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Abstract—Simulation is a powerful technique to explore com-
plex scenarios and analyze systems related to a wide range of
disciplines. To allow for an efficient exploitation of the available
computing power, speculative Time Warp-based Parallel Discrete
Event Simulation is universally recognized as a viable solution.
In this context, the rollback operation is a fundamental building
block to support a correct execution even when causality inconsis-
tencies are a posteriori materialized. If this operation is supported
via checkpoint/restore strategies, memory management plays a
fundamental role to ensure high performance of the simulation
run. With few exceptions, adaptive protocols targeting memory
management for Time Warp-based simulations have been mostly
based on a pre-defined analytic models of the system, expressed
as a closed-form functions that map system’s state to control
parameters. The underlying assumption is that the model itself
is optimal.

In this paper, we present an approach that exploits reinforce-
ment learning techniques. Rather than assuming an optimal
control strategy, we seek to find the optimal strategy through
parameter exploration. A value function that captures the history
of system feedback is used, and no a-priori knowledge of the
system is required. An experimental assessment of the viability
of our proposal is also provided for a mobile cellular system
simulation.

I. INTRODUCTION

A traditional way to achieve high performance simulations
is the employment of discrete parallelization techniques [1].
They are based on the partitioning of the simulation model into
N objects, called Logical Processes (LP), that can execute
events in parallel on different CPUs and/or different cores.
LPs are associated with a simulation state Si, and rely on
synchronization mechanisms to achieve causally-consistent
execution of simulation events at each LP. The operations
that are associated with events happen instantly in logical
simulation time, and have an impulsive duration.

The Time Warp optimistic synchronization protocol pre-
sented in [2] is based on the rollback of already-executed
events, to recover possible timestamp-order violations due to
the absence of block-until-safe policies for event processing.
As it is well recognized, this protocol is likely to favor
the speedup in general application contexts. In particular, it
has been shown to exhibit a performance which is relatively
independent of both the specific simulation model and the
message delivery latency (even when non-minimal).

In this context, the design and development process of
optimized techniques supporting state recoverability is a major
obstacle for the construction of efficient optimistic simulation
systems. When complete transparency towards the application

layer is pursued, this process is even harder. In particular, in
order to reduce the cost associated with log management (both
in terms of memory usage and latency to take possibly unnec-
essary logs), an important aspect is how often a checkpoint is
taken—a concept related to the checkpointing interval χ [3].
The best-suited time instant when this operation should be
executed strongly depends on the runtime dynamics of the
simulation model, and must take into account both the cost
associated with the operation itself, and the probability that
the taken state snapshot will be useful to restore a previous
simulation state due to the occurrence of a rollback.

Several works have addressed recoverability issues via the
implementation of hardware/software architectures offering
simulation states’ log/restore facilities (e.g., [4], [5], [6], [7]),
each providing some specific transparency level, and/or the
use of models aimed at identifying the best suited tuning of
the parameters associated with the selected log/restore policy,
in order to optimize performance (e.g., [8], [9], [10]).

An additional aspect is related to the way a simulation
state snapshot is taken. In particular, to reduce the amount
of data copied into a state snapshot, incremental state saving
techniques can be employed. According to this scheme, the
simulation engine is able to detect at runtime what are the
portions of the simulation state which have been modified by
the execution of a set of events, and therefore it is able to
pack into the snapshot only the necessary (modified) data. Of
course, due to this memory update tracking, in case the system
offers full transparency to the model developer, an additional
overhead is paid. This overhead could not be paid off, e.g. in
scenarios where a very large portion of the simulation state is
updated by one or multiple events.

To the best of our knowledge, no one has studied the
feasibility of Reinforcement Learning (RL) techniques [11]
targeting recoverability in optimistic simulation systems yet.
Although the works in [12], [13] have explored the possibility
of exploiting RL in Time Warp simulations, there is no explicit
focus on state recoverability.

In this paper, we present a log/restore architecture designed
according to a Q-Learning schema, which addresses perfor-
mance and transparency issues by:

1) Transparently enabling the adoption of incremental and
non-incremental log/restore of system’s state, in an in-
terleaved fashion.

2) Dynamically switching to the operating mode (incre-
mental vs. non-incremental) that likely provides the best



performance, despite plausible variations of the run-
time dynamics, adding only a little overhead to the
execution of the system. This entails tuning the value of
the checkpointing interval χ, although this is not done
explicitly.

3) Allowing the programmer to use standard constructs
for dynamic memory allocation/deallocation operations,
thus allowing the state of a simulation object to be
scattered across non-contiguous memory chunks.

Our RL-based log/restore architecture builds on our previ-
ous results in [14], providing a comprehensive solution for
memory management in optimistic simulation. This solution
allows to scatter simulation states on dynamically allocated
buffers, and to take full and incremental state snapshots. The
work in [14] offers as well an analytic model to switch at
runtime between incremental and full checkpointing schemes,
yet this is replaced in this work by our RL-based approach.

The Q-Learning log/restore layer has been integrated into
the ROme OpTimistic Simulator (ROOT-Sim)1, an open source
general-purpose simulation platform based on the Optimistic
Synchronization approach, thus making it available within an
operating environment. Also, we report experimental results
for an assessment of the viability and efficiency of our proposal
for a case study related to GSM coverage along two different
wireless cell configurations.

The remainder of this paper is structured as follows. In Sec-
tion II we discuss related work. In Section III, the architecture
which the RL agent is based upon is described. The agent itself
is presented in Section IV. Experimental data are reported in
Section V.

II. RELATED WORK

As mentioned, most of the proposals in the literature target
autonomic optimization of memory management subsystems
in the context of Time Warp-based simulation leveraging
closed-form models to fine tune the runtime behaviour of sim-
ulation engines. In particular, in [3] the optimal checkpointing
interval χOPT is selected by relying on an analytic model
based on LP execution time, by assuming that the execution
of events is non-preemptive, and by assuming that the rollback
length is independent of each other. Differently, in [10] the
total number of rollback operations executed within a certain
wall-clock time interval, and the number of executed (both
committed and uncommitted) events are exploited to derive
an optimal checkpointing interval χOPT .

The latter scheme does not take into account the fact that
the execution time of different classes of events can vary. This
aspect is captured in [15], where the Event Sensitive State
Saving (ESSS) is proposed. This technique emphasizes that
it is convenient to take a state snapshot when the granularity
of the next event increases. In [16], the LP’s event history
is taken into account, considering the variations between the
timestamp of two consecutive events, to determine which is
the best moment for taking a snapshot.

1Source code available at https://github.com/HPDCS/ROOT-Sim.

The works in [17], [18] base the selection of the best-suited
χ value on heuristic algorithms, the latter explicitly taking
into account the usefulness of a checkpoint with respect to
the probability that it will be used for a restore operation.

We keep the ability of all the above works, allowing the
system to determine an optimal checkpointing interval χ.
Nevertheless, we do not ground our decision on a closed-
form model, thus allowing the runtime to take more flexible
decisions, and possibly allowing it to capture secondary effects
(not explicitly modeled by the above proposals) which could
be relevant for the selection of an optimal strategy. Moreover,
all the above results do not allow to switch between an
incremental vs non-incremental checkpointing mode.

This latter aspect is covered by the work in [14] which
presents the design of an actual architecture to support dy-
namic switching among the two execution modes, as well
in the presence of dynamically-allocated memory. While we
borrow the architectural organization from [14], this work still
bases all the dynamic optimization on closed-form models.

A work which is close in spirit with our proposal is
presented in [19]. The authors propose a dynamic selection
between incremental vs non-incremental execution modes,
along with the selection of a proper checkpointing interval
χ, by relying on a genetic algorithm. Due to the nature of this
kind of algorithms, the solution space that can be explored
by the proposal is sparse and limited, since the genes allow
to select only a limited amount of values of χ, thus possibly
leading to suboptimal choices.

Explicit machine-learning runtime optimization using
reiforcement learning has been used in the context of Time
Warp-based simulation in [12], [13]. Nevertheless, the authors
explicitly address the optimism window and the global virtual
time (GVT) recomputation interval respectively, which are
optimization parameters orthogonal to the goal of the present
work.

III. REFERENCE ARCHITECTURE

We implement our autonomic optimization strategy within
ROOT-Sim, an open source general purpose platform de-
veloped using C technology, which is based on a multi-
threaded simulation-kernel layer. The platform transparently
supports all the mechanisms associated with parallelization
(e.g., mapping of simulation objects on different threads) and
optimistic processing.

ROOT-Sim’s memory management subsystem (called
DyMeLoR [14]—Dynamic Memory Logger and Restorer) can
be seen as wrapper of malloc and free ANSI-C standard
services, interposed at linking time between the simulation
model’s software and the standard malloc library. This ap-
proach allows the application programmer to use dynamically-
allocated memory within the simulation software in a way
transparent to the lower-level memory management tasks, such
as log/restore operations, actuated by the ROOT-Sim kernel.

DyMeLoR is based on the concepts of memory preallo-
cation and memory partition. Each LP’s simulation state is
coupled with a metadata table which is used to manage a
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Fig. 1. Di-DyMeLoR Data Structures

block of contiguous memory chunks. The chunks within a
block have the same size, while different blocks host chunks
with size corresponding to different powers of 2. Each entry
of the metadata table (which is called malloc area) holds a
pointer to an (eventually allocated) block of chunks, used to
serve memory requests from the simulation model software.
For both time and space efficiency, each chunk within a block
is associated with a single bit that indicates its current status,
namely used to serve a request or available. This solution
avoids the usage of a costly per-chunk header. In addition,
the bitmap of status bits (called the status bitmap) is placed at
the top of the pre-allocated block of chunks, therefore it can be
managed directly only in case that a chunk’s status changes.
A second bitmap, called the dirty bitmap, keeps information
about what chunks have been involved in a memory write
operation, since the last checkpoint was taken (those chunks
are referred to as dirty chunks). The overall organization of
DyMeLoR’s data structures is shown in Figure 1.

A log operation is simply performed by analyzing the
status/dirty bitmaps. In case of full logs, all the in-use chunks
are packed into a contiguous log buffer appropriately sized.
Instead, for an incremental log, only those chunks that have
been dirtied by event execution are packed. Similarly, a restore
operation is performed by iteratively backward traversing the
log chain, searching for logged chunks that have not been
restored yet, until a full log is found (i.e., until all the malloc
areas are restored).

To dynamically detect at runtime what are the chunks
which are involved in a memory update, DyMeLoR relies
on Hijacker [20], an open-source static binary instrumentation
tool which allows, via the specification of a set of xml rules,
to manipulate an executable object before the final linking
stage. In particular, we use Hijacker to intercept any memory-
update instruction, compute its final address target and its size,
and call an ad-hoc routine which checks whether this update
operation belongs to any malloc area. In the positive case, the
corresponding bits in the dirty bitmap are set before the actual
memory-update operation takes place.

To minimize the runtime overhead, specifically when non-

incremental checkpoints should be taken, we revert to the non-
instrumented version of the original simulation model relying
on the multiversion binary feature offered by Hijacker. This
feature allows multiple versions of the original simulation
model to coexist in the same binary image, explicitly sharing
the same data sections. Therefore, since two versions of the
same model’s code exist in the same binary image (with
different names), ROOT-Sim can activate either version by
simply invoking the instrumented vs non-instrumented simu-
lation event handler at runtime. This solution allows for a fast
switch between the two versions with zero overhead. Deciding
whether to call an instrumented or a non-instrumented handler
is the orthogonal problem which we explicitly study in this
paper.

IV. REINFORCEMENT LEARNING AGENT

As already mentioned, the work in [14]—which we borrow
the architectural organization from—adopts a closed-form
model to determine which of the aforementioned schemes
(namely, incremental vs non-incremental) should be used
to autonomically maximize overall simulation performance,
taking into account stability as well. We present here an
orthogonal approach, where a RL agent is used to determine
what execution scheme should be used.

A. Overview of Reinforcement Learning

In reinforcement learning [11], agents learn the best-suited
action in a given scenario by try and error, taking account of
the amount of rewards received. The environment is uncertain
and it can be changed probabilistically by the actions of agents.
Further, the reward is probabilistic and is dependent on the
environment change. RL has deep roots in Markov Decision
Process (MDP) [21]. The Markov Decision Problem is the
problem of optimizing an MDP. Details on common MDP
solutions can be found in [21], [11], [22], [23].

A stochastic process is called a Markov chain if it has the
Markov property, namely, the state transition of the process is
dependent only on the current state, regardless of the process
history. In a Markov decision process, for each state there is a
set of possible actions that can be taken by an external decision
maker. The process still possesses the Markov property, but the
state transition is also dependent on the actions. In fact, each
action defines a state transition matrix. In addition, there is
reward matrix for each action.

A MDP is completely specified by the following [22]:
• Transition probability matrices (TPM). These are the one-

step state transition probability matrices. For each action,
there is a corresponding matrix.

• Transition reward matrices (TRM). Like the TPMs, there
is also one matrix per action. The element of the matrix
is the reward received when taking a certain action in a
given state.

• Objective function (performance metric). This function
provides a quantitative measurement of the performance
of a policy.



As mentioned above, at each decision epoch of a MDP an
action is taken and a reward is received as a result of the
action. The sequence of rewards received after decision epoch
t is rt+1, rt+2, . . .. In a Markov decision problem, the goal is
to maximize the expected value of some function of the reward
sequence. This function is known as the return function, or
simply the return. Here we shall focus on the discounted re-
ward function, which is a function of the following discounted
return:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . .

where γ is a number, 0 ≤ γ ≤ 1, called the discount
rate. The purpose of the discount rate is twofold. First, it
gives more weight to recent rewards than to future rewards
in the determination of the current return. Second, it makes it
possible to have a single definition of return for both episodic
tasks, where the task breaks naturally into subsequences with
a final state (such as playing chess), and continuing tasks with
a long life span.

The Transition Probability (TP) and the Transition Reward
(TR) are collectively known as the model of a Markov decision
problem. In [22] it is stated that when the model is known,
a MDP can be solved with Dynamic Programming. Insted, in
our solution, RL techniques are adopted, which were created
to solve the Markov decision problems when the model is
unknown by using estimates of the TP and TR.

A RL system is defined as a five-tuple: {S,A, π,RF, V F},
where:
• S is a set of states of the environment,
• A is a set of actions that the agent can take,
• π : S → A is a mapping from a state of the environment

to an action to be taken by the agent,
• RF : S × A → R is the Reward Function, a mapping

from a state or state-action pair of the environment to
a numerical value called a reward signal, which is an
indication of the desirability of the state or state-action
pair.

• V F is the Value Function of a given policy, which defines
the expected return an RL agent can receive. In RL the
action-value function is most often used, and is known as
the Q-factor. The best action to take in a state is obtained
from the best Q-factor associated with that state.

For problems with more than one state, we need to find out
which action is the best for each state in order to maximize
the expected return, by using Q-factors. Given a policy π, the
expected return would be:

Qπ(s, a) = Eπ {rt+1 + γV π(st+1)|st = s, at = a}

+Eπ {rt+1 + γQπ(st+1, π(st+1))}

but, since the the model of the system is unknown, we have
to estimate the expected immediate return from the sequence
of rewards. This can be done by using the Robbins-Monro
algorithm:

Q(st, at)← (1− α)Q(st, at) + α[rt+1 + γmax
a′

Q(st+1, a
′)]

(1)

Fig. 2. State-Transition Diagram on the System

with 0 < α ≤ 1 being the learning rate. We can see that, when
updating Q(s, a), instead of using Q(st+1, π(st+1)), the best
Q-factor from the next state, max

a′
Q(st+1, a

′) is used.

B. System Model and RL Agent

The checkpointing model we are presenting here, is a semi-
Markov Decision Process model (SMDP). We have identified
the following system states: X = {Rollback, Non-Incremental,
Incremental, CKPTF , CKPTI}. When the system is pro-
cessing events, its state is Non-Incremental or Incremental,
depending on which execution mode has been selected. When
the system is performing housekeeping operations, it is in any
other state, depending on what kind of operation is being
performed. Figure 2 shows the state transtion diagram on
the checkpointing scheme, with the gray arrows representing
transitions which are not under the control of the agent, but
which are due to external events (i.e., the reception of a
causally unordered message) and can occur whenever the agent
decides to perform a certain action.

Further, we define the state space and the action space in
SMDP as follows. The state space is:

I = {s1, s2, . . .}

while the action space is:

A = {ainc, afull, ackpt} ∀s ∈ I

which represent the action to execute the next event in an
incremental or full fashion, or the action to take a checkpoint,
respectively. We note that by deciding whether to take or not
a checkpoint, our RL agent is indirectly optimizing the value
of χ. In fact, while traditional approaches explicitly use the
runtime history to determine an optimal value of χ, we take a
decision after the execution of each event. This approach can
therefore respond more promptly to sudden runtime dynamics’
variation with respect to traditional approaches, which should
wait for the next moment at which the value of χOPT is
recomputed.

No action to switch to the Rollback state is present, since
switching to Rollback only depends on events that are external
to the system. Further, one single action for performing a
checkpoint has been provided. This has been done because,
recalling the fact that each type of checkpointing requires



information collected during the events’ execution, the sole
checkpoint mode available when the decision to take the
snapshot is done, is the one related to the execution mode
adopted up to that moment.

The goal of the RL agent is to reduce the time spent by
the kernel performing tasks that are not actual forward com-
putation. To describe this, we define the following function,
{X(t), t ≥ 0}, which is dependent on the current system state
x ∈ X , given by:

X(t) =


0 if x = Non-Incremental
δM

(δe+δM ) if x = Incremental
1− γ if x = CKPTI

1 if x = CKPTF
1 if x = Rollback

(2)

By using this function, we can define the expected compu-
tation loss as a performance criterion:

Γ = E

[∫ T

0

X(t)dt

]
(3)

where T is the time when the simulation terminates. Of
course, the termination time T cannot be controlled, so the
minimization of Γ is essentially equal to minimizing the
overhead ratio presented in [24], which is defined by

lim
t→∞

E[amount of computation loss in [0, t)]

t

To completely define the RL agent, we need to define the
following quantities:

• Q(s, a): expected computation loss when action a is taken
in the state s.

• V (s): minimum expected computation loss until the
termination of process, when the initial state is s.

The optimality equation is given by:

V (sn) = min
a
{Q(sn, a)} ∀a ∈ A

where the initial Q-factors are defined as follows, ∀sn ∈ S:

Q(sn, aunm) = Pr

(
SF δRB +

χ− 1

2
δe

)

Q(sn, amon) = Pr

[
SF δRB +

χ− 1

2
(δe + δM )

]

Q(sn, ackpt) =

{
δLBSF if x = Non-Incremental
δLBSP if x = Incremental

where:

δe is the average event execution cost.
δM is the cost for running the memory-update tracking

module.
SF is the average size of a full (non-incremental) log.
SP is the average size of a partial (incremental) log.
δLB is the average cost for logging a single byte belong-

ing to the state image.
δRB is the average cost for restoring a single byte from

the log.
Pr is the rollback probability.
χ is the average log interval.

Those initial Q-factors are then exploited to select the best
action to perform by the RL agent, and at the same time they
are updated in order to improve the knowledge of the system.

To build our checkpointing scheme, we define the following
four elements for the RL:

1) agents: Checkpointing Manager (CM), one per LP
2) Environment: System States, as presented in Figure 2
3) Rewards: Computation loss (negative reward)
4) Actions: ‘Non-Incremental’, ‘Incremental’, ‘Check-

point’
The purpose of CM is to reduce the computation loss

represented by Equation 3. The checkpointing scheme based
on the Q-learning is developed as follows.

Step 1: Choose an action at based on the Q-factors.

Step 2: After taking the action at, CM observes the state
st+u in the next decision epoch2. Until the next decision
epoch, CM records the computation loss, X(v), 0 ≤ v ≤ u,
where X(v) is given by Equation 2.

Step 3: Update the Q-factor by using Equation 1, where
the reward rt+1 is given by:

rt+1 =

∫ u

0

X(v)dv

In Step 1, we have to choose an action. The ε-greedy
method presented in [11] has been used. With this method,
CM chooses an action at random with probability 0 < ε < 1.
Otherwise, the action is chosen by exploiting the best Q-factor
at the state s. With small values of ε, the system is more
conservative, acting as if the available information are already
representative of the runtime dynamics. On the other hand, if
ε is large, the system explores more the solution space.

V. EXPERIMENTAL DATA

To assess the validity of our RL agent, we rely on a test-
bed simulation model of GSM coverage along the ring high-
way running around the city of Rome (named GRA—Grande
Raccordo Anulare). The length of GRA is 68 km and GSM
connectivity is guaranteed via 8 GSM cells, each offering up
to 9 km coverage along the highway. As in the actual system
organization supported by the Telecommunication Company,

2A decision epoch is the time between two different moments when the
agent is asked to take a decision.



each cell hosts 1000 radio channels [25]. In our simulations,
communication channels are modeled in a high fidelity fashion
via explicit simulation of power regulation/usage and inter-
ference/fading phenomena on the basis of the current state
of the corresponding cell (also expressed as a function of
current meteorological conditions). The interest in simulating
this type of system is related to the need for assessing whether
current dimensioning is adequate for supporting both normal
workload conditions, as well as peak workload conditions
related to traffic bursts along the highway, possibly leading to
traffic congestions. At the same time, assessing the availability
of radio channels, and determining the power consumption,
for serving sub-urban areas close to the ring highway even
in case of workload peaks associated with traffic rushes is
another aspect of interest. The power regulation model has
been implemented according to the results in [26]. Specifically,
each modeled GSM cell tracks, via dynamically-allocated
data structures, channel allocation and power management
information for ongoing calls. Upon the start of a call destined
to a mobile device currently hosted by a given GSM cell, a
call setup record is instantiated within the simulation model
via dynamically allocated data structures, which is linked to a
list of already active records. Each record is released when the
corresponding call ends or is handed-off towards a different
cell along the ring highway. In the latter case, a similar call-
setup procedure is executed at the destination GSM cell. Upon
call setup, power regulation is performed, which involves
scanning the aforementioned list of records for computing
the minimum transmission power allowing the current call
setup to achieve the threshold-level Signal/Interference Ration
(SIR) value, according to GSM technology. Data structures
keeping track of fading coefficients are also updated while
scanning the list, according to a meteorological model defining
current climatic conditions (and related variations) around the
city of Rome. The climatic model accounts for variations of
the climatic conditions (e.g. the current wind speed) with a
minimum time granularity of ten seconds. We have simulated
a whole week of operativity of the GSM coverage system
along the highway, by explicitly accounting for dynamic day-
time traffic variations, and differentiated climatic conditions.
Statistics about the vehicle traffic variations have been derived
from [27]. Simulated night-time periods are characterized
by near-zero utilization factors (correspondingly, by the data
from [27], less than 800 vehicles run along the high-way in
night periods), while rush hours may lead to definitely higher
channel utilization factors. For non-weekend days, we have a
whole day split into a night-time period, with minimal channel
utilization factor, and the remaining part of the day into
alternate rush and normal traffic hours. Day-time normal/rush
periods lead in our simulations to an increase in the call arrival
frequency per cell, and hence to an increase in the channel
utilization factor, which depends on the relative density of
vehicles along the ring high-way on the basis of the statistics
in [27], and on how the mean of an exponential distribution
for the call inter-arrival time varies according to that density.
Specifically, the average channel utilization factor gets up to
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30% in rush periods considering an average call duration of 60
seconds, with oscillations that can lead to even higher peaks.
According to [27], weekend days have a different workload,
which exhibits a behavior in between normal and night ones.

The hardware architecture used for testing our proposal is
a 64-bit NUMA machine composed by two AMD Opteron
6174 processors and 32GB of RAM memory. Each processor
is equipped with 12 cores that share a 12MB L3 cache, each
core has a 512KB private L2 cache and 2200MHz speed.
The software architecture consists of 64-bit Suse Enterprise
11, with Linux Kernel, version 2.6.32.13. The compiling and
linking tools used are gcc 4.3.4 and binutils (as and ld) 2.20.0.

In Figure 3 we present the variations of the amount of com-
mitted events per wall-clock-time second (event rate) achieved
while simulating specific virtual time periods, represented
by the variation of the GVT on the x-axis. This parameter
indicates the speed according to which a given virtual time
period is simulated. The higher the event rate, the faster is the
execution while simulating a given virtual time period. We
report three curves referring to (i) the case in which the Q-
Learning layer is active (ii) the case in which the Q-Learning
layer is active, but we always force the incremental log/restore
mode, and (iii) the case in which the layer is active but the
non-incremental (full) log/restore mode is forced. The plots
for cases (ii) and (iii) express performance levels that could be
achieved via an optimized log/restore mode based on either the
incremental or the non-incremental log mode, but not allowing
autonomic switch between the two modes on the basis of run-
time dynamics, as typical of a wide set of literature solutions.

By the results, we see that, most of the time the Q-Learning
has an event rate which is higher than the Forced-Incremental
and the Forced-Full configurations, due to the selection of
those actions which allow to benefit from the best operating
mode available during that particular part of the simulation,
depending of the actual dynamics (e.g. in terms of state size,
event granularity, memory update pattern and so on). Low
peaks are due to the ε-greedy policy or to non-complete
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exploration of the space, which can be as well due to changes
in the exection pattern of the application-level software. The
parameter ε has been set to 0.1, a non-minimal value which
allows to account for dynamics variation.

Nevetheless, the final effect on performance by the above
optimized behavior is expressed by the plots in Figure 4, where
we draw the cumulated amount of committed events vs. wall-
clock time for the simulation run. These curves express the
ability of each log/restore configuration to commit events (and
hence to carry out useful simulation work) while wall-clock
time goes ahead. Hence we have a representation of how fast
the simulation model is executed vs wall-clock-time, which
is a representation of the perceived execution speed. By the
results, the ability of the Q-Learning configuration to always
switch to the best suited mode is reflected in the fact that
its cumulated event rate curve always exhibits the best slope.
In other words, it allows the model execution to be carried
out in a significantly faster manner, compared to the other
to schemes. Given that these modes are anyway optimized,
thanks to the dynamic selection of well-suited log intervals,
this is a significant result.

To study whether our proposal is able to change the
estimation of χOPT , we observe the checkpoint intervals
(i.e., the number of events executed before a checkpoint is
taken) selected by our RL agent. We run a set of simulations
varying the number of macro-cells in between 4 and 1024,
evenly distributed on four simulation kernels, each managing
up to 1000 wireless channels. We have taken into account
only those checkpointing intervals related to a real exploit
of the Q-factors learnt by the agent, thus we have discarded
all those intervals related to a checkpoint taken because of
the ε-greedy approach. Results are presented in figure 5,
showing the checkpoint intervals selected by our agent, with
the relevance of a selection (i.e., the checkpointing-interval
frequency) represented by the thickness of the points. As we
can see, with a small number of LPs, the system selects small
intervals. This is reasonable, because when few processes run
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by a simulation kernel, there is the possibility that one process
goes faster in the simulation, thus receiving a large number
of order-violating messages, which cause rollbacks. Since the
length of the rollback is proportional to the checkpoint interval,
the agent tries to reduce this overhead by taking checkpoints
more often. On the other hand, when a large number of LPs
is used in the simulation, the overall workload is much more
well distributed, thus allowing the agent to select as well
larger checkpoint intervals. Nevertheless, overloaded periods
still suffer from the high number of rollbacks, thus requiring
small intervals when the simulator is under stress.

To complete the study, we compare the execution of our
RL-based engine with the genetic algorithm-based previously
presented in [19], namely relying on the implemetation pro-
vided by the same ROOT-Sim version. The configuration of
the benchmark is the same, and we have configured the two
different runs using the same seeds for the pseudo-random
generators. In Figure 6 we report the execution times for the
two autonomic optimization strategies. By the results, we can
see that the RL-based solution offers a performance increase



on the order of 20%. This is related to the finer granularity
according to which the RL-based optimization strategy is able
to select the checkpointing interval χ. In fact, as we have
shown by the data in Figure 5, the RL-based optimization
scheme actually selects checkpointing intervals in a range [1,
35]. In the same range, the genetic algorithm presented in [19]
can select only the values 1–8, 10, 12, 15, 20, 25, 30, 35, 40.
Therefore, the genetic algorithm could more likely select a
sub-optimal strategy for a certain execution phase.

VI. CONCLUSION

In this paper we have presented the design and implemen-
tation of an autonomic optimization system for log/restore
layers targeting checkpoint-based optimistic simulation. Our
solution allows to rely on standard dynamic memory services
to implement simulation models, and transparently supports
both incremental and non-incremental log/restore modes (in
time-interleaved fashion) depending on current execution dy-
namics. The selection of the best suited log mode is based on
a Reinforcement Leaning agent, exploring and updating Q-
factors to determine the best mode to execute the simulation
with, using an ε-greedy policy to alternate exploitation and
exploration. The effectiveness of the approach has also been
tested with a real-work case study related to wireless con-
nectivity along a ring high-way and in a general-case mobile
phone cell distribution.
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