of fully
connected domains, each with the same initial number of agents.
Agents have eight randomly selected neighbours in the same area,
so the number of areas affects how localised agent interactions are.

Transition delays are drawn from exponential distributions with
fixed or dynamic rates. The infection rate for susceptible agents
is proportional to the number of infected neighbours. As a result,
agents entering or leaving the infected state must notify their neigh-
bours to reschedule their transition to the infected state based on
the new rate. Transitions from the recovered state to the susceptible
state occur at a constant rate of 1. Two other transitions introduce
dynamic changes to the topology defined by the neighbourhood
relationships of the agents. The first type of transition randomly
changes an agent’s neighbours within its current region, potentially
changing its infection rate or the infection rates of its neighbours.
The second type of transition involves the movement of an agent.

The second type of transition randomly moves an agent to an-
other region and connects the agent to new neighbours in the new
region. The rates at which these two types of transition occur allow
us to control the degree of computational load and agent interaction
within each region, as well as the interdependence of transitions
between regions. Overall, this system is similar to epidemic models
used in real-world epidemic studies [18], which attempt to capture
the effects of daily and long-distance mobility of populations.

5.2 Experimental Results
In Figure 3, we show the speedup over the corresponding sequential
simulation for the PHold benchmark, using a total of 24 and 32
threads empowering the two integrated algorithms. The plots depict
the performance variation as the number of threads responsible
for simulating the high-activity partition changes. The two curves
correspond to the high-activity partition simulated by the TW or
WR threads. In some configurations, simulation runs are more than
10 times slower than the corresponding serial execution. The dashed
curve represents a configuration where the high-activity LPs are
uniformly distributed among processing threads to balance the
computational load. With our knowledge of the chosen models, this
can be accomplished statically and accurately.
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Figure 3: PHold Performance

In the imbalanced model, the total execution time changes dras-
tically depending on the workload partitioning to the threads. Note-
worthy, when using TW and WR for the high-activity partition, a
single configuration exhibits the best performance, independently
of the total thread count. A less apparent observation is that the
optimally partitioned configurations surpass the load-balanced con-
figuration in performance. This is because, despite achieving better
load balance, the communication of the high-activity partition be-
comes dispersed into more threads, resulting in less-efficient event
management operations.

The important result is that, with PHold, the best static con-
figuration is always found using only TW threads. Nevertheless,
thrashing phenomena are observed for the TW algorithm if the
thread count is too high. This is because when fewer LPs are bound
to a TW thread, the system becomes over-optimistic, and the high-
activity partition is subject to more rollbacks. The rollback cost
is much higher for the high-activity partition, as more work is
wasted. In contrast, the WR algorithm is less sensitive to increased
concurrency in the high-activity partition because WR threads can
effectively leverage the reduced aggressiveness to decrease the roll-
back occurrence in the simulation. Apparently, WR threads are
more resilient to tighter simulation interactions, but their average
throughput is lower. This is evidenced by configurations equipped
with WR achieving peak performance with more threads.

Figure 4 reports the SIR-model speedup for the same thread con-
figurations. As can be seen, the scenario is significantly different:
we consistently achieve improved performance over the sequential
simulation when WR threads manage the high-activity partition.
This is because the cost of rollbacks is higher, and the LP interac-
tions in the high-activity partition are highly dynamic and tightly
coupled. In this scenario, TW becomes excessively optimistic, caus-
ing significant clock skewing and leading to worse performance.
The more cautious approach of WR can achieve better returns from
optimism, reducing the overall number of rollbacks.
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Figure 4: SIR Performance
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Figure 5: Strong scaling, picking the best partitioning
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Figure 6: SIR Rollbacks over time: 24 threads
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Figure 7: SIR Antimessages sent over time: 24 threads

In summary, Figure 5 demonstrates that for the PHOLD model,
the partitioned TW configurations yielded the best performance,
whereas, in the SIR model, the hybrid configurations performed
the best. However, with 32 threads, all configurations were more
or less on par. The SIR model has a high degree of coupling, so
even with 24 threads, we achieved a speedup comparable to what
was attained with 16 threads. This indicates that we were nearing
the parallelisation limit for the model, at least using our current
techniques. Interestingly, the load-balanced TW compensated for
its inefficiencies through sheer processing power. Nevertheless, we
can deduce that the hybrid approach is considerably more efficient
for the SIR model, mainly when using fewer threads.

To provide further insight into these findings, we have illustrated
the total number of rollbacks experienced by the TW andWR thread
pools throughout the simulation in Figure 6. The results show that
the WR configuration experiences significantly fewer rollbacks
overall. This is due to the algorithm’s avoidance of over-optimism,
resulting in a lower probability of a WR thread engaging in an
incorrect speculative trajectory. In contrast, the configuration using
only TW threads experiences a much higher rate of rollbacks.

Figure 7 demonstrates that the high-activity partition managed
by TW is responsible for the increased number of rollbacks in TW-
only configurations. In contrast, the very same partition managed
by WR generates a minimal amount of antimessages. However, the
WR threads must wait at the end of windows, leading to block-
ing synchronisation when committing new windows. Therefore,
considering the better performance provided by the hybrid con-
figuration, it can be inferred that the time spent by TW threads
in incorrect trajectories and sending antimessages is superior but
roughly comparable to the time spent by WR in blocking wait.

The last finding is validated by the simulation efficiency shown
in Figure 8, demonstrating that the hybrid approach outperforms
the other strategies for both the evaluated models. Efficiency is
determined by computing the proportion of committed events in
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Figure 8: Efficiency, picking the best partitioning

relation to the overall number of executed events, expressed as a
percentage. It is once again evident that the WR’s less aggressive
characteristics significantly decrease rollback occurrences, albeit at
the expense of idle periods on processing threads. In particular, in
a model such as SIR, with a limited degree of parallelism that can
be captured in the high-activity portion of the model, the hybrid
synchronisation method can achieve remarkably high levels of
efficiency.

These plots over time show that, even for a simplified epidemic
model, we observe a dynamicity in behaviour that an autonomic
policy can potentially exploit. From this overall experimentation,
we can draw the following observations. Evenly distributing the
computational workload among threads in a uniformly synchro-
nised simulation may not always be optimal, as communication
costs, even within the same machine, can influence its effectiveness.
Partitioning the simulation in uneven ways can bring measurable
performance benefits and allows using different synchronisation
algorithms that better adapt to the model’s dynamics.

We have shown that WR and TW can adequately capture the
model’s parallelism under different conditions. In all cases, there
is an optimal static configuration that depends on the model char-
acteristics. Since the workload dynamics can change over time,
we emphasise that this optimal static configuration may also vary.
Therefore, the autonomic policy we envisaged in this paper is fun-
damental because it can capture the best-suited parallelism level
in certain simulation phases, and tune the configuration to deliver
better performance.

6 CONCLUSIONS AND FUTUREWORK
We have presented the methodology to integrate different syn-
chronisation protocols for speculative PDES. Experimental results
clearly demand the introduction of an autonomic policy for the
proper selection of the number of threads running the WR and
the TW algorithms. An additional dimension of optimisation could
entail dealing with multiple pools of WR threads, thus exploring
how multiple FESs for the WR part may affect the simulation per-
formance. Also, by introducing lookahead information, we could
include conservative algorithms, thus effectively providing an im-
plementation for a multi-modal hybrid simulation engine.

All these aspects will be the subject of future-work investigation.
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