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Summary

Software Transactional Memory (STM) provides synchronization support to ensure
atomicity and isolation when threads access shared data in concurrent applications.
With STM, shared data accesses are encapsulated within transactions, which are
automatically handled by the STM layer. Hence, programmers are not requested
to use code-synchronization mechanisms explicitly, like locking. In this article, we
present our experience in designing and implementing a partial abort scheme for
STM. The objective of our work is threefold: 1) enabling STM to undo only part of the
transaction execution in the case of conflict, 2) designing a scheme that is fully trans-
parent to programmers, thus also allowing to run existing STM applications without
modifications, and 3) providing a scheme that can be easily integrated within exist-
ing STM runtime environments without altering their internal structure. The scheme
that we designed is based on automated software instrumentation, which injects into
the application capabilities to undo the required portions of transaction executions.
Further, it can correctly undo also non-transactional operations executed on the stack
and the heap during a transaction. This capability provides programmers with the
advantage of writing transactional code without concerns about the side effects of
aborted transactions on both shared and thread-private data. We integrated and eval-
uated our partial abort scheme within the TinySTM open-source library. We analyze
the experimental results we achieved with common STM benchmark applications,
focusing on the advantages and disadvantages of the proposed solutions for imple-
menting our scheme’s different components. Hence, we highlight the appropriate
choices and possible solutions to improve partial abort schemes further.
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1 INTRODUCTION

In the last decades, parallel architectures left the niche of scientific and high-performance computing. Today, desktops, lap-
tops, and smartphones are equipped with multiple processors and/or multi-core processors1. Also, larger-scale servers with
up to 64/128 CPU cores can be purchased for a few thousand dollars. To effectively exploit this increased computing power
with reduced effort, programmers require efficient and easy-to-use software development tools to hide away the architectural
complexity of modern parallel computing architectures.
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In this context, Transactional Memory (TM)2 offers a practical programming paradigm for the development of concurrent
applications. TM relieves the programmer from the burden of writing explicit thread-synchronization code to protect shared data
accesses—the portions of code to be synchronized can be simply annotated as transactions. Data conflicts between transactions
are detected and resolved at runtime by the TM runtime environment, thus transparently guaranteeing isolation and atomicity
in executing the transactional code.
TM can be implemented in software (Software Transactional Memory—STM) or hardware (Hardware Transactional

Memory—HTM). With STM, transactions management is completely delegated to a software library. Differently, with HTM, it
is supported via dedicated CPU instructions. After more than fifteen years of research, several STM implementations have been
released3,4,5. Hence, STM has reached a certain degree of maturity, so that it has been also included in mainstream compilers,
such as GCC6. Meanwhile, HTM has gained a place in commercial processors, implemented through specific instruction set
extensions (like the Intel TSX7). It is worth noting that STM and HTM implementations are different in some relevant features,
showing various advantages and drawbacks. For example, in HTM, transactions’ data footprint is limited by the processor’s
cache size. Accordingly, transactions that need to access a more extensive data set require software support to execute success-
fully. Also, with HTM, many system events (such as interrupts, context switches, system calls) can lead running transactions to
be aborted. All these drawbacks are absent in STM. Thus HTM cannot wholly replace STM.
On the other hand, STM requires additional research effort to address some problems that hindered their initially expected

success. In particular, some relevant disadvantages of STM implementations include: 1) the performance penalty introduced by
the software support to detect and resolve transaction conflicts, and 2) the lack of a mechanism to undo modifications also made
to thread-private data when a transaction is aborted and restarted. In particular, the latter aspect requires the programmer’s care
to write transactional code that is idempotent in writing thread-private data, thus increasing the complexity level. Concerning
the performance issue, a great effort has been made by researchers to limit the performance impact of STM and to improve the
STM performance through various approaches, spanning from alternative conflict detection and resolution algorithms8,9,10,4,11,
to dynamic concurrency control and dynamic tuning12,13, and to transaction scheduling techniques14,15,16,17,18,19,20,21,22.
However, one approach that has been less explored is partial abort of transactions, particularly with the goal of designing

effective runtime mechanisms to make this approach viable and transparent on off-the-shelf systems. Partial abort avoids that, in
the case of conflict, the whole transaction is rolled back, allowing to restart it from some (still consistent) intermediate execution
point. This avoids undoing the entire work performed by an aborted transaction and thus can restrain the final transaction
execution time.Without partial abort, this latency can broadly grow primarily because of a non-minimal conflict rate. The partial
abort approach can also increase fairness in the case of longer-lasting transactions that access a non-minimal amount of data
and consequently show increased abort probability compared to shorter ones.
Unfortunately, typical STM implementations do not offer partial abort support, as it is hard to implement when dealing with

the complexity of real-world architectures. Indeed, to allow transactions to be partially rolled back, there are a number of factors
to cope with, such as identifying the correct restarting point, managing the associated execution contexts, keeping track of
modified data values in different memory areas, and correctly restoring some past execution context. The latter requires restoring
the CPU state and all the written transactional and non-transactional variables (both on the stack and in the heap). These are
some of the factors which make it complex to achieve complete transparency towards the application programmer.
In this article, we present our experience in designing and implementing a fully transparent partial abort support tailored for

off-the-shelf computer architectures. Unlike previously proposed solutions, the one we designed neither requires the programmer
to identify the restoration points in the transactional code explicitly, nor limits the restoration points to some semantic-specific
transaction execution points, such as logical operations on shared data structures23 or nested transactions24. Further, being able
to undo also write operations executed within transactions on memory areas of the stack and the heap allows the programmer
to write transaction code without concerns about unexpected effects of both partially and fully aborted transactions, also on
thread-private data1. Our study focused on implementing a scheme to fit existing STM implementations running on mainstream
system architectures. Notably, our partial abort scheme does not require altering the STM runtime environment. Also, it does
not require any specific architectural support for tracking modifications to data that have to be undone in the case of an abort.
The implementation of the scheme that we designed introduces minimal housekeeping overhead, relying on optimized

approaches to manage partial-log operations (e.g. saving snapshots of automatic variables) during the execution of the
transaction. Moreover, static and automated binary software instrumentation achieves complete transparency towards the
programmer.

1We consider as thread-private data all local variables stored onto the stack. We do not explicitly cope with Thread Local Storage, as this is a feature that the largest
part of transactional applications do not rely upon.
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The remainder of this article is structured as follows. In Section 2, we discuss related work. Details about the design of our
partial abort scheme are provided in Section 3. A concrete implementation of the scheme for a commonly used STMenvironment,
i.e. TinySTM3, is presented in Section 4. Finally, in Section 5, we present the results of an experimental evaluation study.

2 RELATED WORK

Different approaches have been proposed in the literature to reduce the wasted processing time due to transaction aborts in TM
systems. Many proposals focus on the design, optimization, and/or tuning of the conflict detection and management algorithms
used by STM implementations17,9,12,8,10,4,11. Other studies proposed compiler-based and runtime techniques which use statistics
collected at runtime to identify performance bottlenecks and to guide tuning decisions (e.g. Wu et al.25). Further, autonomic-
computing approaches for mapping threads to the different cores in multi-core machines, as well as machine learning-based
techniques for improving the performance of STM application at runtime have been studied (e.g., Xiao et al.26, Zhou et al.27).
However, none of these proposals specifically copes with mechanisms for aborting and rolling back transactions, but they sim-
ply assume that aborted transactions are entirely rolled back. Thread/transaction scheduling21 represents an alternative approach
reducing the transaction execution time. Thread scheduling targets the (dynamic) tuning of the number of concurrent threads of
the application15 to maximize the throughput. Transaction scheduling serializes the execution of some transactions in advance,
based on some scheduling policy (e.g. transactions are serialized when the transaction conflict rate exceeds a specific thresh-
old14). Essentially, they are proactive approaches that aim to prevent transaction aborts, thus complementary to partial abort
techniques.
The first proposal of partial abort in the context of STM can be found in Koskinen et al.28. The authors propose to replace

nested transactionswith the notion of checkpoints and continuations. The proposed approach defines the checkpoints based on the
semantic of objects accessed along the transactional code execution. Accordingly, the restoration points can only be associated
with logical operations executed on objects rather than any potential conflicting transaction operation. A similar approach is
also found in29,24,30.
Other solutions targeting partial abort in STM include Luper et al.31 and Gupta et al.32,33. Unlike our scheme, the proposal

in Luper et al.31 is limited to the rollback of data in the write-set of transactions; thus, it does not support the restoration of
all data modified along the whole portion of the transaction to be rolled back (e.g. thread-private data). Consequently, mutual
consistency between shared and private data within the partial abort scheme is demanded from the programmer. The proposals in
Gupta et al.32,33 present partial abort schemes validated only via simulation. Additionally, the techniques rely on the traditional
approach where shared and private objects are marked as updated via dirty-bitmaps and are logged within per-object undo stacks.
Differently, our proposal does not rely on any explicit management of dirty bitmaps. It packs log information by clustering
thread-private data via optimized thread-stack log operations, based on ranges of memory addresses defining target regions for
the memory write instructions.
In Le et al.34, the authors propose a partial abort scheme in the context of functional programming compilers, leveraging the

continuation-passing style (CPS) programming paradigm. Consequently, the scheme is not required to address the problem of
tracking and restoring modified heap and stack objects.
In the context of database transactions, one work related to our proposal can be found in Azer et al.35, where the notion of

transaction save-point is exploited. Specifically, upon detecting a conflict, a copy of the current transaction is forked. It remains
idle, thus acting as the save-point to reduce the cost of transaction aborts. Unlike this approach, our proposal does not rely on
forking mechanisms, which would induce excessive overhead in STM settings (given the reduced resource requirements of STM
transactions compared to database transactions due to, e.g., the absence of interactions with stable storage devices). Instead,
we exploit low-cost log/restore operations at the level of the stack of the transactional thread, in combination with traditional
shared-data consistency mechanisms.
As already mentioned in Section 1, the STM support is today offered by some mainstream compilers. As for GCC, it ships

with libitm (since version 4.7), a runtime library supporting STM by relying on a global lock or read/write locks. The latter
implementation is close to the Lazy Snapshot Algorithm36. Also, GCC allows using external STM runtime libraries, such as
TinySTM or RSTM37. In both cases, the standard STM implementations offered by GCC do not provide partial abort facilities.
On the other hand, the scheme we provide in this article can also be used with GCC by relying on compile-time flags.
Concerning the management of mutual access to data structures stored in the heap, several proposals in the literature address

this issue in the context of speculative high-performance computing. The works in Toccaceli et al.38 and Pellegrini et. al.39
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provide transparent logging facilities for dynamic memory. However, every time a snapshot is created, this entails copying the
whole used heap, which is a cost too high to be paid in the context of STM systems, especially when transactions are very
short. Some proposals, such as Quaglia et al.40 and Fujimoto et al.41, rely on specialized hardware, while we target off-the-
shelf machines. Steinman42 and Das and Fujimoto43 propose solutions to checkpoint dynamic memory, although they are not
transparent since the application must be developed by relying on an ad-hoc allocation/deallocation API. The work in Pellegrini
et al.44 offers a transparent and incremental checkpointing mechanism of dynamic memory, relying on software instrumentation.
As we will show, we adapt these solutions to the TM context, in which the duration of a transaction can be very short. Moreover,
solutions like the ones provided in42,43,44 do not allow any partial rollback capability, because they undo the execution of a whole
atomic unit of work (i.e., the execution of an event handler).

3 THE PARTIAL ABORT SCHEME

Our partial abort scheme targets the widely-known Commit-Time-Locking (CTL) concurrency control algorithm, used to man-
age concurrency and determine consistency in typical STM implementations such as TinySTM3 and TL245. Our approach
exploits the CTL read validation mechanisms and supports transparently injected in the STM-based application via static soft-
ware instrumentation. Additionally, it introduces transparent mechanisms to save parts of the transactional work also related to
variables in the heap and private variables in the stack. In the rest of this Section, we provide an overview of CTL, and we then
plunge into the details of our partial abort scheme.

3.1 Target Concurrency Control Algorithm
The target concurrency control algorithm is the Commit-Time Locking with read validation. We focus on the implementation
provided in TinySTM3. It relies on a global version clock (gvc), which is a globally-shared counter which is atomically incre-
mented when a transaction that updated some shared object commits. Each shared object (which can correspond to one or more
memory words in the case of word-based STMs, like in TinySTM) is associated with its own metadata, containing a lock-bit
and a timestamp. The association is established through a hash function which takes in input the memory address of the shared
object and returns the memory address of the associated metadata. When a transaction successfully commits, the new value gvc
is stored in the timestamps of metadata associated with all the objects written by the transaction.
When a thread starts a transaction or restarts a transaction from the beginning after an abort, the current value of the gvc is

stored in a thread-local variable, called the transaction’s start timestamp (tst).
When executing a transactional read operation on a shared object, the object’s memory address is added to the transaction’s

read-set. In addition, it is checked in advance if the current transaction has already written the object by looking into the trans-
action’s write-set. If this is the case, the value stored in the write-set is returned. If the shared object is not in the write-set, the
object’s lock-bit and a timestamp are atomically read. Then it is checked whether the lock-bit is set, meaning that a concurrent
transaction locks the object. In the positive case, the transaction starts spinning until the lock-bit is found not set. Then, the object
value and its timestamp are re-sampled along with the lock-bit to check if the timestamp is less than or equal to the tst of the read-
ing transaction and if the lock-bit has not been set by another transaction meanwhile. If both checks succeed, thus no concurrent
transaction has modified the object between the start of the transaction and the read operation, the read value is still valid and
the transaction continues its execution. This check is called read validation. If the read validation fails, the transaction is aborted
and restarted. When executing a transactional write operation, the address of the object to update is added to the transaction’s
write-set, and the value is not immediately written on the object. Instead, it is temporarily stored in a buffer in the write-set.
Upon committing a transaction, the thread tries to acquire all locks associated with the objects belonging to the transaction’s

write-set, as in the first phase of the two-phase locking (2PL) scheme. If at least one lock acquisition fails due to a conflict with
a lock already acquired by another thread, the transaction is aborted and restarted. The transaction’s read-set is validated if all
locks are successfully acquired. Specifically, for each object in the read-set, the timestamp is compared with the value of tst to
check whether the object has been modified by a concurrent transaction after the transaction started. Indeed, if an object has
been modified, then its timestamp has to be greater than tst since it has been updated by the concurrent transaction that was
committed after the transaction started. Hence, if the timestamp of at least one object in the read-set is greater than tst, then the
transaction is aborted and restarted. Otherwise, the transaction can be successfully committed. Thus, the values stored in the
write-set buffers are stored in the objects to be made visible to the other threads. Finally, all acquired locks are released.
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If a transaction is aborted during the commit operation, all the acquired locks (if any) are immediately released. We note that
for a read-only transaction, the commit operation is unnecessary. In fact, if no transactional write operation has to be executed
prior to committing, then it is sufficient to ensure that the transaction, along its execution, has read valid object values. This is
verified by the read validation executed upon each read operation.
A mechanism that can be used in combination with the presented concurrency control algorithm is snapshot extension. Upon

a transactional read operation, if the read validation fails, the thread checks whether all the objects in the transaction read-set
(if any) are still valid. In the positive case, it means that all object values read by the previous transactional read operations of
the transaction are still consistent with the current transactional read operation. Consequently, abort is not required. In this case,
the validity snapshot of the transaction can be extended, which consists of updating tst with the current gvc value; thus, the
transaction can continue to be executed.

3.2 Identifying a Restoration Point
As discussed in Section 1, partial abort allows avoiding squashing the whole work executed by a transaction that has to be
aborted. Thus, the first issue to deal with when designing a partial abort scheme is how to identify the correct transaction
restoration point, i.e. the execution point of the transaction from which the transaction has to be restarted. We remark that once
a correct restoration point is identified, only modifications to data performed by the transaction after the restoration point have
to be undone.
Our partial abort scheme works in synergy with read validations performed by the concurrency control algorithm to identify

the restoration point. Also, it uses a read-set validation scheme similar to snapshot extension. In detail, when a transactional
read operation is executed and the read validation fails, our partial abort scheme tries to validate all objects in the read-set in
the same sequence the transaction has accessed them. If all objects are still valid (i.e. they have not been updated by concurrent
transactions after the begin of the transaction), then the validity snapshot of the transaction can be extended, precisely like
in the case of snapshot extension, thus avoiding the transaction abort. Otherwise, the first invalid object found in the read-set
determines the restoration point. In other words, the restoration point is the transactional read operation that accessed the first
invalid object. This ensures that all the objects read by the transactional read operations prior to the restoration point are still
valid; thus, only write operations executed after the restoration point may have written inconsistent values. Consequently, only
these write operations require to be undone.

3.3 Undoing transactional work
To undo all the modifications to data performed by a transaction after a restoration point, we need to keep track of the write
operations executed after that point. Given that it is impossible to know in advance which will be the selected restoration point,
all the write operations executed since the start of the transaction should be tracked. As discussed, we targeted a scheme design
that can undo modifications to both shared data and thread-private data made by a transaction. To this aim, we need to track: 1)
all modifications made by transactional write operations to data in the shared memory, and 2) all modifications made by (non-
transactional) write operations to data stored in the stack and heap memory areas of the thread which executes the transaction.
Further, we need to keep track of the previous values of data modified by the transaction in order to be able to restore them.
Finally, we also have to track, for any potential restoration point, the subset of modifications made by the transaction after that
point. This is required for undoing only the correct portion of work made by the transaction after the point. All these aspects
represent challenging issues to deal with when implementing a partial abort schema on off-the-shelf computer architectures,
given the absence of specific support for tracking memory updates on the different memory areas.
Since transactional read operations represent the potential restoration points, our partial abort scheme tracks causality relations

(i.e. temporal ordering) between transactional read operations and all write operations (i.e. transactional and non-transactional
ones) of a transaction. In order to track causality relations between transactional read operations and transactional write opera-
tions, our scheme creates a pointer in the read-set entry of each transactional read operation. It points to the entry in the write
set of the first transactional write operation executed by the transaction after the transactional read operation. Accordingly, the
pointed transactional write operation and all the other transactional write operations stored in the write-set after the pointed one
are causally dependent on the read operation. This scheme allows rapidly identifying the subset of transactional write operations
to undo at each restoration point.
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1 // global shared variables
2 int shared_int_a = ...;
3 int shared_int_b = ...;
4

5 // function executed by the thread
6 thread_function(int x) {
7 int a, b;
8 b = ...
9 TM_begin(); // transaction starts here

10 ...
11 a = TM_read(shared_int_a);
12 b = b + x;
13 TM_write(shared_int_b, a+b);
14 ...
15 TM_end(); // transaction ends here
16 }

1 // global shared variables
2 int shared_int_a = ...;
3 int shared_int_b = ...;
4 int shared_int_c = ...;
5

6 function1() {
7 int z = ...;
8 z += TM_read(shared_int_c);
9 TM_write(shared_int_c, z);
10 ...
11 return z;
12 }
13

14 function2(int *w) {
15 *w++;
16 }
17

18 // function executed by the thread
19 thread_function(int x) {
20 int a,b;
21 b = ...
22 TM_begin();
23 ...
24 a = TM_read(shared_int_a);
25 b = function1();
26 function2(&x);
27 TM_write(shared_int_b, a + b + x);
28 ...
29 TM_end();
30 }

FIGURE 1 Examples excluding (left) and including (right) application-routine calls within the transactional code block.

3.3.1 Dealing with the stack
Tracking modifications to thread-private data is not trivial, given that any read/write operation on these data is not tracked in the
read/write-set. Moreover, multiple (nested) functions might be called within a transaction, thus creating multiple stack frames,
each of which can keep any number of local variables that should be tracked. We provide an example through the code listing
in Figure 1. TM_begin() and TM_end() denote the start and the end of the transaction, respectively. TM_read(var) denotes
a transactional read operation on variable var. TM_write(var, new_val) denotes a transactional write operation on variable
var, where new_val is the value to be written. On the left-hand side of Figure 1, we show an example of a transaction executed
by a thread. Assume that a conflict occurs after the operation TM_write (i.e. after code line 12), and that the restoration point is
the previous TM_read operation (code line 10). In this case, modifications to undo include: 1) the update of the thread-private
variable a (code line 10), 2) the update of the thread-private variable b (code line 11), and 3) the update of the shared variable
shared_int_c executed by the transactional write operation TM_write(shared_int_b, a+b) (code line 12). We note that,
while the variable shared_int_b is located in a shared memory area, variables a and b are in the thread stack area. Now we
consider the code on the right-hand side of Figure 1. In this case, the thread also issues a call to other functions during the
transaction execution. If a conflict occurs after the operation TM_write in function1 (i.e. after code line 9 and before code
line 11), and the restoration point is the previous TM_read operation in function1 (code line 8), we need to undo the update of
the local variable z (code line 8), which is stored in the stack of function1. If a conflict occurs after the operation TM_write
of thread_function (i.e. after code line 26), and the restoration point is the previous TM_read operation (code line 23), we
need to undo various updates, in particular including the update to the variable x executed when calling function2 by means
of dereferenced pointer. We note that any generic function might be called both within a transaction and outside of a transaction,
thus making it even more complex to track updates to local variables.
To make a partial abort scheme effective, we need to correctly identify any update to any local variable used when running

any portion of code of the application in a transaction, and we need to do that efficiently. Also, we should avoid paying the costs
related to tracking updates to local variables whenever some portion of code is not run within a transaction.
To cope with the issues mentioned above, the partial abort scheme we designed uses an approach that restores the stack to a

valid snapshot at the time in which the code line at the restoration point has been executed the last time, as depicted in Figure 2.
It works as follows:
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FIGURE 2 Stack management within partial rollback.

A1: when a transaction starts, the base address of the stack frame of the currently-running function is saved. As we shall
describe later, this value is used while the transaction is being executed to grow an incremental stack window.

A2: upon the invocation of a TM_read operation, a recovery image for the whole memory segment in between the current stack
pointer and the base pointer (whose value was previously logged, as in A1) is created, together with a recovery image for
the processor context.

A3: when a snapshot extension operation is carried out, the stack/processor recovery image associated with the first no longer
valid read operation (as generated in A2) is restored.

A4: upon the successful termination of TM_end, which commits the transaction, the recovery images associated with the
transaction execution path (as determined by A2) are discarded.

Concerning point A1, we note that in modern x86_64 architecture, it is not safe to consider any memory address below the
stack pointer as being part of the current thread’s stack. Indeed, the modern memory layout is such that different threads’ stacks
can be located one after the other in the address space, and they can also be interleaved with portions of the heap. This latter
point is critical, because if a thread shares a heap variable with another thread, simply checking if an address falls below the
stack pointer might incorrectly deem that address as belonging to the current thread’s stack. To cope with this issue, upon thread
creation, we store the initial stack pointer. This value is additionally used to determine whether an address falls out of the bottom
of a thread’s stack.
Point A3 provides the facilities to consistently restore an intermediate snapshot of thread-private data even if all the transac-

tional work is squashed, e.g. due to invalidating the object accessed upon the first read operation along the transactional code
block. This is a relevant facility to simplify the development of the application code.
To correctly identify the data which have to be logged in point A2, and also to reduce the amount of data that is copied

into the log, we rely on an incremental stack window. In particular, we adopt an incremental logging strategy, based on static
binary instrumentation2. Specifically, when the application is being linked, the produced image file is parsed in order to insert
a code block before any memory write operation (e.g. mov instructions) which, by analyzing the current state of the processor,
determines the actual virtual address to be targeted by the update, and the size of the touched memory area. If the memory-write
operation falls within the stack (namely, the lower address of the area to be touched is not less than the current stack pointer
value3), it means that the operation deals with the content of the stack thus needs to be made undoable. Hence, it is determined
the interval of virtual addresses [I1, I2] involved in the update, which in turn identifies a stack portion to be logged upon the
creation of the next recovery image as the one containing all the memory locations in between the addresses I1 and I2. We note
that for some memory instructions, write access to the stack occurs by default, such as for the case of push and call. As for

2For the sake of simplicity, we discuss the approach by focusing on x86-compliant architectures, but it can be easily adapted to any instruction set.
3To deal with the red zone, i.e. a fixed-size area in a function’s stack frame below the current stack pointer that is reserved and safe to use by leaf functions, we simply

consider an offset of 128 bytes from the top of the stack.
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the call instruction, instrumentation determines whereinto the stack this instruction will write the return value for the program
counter, while for push, it determines where a generic value will be written.
Multiple write operations can occur before the point where the creation of the stack recovery image occurs. For example, an

additional write may involve the stack portion in the interval of addresses [I3, I4]. In such a case, instead of explicitly maintaining
a list of stack areas to be logged and restored, we adopt a clustering approach where we identify the actual area to be logged
as the one in between a minimum address value computed as I− = min(I1, I3) and a maximum address value computed as
I+ = max(I2, I4). In other words, we always log a contiguous segment of the stack, which is ensured to contain all the modified
stack locations (although possibly containing also non-modified locations), which is done in order to perform the actual log
operation by using a single machine instruction, namely the movs instruction of the x86 instruction set.
We emphasize that our approach based on a boundary check on the actually-modified region of the stack well copes with

common optimizations offered by modern compiling toolchains. In particular, when high optimization levels are requested,
standard compilers might decide to use, where available, the stack base registers (e.g. ebx on x86 architectures) as general-
purpose ones. This decision allows to speed up the program’s execution by enlarging the information set that the processing
unit can maintain within its internal state. On the other hand, this makes it impossible to determine the current function’s stack
frame. Our solution can also cope with this scenario since we do not need to explicitly know the base of the stack zone for any
specific function.
With the devised approach, we can undo also update operations occurring within the stack via pointer-based access. Specifi-

cally, whenever any function is activated within the execution flow of a function executed by a thread (e.g. thread_function
in Figure 1), if any pointer is received in input which allows accessing memory locations on stack frames of other functions
living along the thread, then any write access is automatically handled via the recovery scheme depicted above.

3.3.2 Dealing with the heap
The other aspect to consider is related to updates occurring within global data that are inherently outside the control of the STM
layer (e.g. non-transactional global per-thread variables stored in the heap), possibly accessed directly via pointers. This scenario
is similar in spirit to the discussion which we have carried out for variables stored on the stack, yet it is simply not possible to
put in place a logging strategy similar to the one discussed above. Indeed, when dealing with per-thread variables stored in the
heap, two main problems arise due to the heap being shared across the threads of the same process. In this sense, although the
data are accessed in data separation, they can be significantly scattered around the virtual address space. We note, however, that
typical transactional code does not heavily rely on heap data.
To effectively overcome these issues when implementing a partial abort strategy targeting the heap, we suggest relying on

per-thread allocators. In particular, each thread can rely on a memory map manager which, upon the invocation of an allocation
service such as malloc() or new, retrieves a buffer from a per-thread area.
A graphical representation of the organization is depicted in Figure 3. Each thread is associated with an allocation pool, a

compact data structure keeping a pointer to a second-level memory pool used to serve memory requests. The allocation pool is
organized to associate each entry with a given size of memory requests to be served, only accounting for power of two sizes.
In this way, upon a memory request of size m, the bucket from which to access the second-level memory pool can be quickly
identified as 1U << (log2(m − 1) + 1)—this corresponds to a fast routine composed only of a handful of instructions on most
computer architectures, not really requiring to compute the costly log2 operation, being the buffers size powers of two.
Each memory pool can serve memory requests from chunks of the same size. This is a buffer of contiguous memory chunks

lazily allocated from the heap. Therefore, a memory pool is allocated only after the first request of size m is received from the
transactional allocation.Memory pools are augmented with a couple of bitmaps, with each bit being associated with onememory
chunk. A use bitmap is used to keep track of memory chunks already allocated via previous malloc/new calls. Therefore, a fast
bitmap scan allows identifying a free chunk that can be returned to serve a new memory request. A dirty bitmap can be used
to keep track of what memory chunks have been accessed in write mode during the execution of a transaction, according to the
following protocol:

B1: When a transaction is started, the allocated memory pools of the thread running the transaction are scanned. All the dirty
bitmaps are cleared, meaning that no chunk, in the current incarnation of the transaction, has been accessed in write mode
during the transaction execution. Additionally, a snapshot of all the used bitmaps is taken.

B2: When a memory-write instruction is detected to write on a memory chunk associated with the current thread, the dirty
bitmap of the memory pool keeping the chunk is scanned. The corresponding bit is set to maintain the information that
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FIGURE 3 Conceptual organization of the heap.

a change in that chunk should be considered when performing a partial abort operation, and a snapshot of the previous
content of the corresponding chunk is taken.

B3: Upon the invocation of a TM_read operation, all chunks associated with a set dirty bit belonging to all memory pools are
copied in a compact data structure (a heap snapshot) which is linked to the transactional read-set. Moreover, also dirty
bitmaps and use bitmaps are stored. The former is used to allow a fast restore of memory chunks upon a partial abort
operation. In contrast, the latter is used to account for the recoverability of allocation/deallocation operations, as we shall
describe.

B4: When a snapshot extension operation is carried out, all heap snapshots are scanned up to the one associated with the first
no longer valid read operation. All chunks which were updated are copied back in place to the live image of the memory
pools, thanks to the dirty bitmaps, which allow determining the actual memory locations from the heap snapshots. The last
use bitmap is put back in place to undo the execution of possible free/delete operations executed during the transaction.

A4: Upon the successful invocation of TM_end, which determines the actual commitment, all heap snapshots are discarded.

Points B3/B4 deserve an additional discussion. For the sake of generality of our approach, it might be possible that while
executing a transaction, a thread might allocate/release memory buffers. In case of a partial abort, these actions should also be
undone to restore a consistent memory snapshot from which to restart the transaction’s execution. Let us consider the execution
depicted in Figure 4. A transaction is started after that a buffer of sizemwas acquired from the heap, namely from the thread pool.
This buffer is freed during the transaction execution, therefore clearing the associated use bit. A subsequent malloc operation
of the same size m will likely return a pointer to the same memory chunk. Upon a partial abort operation, the restoration point
is identified as immediately before the free() operation, which released the buffer of size m. Also, in this scenario, the above-
described protocol brings back the memory snapshot to a correct state thanks to point B4 because: i) the use bitmap associated
with the state before the free() operation (saved as per point B3) is put back in place, telling that the memory chunk pointed
by ptr1 is valid, and ii) the content of the previous incarnation of the memory buffer is written back in place, taking it from
heap snapshots or the initial snapshot (taken at point B1).
The overall protocol to manage the heap might appear costly. Anyhow, we emphasize again that the performance is not the

only goal of our partial abort scheme, but it also aims at providing full transparency to the programmer, in particular when
writing transactional code that access non-transactional data. In Section 5, we will experimentally assess the overhead of the
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ptr1=malloc(m)

ptr2=malloc(m)

free(ptr1)

TM_begin()Restoration

Point

FIGURE 4 Sequence of malloc/free operations.

proposed protocol, showing anyhow that for a reduced amount of memory operations within a transaction, this can be considered
negligible.

4 IMPLEMENTATION DETAILS

The specific implementation we provide of the partial rollback scheme devised in Section 3.2 has been tailored for integration
within TinySTM, an open-source C based STM layer widely diffused in academic contexts, which is typically adopted for
prototypical development and validation of innovative research results. The implementation has been based on hijacker46, a
general-purpose static binary instrumentation tool targeting differentiated software manipulation requirements and objectives.
Hijacker allows altering (at linking time) the actual operations performed by an executable without modifying its semantics. We
have targeted Executable and Linkable Format (ELF) objects generated by standard GCC compilers on x86-64 architectures.
Additionally, hijacker allows generating multiple versions of the same code (accessing the same data), which is manipulated
in differentiated ways, depending on the instrumentation needs. This technique, known as multi-coding, allows putting in place
more complex instrumentation mechanisms, still reducing the possible overhead at runtime. By specifying a set of XML-based
rules, we are able to alter transactional code by:

• Identifying all memory-write instructions within code blocks explicitly marked as transactions;

• Prepend to them a call to ad-hoc routines which allow tracking memory updates according to the protocols described in
Section 3;

• Generate copies of all nested functions, called from a transactional context, and instrument them according to the same
scheme4;

• Replace all function calls within a transactional context, targeting the instrumented copies.

The additional version of functions instrumented only for the transactional context reduces the runtime overhead. Indeed, if
the same function f() is called from a non-transactional context, the original version will be executed. On the other hand, from
a transactional context, the flow is diverted to f’(), which is a function with the same semantic of f(), yet it is instrumented
to track memory updates. In this way, thread execution along a non-transactional context will not pay the overhead associated
with static binary instrumentation. All these modifications allow for complete transparent instrumentation of the STM-based
application, enabling partial abort without manual intervention by the programmer.
Similarly, TinySTM has been augmented by introducing the logic required to handle partial abort operations, namely:

• Identifying the execution points where recovery images for the stack of the transactional thread need to be taken;

• Implementing the actual log/restore logic for the stack and its management combined with the management of read-/write-
sets.

Both the above points have been achieved by nesting a block of code to be executed right before any call by the application
software to the TM_read function offered by the TinySTM API. This allows to transparently take control right upon the need

4We assume that all call sites can be identified at inspection time. This leaves out the possibility to call functions via pointers. To support function pointers, more
costly operations should be supported, namely instrumenting all functions and determining at runtime whether we are running in a transactional context or not. For the
sake of performance, we have explicitly discarded this option.
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stack_pointer = stack_pointer(); // Read RSP
getcontext(&cpu_state); // cpu_state is a jmp_buf
stm_store_context_in_readset(&cpu_state);

FIGURE 5 Instructions prepended to TM_read.

// C-equivalent declarations
typedef struct {

void *upper;
void *lower;

} stack_region_t;

__thread stack_region_t stack_region;

// Used assembly code
.tbss
stack_region: .zero 16

.text

push %rax
push %rdi
lea variable, %rdi
movq %fs:stack_region@tpoff, %rax
testq %rax, %rax
je 3f
cmpq %rdi, %rax
jbe 2f

1: cmpq %fs:stack_region@tpoff+8, %rdi
ja 4f
movq %rdi, %fs:stack_region@tpoff+8
jmp 4f

2: movq %rdi, %fs:stack_region@tpoff
jmp 1b

3: movq %rdi, %fs:stack_region@tpoff+8
movq %rdi, %fs:stack_region@tpoff

4: pop %rdi
pop %rax

FIGURE 6 Identification of the stack region to be saved.

for creating a stack recovery image, namely before accessing the target transactional object in read mode. If the read operation
is revealed as invalid, the additional logic included within the TinySTM layer is exploited to exploit stack restoration images for
supporting partial rollback.
In order to correctly create a recovery image, which includes the current processor context, we have prepended to the

operations by the TM_read function the instructions reported in Figure 5. With this approach, stack/processor information
associated with the current state of execution of the function calling TM_read (namely thread_function in the example
in Figure 1) is sampled, with no modification of stack pointer/content and CPU image performed by the code block. On the
other hand, the actual creation of the stack recovery image is demanded from internal logic we have added within TinySTM,
which performs optimized management of stack log operations, as we shall explain in what follows. This is accessed via the
stm_store_context_in_readset API, which we have added to the internals of TinySTM.
The identification of the stack region to be saved for future re-installation upon a partial abort operation is based on the

injection, within the instrumented code, of a snippet as shown in Figure 6. It implements the boundary check described in
Section 3.3.1 in a fast way. In particular, a per-thread struct kept in the TLS is used to keep track of the current boundaries I−

and I+. These values (which are cleared upon a transaction startup) are checked against the current address of the variable being
accessed5. If the address falls out of the current range [I−, I+], the proper upper or lower limit is updated.

5For simplicity, we call the accessed location variable in the code snippet. Thanks to the lea instruction, more complex addressing methods can be evaluated with
the same single operation.
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As mentioned, upon the detection of an inconsistent value read during the transaction’s execution, instead of relying on the
classical rollback scheme, we perform a partial rollback operation, which entails restarting the execution of the conflicting
transaction from an intermediate point such that every operation before it is still considered valid.
In order to effectively restart from within a transaction, we must restore every aspect of the execution context. If, on the

one hand, the processor state is restored via the standard System V setcontext library function—using a previously stored
snapshot—in order to cope with automatic variables successfully, we must undo any modification concerning the stack frames
of the functions called during the transaction.
Concerning heap management, a couple of actions should be taken to transparently inject in the transactional application the

heap manager described in Section 3.3.2. In particular:

• All calls to allocation/deallocation services (such as malloc()/free()) should be intercepted and redirected to the custom
heap manager implementation.

• Library calls that spawn new threads should similarly be wrapped to setup the ad-hoc memory manager.

Both points above are achieved thanks to standard linker wrapping tools. In particular, the GNU linker ld provides the –wrap
flag, which allows specifying a target library function to be redirected to a custom wrapper which, in turn, can have access to
the original implementation. We have specifically targeted malloc(), free(), and pthread_create() library functions. The
former two have been replaced with the custom implementation of our heap manager. The latter has been used to initialize the
data structures associated with the heap manager before calling into the original thread activation function.
The initialization of the heap manager relies on a per-thread variable stored in the TSS of the thread, which points to the

memory pool of each thread. In this way, every time that a call to the intercepted malloc()/free() functions is issued, the
running thread can access the correct per-thread pool. This solution also allows to cope with transactional applications that use
any number of threads in a straightforward way.

5 EXPERIMENTAL STUDY

As mentioned, we implemented our partial abort scheme within the open-source TinySTM library3 for evaluation purposes. In
this section, we present the results of an evaluation study we conducted for assessing its impact on performance. We used the
following five benchmark applications from the well-known STAMP benchmark suite47 for STM:

1. bayes is a transactional implementation of an algorithm to learn Bayesian networks. A Bayesian network represents a
probability distribution for a set of variables in a graphical manner. It is a directly acyclic graph where each node represents
a variable and each edge represents a conditional dependence. bayes implements a hill-climbing algorithm employing
both a local and a global search48. This benchmark relies heavily on dynamic memory, therefore it is a good benchmark
to study the effects of dynamic memory management. At the same time, the transactions have a medium granularity, with
a reduced amount of read operations, thus serving as an average case with respect to overhead/performance benefit to
assess our approach.

2. ssca2 is a transactional implementation of the Scalable Synthetic Compact Applications 2 (SSCA2) benchmark49, where
a graph kernel is used to build a directed, weighted multi-graph using adjacency arrays and auxiliary arrays. In particular,
threads concurrently add nodes to the graph, and transactions are used to synchronize accesses to the adjacency arrays.
This kind of operation is relatively fast, therefore the transactions’ granularity and the amount of data involved is relatively
small. This entails a reduced data contention, making this benchmark effective for assessing the actual overhead produced
by our partial rollback implementation with respect to the traditional rollback scheme.

3. genome implements a transactional algorithm to reconstruct a gene sequence from segments of a larger gene. This bench-
mark relies on multiple algorithms that have a non-minimal impact on transaction duration. In particular, it relies on a
hash set to identify duplicated segments, and it relies on the Rabin-Karp string search algorithm50 to match segments.
As these operations are parallelized, the amount of concurrent read/write operations is non-minimal, especially in case of
large datasets.

4. kmeans is a transactional implementation of a partition-based clustering method51. A cluster is represented by the mean
value of all objects that it contains, and during the execution of this benchmark, the mean points are updated by assigning
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FIGURE 7 Results with bayes.

each object to its nearest cluster center, based on Euclid distance. This particular benchmark relies on threads working on
separate subsets of the data and uses transactions to both assign portions of the workload and store final results concerning
the new centroid updates. Although the granularity of transactions is relatively small in this benchmark as well, given
the reduced amount of shared data structures being updated, it is more likely to incur in logical contention when a larger
number of threads is used to follow through the computation, thus giving us the possibility to show the benefits deriving
from our partial rollback scheme. In particular, we note that this is not the best case for our approach since the amount of
saved work is nevertheless reduced, so that the overhead generated by the CPU/stack state saving/restoring could not be
completely amortized, which gives rise to a meaningful test case.

5. vacation is an application implementing a travel reservation system. It is powered by a single-instance database, and
the clients interact with it by means of a transaction manager. Clients can issue four different requests, i.e. to make a
reservation, to delete a customer, to insert a car, flight, or room in the database, or to remove such elements. Tables in the
database are implemented as Red-Black trees. Similarly to bayes, this benchmark heavily uses dynamic memory, while it
has transactions that are typically short.

According to the STAMP specification, all the selected benchmark applications can be characterized by two parameters. One
is the size of the data set, which can be either small, medium (marked with ‘+’), and large (marked with ‘++’). The second one,
mainly used for the kmeans and vacation benchmarks, indicates the actual requirements of the transactions, in terms of, e.g.,
the actual span of the accesses onto the data set and, correspondingly, CPU requirements. It is also an indication of the relative
amount of contention. This parameter is denoted as ’high’ (indicating high demand) and ’low’ (indicating reduced demand).
The computing platform used in the experiments is equipped with a 3.70GHz Intel(R) Core(TM) i9-10900X CPU, with 10

cores (20 hyper threads) and 16 GB of RAM. The used operating system is Ubuntu Server 22.04 LTS, with Linux kernel 5.15.0.
The used compiler is clang 14.0.0. All the data provided in this section are averaged over 30 different runs, and report results
when varying the number of concurrent threads from 1 to 20. We also show the estimated 90% confidence intervals.
In Figure 7 we report the execution time for the bayes benchmark, which is characterized by long transactions and generally

high contention. In this particular benchmark, the partial rollback approach has to create a non-minimal number of snapshots,
increasing the overhead. Also, snapshot management is such that, upon a partial rollback operation, unneeded snapshots have to
be garbage collected. This particular scenario makes the approach unable to payoff the cumulative overhead of a long transaction.
Nevertheless, when the data set is larger (the ’++’ configuration), the partial rollback scheme is able, at high contention levels,
to deliver some performance improvement, although marginal. This is related to the reduced pressure on the housekeeping
operations.
The results for scca2 are shown in Figure 8. As we already mentioned before, this benchmark is characterized by short

transactions, accessing a reduced amount of data, and the time spent in transactions is a reduced percentage of the whole
application execution time. In the study presented in Minh et al.49, it has been estimated to be at most 17%, and the abort
probability is about 0.01. The results in Figure 8 show a minimal overhead induced by our scheme. Specifically, for the case of
a small dataset configuration, we observe an overhead on the order of 7% for most of the considered concurrency levels (i.e.
number of threads). Such overhead is further reduced when considering the ‘++’ configuration, where the increased data set
leads to secondary effects, such as those related to the reduced locality, to be more evident, with a consequent reduction of the
relative overhead for the CPU context/stack logging mechanisms injected within TinySTM via our solution.
In Figure 9 we report the execution time for the genome benchmark when varying the number of concurrent threads in between

1 and 20. As we can see from the results, the partial rollback approach produces no performance improvement. Nevertheless, we
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FIGURE 8 Results with scca2.
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FIGURE 9 Results with genome.

observe that with an increased amount of data to be processed transactionally, at higher thread counts the performance penalty
paid by our approach is reduced. This is an additional indication that resuming a transaction execution from the last valid read
can pay off the overhead required by the procedures needed to reconstruct both the memory and the CPU states.
In Figure 10, we report the results we observed with kmeans. With kmeans, the most unfavorable configuration for our partial

abort scheme is ‘high+’, where the transactions have higher requirements and access a smaller data set. This leads to scenarios of
high data conflict, likely occurring in the early phase of transaction execution (due to the reduced size of the data set). This leads
the partial abort scheme to induce a non-minimal amount of logging overhead while not allowing a sufficient save of work while
undoing transactions. We noticed that this is because most transactions were restarted from the beginning. This phenomenon
is alleviated when considering the ‘high++’ configuration, where the increased size of the data set leads to scenarios where at
least a portion of the performed transactional work can be successfully saved since the data set largeness reduces the likelihood
of conflicts in the early phase of transaction execution. This leads the partial abort scheme to exhibit increased effectiveness,
especially when concurrency is higher. In such a case, in fact, it achieves up to a 20% reduction of the application execution
time in the case of 20 CPU cores.
The ‘low+’ configuration of kmeans gives rise to execution dynamics that are not so far from those observable for the ‘high++’

configuration. Specifically, transactions conflict while accessing a reduced data set, but they exhibit low resource requirements.
Hence, also in this case, there is no bias towards conflicting in the early execution phase. Consequently, the scheme operates
effectively, especially when the level of concurrency is increased. Indeed, it provides a reduction of the application execution
time in the order of 40% as soon as the number of used CPU cores is greater than 23.
On the other hand, with reduced concurrency levels, the impact of transaction abort is reduced, which leads to the scenario

where the partial abort scheme induces a logging overhead that does not get compensated by revenues while partially undoing
transactions. This overhead is further absorbedwhen running the ‘low++’ configuration (e.g., due to the aforementioned reduced
locality phenomena within the benchmark). Hence for this scenario, we observe that our scheme provides a similar performance
achievable by fully-aborted transactions when the level of concurrency is limited. Conversely, it provides some performance
advantages when this level increases, leading to increased abort probability, thus making the partial save of transactional work
already carried out more useful.
Similar conclusions can be drawn from the vacation benchmark, whose results are provided in Figure 11. Again, with low

contention, the overhead paid by the partial rollback scheme is not paid off, while it is the case when the contention degree is
increased and the number of concurrent threads grows. Interestingly, from the results we also observe that when the contention
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FIGURE 10 Results with kmeans.
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FIGURE 11 Results with vacation.

increases, but over a larger dataset, the benefit of the partial rollback scheme becomes more apparent—this is particularly evident
in the vacation-high++ configuration.
To complete the experimental assessment, we provide in Figure 12 the time spent in the application benchmarks to manage

the stack of the different threads. The plot refers to the configuration run with 20 concurrent threads, and shows the cumulative
time spent in stack management operation for the whole experiment run. By the results, we observe that the time spent in the
management of the stack is negligible compared to the duration of the overall benchmark. In particular, in all configurations it
is always lower than 10% and, in most cases, below 5%.
For a more accurate assessment of our partial abort scheme’s heap management strategy, we use a different application. In

effect, available benchmarks for transactional applications make less use of non-transactional accesses in the heap compared to
other kinds of data accesses. This is because they focus on evaluating undo capabilities on transactional operations. Thus, we
developed a specific synthetic test application that purposely allocates, for each thread, a set of data structures from the heap.
These data structures have uniformly distributed sizes in the range [128B, 4KB]. The total memory allocated from the heap by
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FIGURE 13 Time spent in heap management operations (20 concurrent threads).

all threads amounts to 128MB. The threads also share a small set of variables that can be accessed by transactional operations—
in the order of tens. In our test, the threads perform 50 different operations during the transaction execution, randomly picked
between allocation/deallocation, access in write mode to a sequence of bytes from the heap, access in read/write mode from a
transactional object. Each thread executes 10,000 transactions before terminating.
As far as accesses to the heap are concerned, each thread scans every data structure allocated in the heap. With a probability

of 0.5, up to 10 bytes are written in each data structure. This allows setting a non-negligible amount of dirty bits in the dirty
bitmap of the memory pool of each thread, which later affects the time required to take a log and/or restore a previous snapshot.
Allocation and deallocation operations are carried out to keep each thread’s average amount of memory used from the heap. The
access to transactional objects is carried out randomly, therefore causing possible conflicts between concurrent transactions. We
have run this experiment by relying on 20 concurrent threads. The results are reported in Figure 13.
We note that this setup can be a worst-case scenario for a transactional system. To the best of our knowledge, no transactional

application exhibits this pattern concerning heap accesses. Therefore, this configuration can be effectively used to assess the
impact of our heap management protocol. By the results, we observe that each operation impacts the execution time in a negli-
gible way. Indeed, the most costly operation is the creation of a checkpoint, which takes on average a time in the order of a few
milliseconds. Compared to the total execution time of the benchmark (around 5 seconds), this does not significantly affect the
overall execution time.
Moreover, we note that, by the design of the synthetic memory access pattern, taking a log entails creating a snapshot of

around 10 MB, only to account for updates which are, on average, 32 KB. This is because the checkpoint/restore strategy we
have envisaged works on a memory-chunk basis. We deal with large chunks (up to 4KB), which are subject to updates of a
few bytes. From these results, we can conclude that our heap management strategy is effective, taking into account that typical
transactional applications might only rely on heap updates during the transaction execution marginally.
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To conclude, we remark that any performance advantage observed in specific settings is achieved in combination with
application transparency of our abort scheme, which, beyond performance, was the fundamental objective of our work.

6 FINAL ASSESSMENT, CONCLUSIONS, AND FUTURE WORK

This article presented our experience in designing and implementing a partial abort scheme for Software Transactional Memory.
We remark that our objective was threefold: 1) enabling STM to perform partial abort of transactions in the case of conflicts, 2)
designing a scheme fully transparent to the programmer, thus also allowing to run existing applications without modifications,
and 3) implementing a scheme that can be integrated within existing STM runtime environments, running on conventional
off-the-shelf architectures, without requiring to modify the STM internal implementation.
We devised a partial abort scheme that works with concurrency control based on CTLwith read validation and exploits a tech-

nique similar to snapshot extension for identifying the restoration point in the case of a partial abort. Also, we achieved a scheme
that does not require the programmer to write idempotent transactional code, thanks to its ability to undo both modifications to
shared transactional data and thread-private data while partially aborting transactions. We successfully integrated it within the
open-source TinySTM library, which we used for evaluation. We tested our implementation on top of a 20-core machine by run-
ning some applications selected from the STAMP benchmark suite and a specific application for a in-dept assessment of some
components of our scheme.
In summary, by our experience, we can draw the following lesson:

• Injecting in the STM-based application at compile time instructions for enabling partial undo via static software instru-
mentation, like CPU-context/stack logging, introduces low overhead and has shown to work correctly. Thus, this approach
can represent a key option for designing effective partial abort schemes.

• The heap management strategy we devised appears to work effectively, even with low usage of heap memory allocation.
Thus, it can represent a good candidate strategy for heap management in a partial abort scheme.

• The overall effectiveness in terms of performance of our solution depends on the actual contention level and the workload
profile of the transactional application. Generally, with low contention levels and/or short transaction profiles, the logging
overhead could not compensate for the partial saved work of aborted transactions. Conversely, with high contention levels
and longer transactions, the work performed by the partial abort scheme generally translates into effective performance
advantages. This opens the way to investigate additional techniques that could improve our scheme. For example, the
performance loss that arises with low conflict probability could be eliminated through dynamic activation of the partial
abort scheme when the conflict probability overcomes a given threshold. Also, logging techniques that restrict as much
as possible the subsets of memory areas to be logged could be explored.

Based on the results of our study, we are currently in the process of implementing and tuning our partial abort scheme to
be integrated within GCC’s libtim. A preliminary implementation available for the research community can be already found
online6.
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