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Abstract Parallelizing (compute intensive) Discrete Event Simulation (DES)
applications is a classical approach for speeding up their execution and for
making very large/complex simulation models tractable. This has been his-
torically achieved via Parallel DES (PDES) techniques, which are based on
partitioning the simulation model into distinct simulation objects (somehow
resembling objects in classical object-oriented programming), whose states are
disjoint, which are executed concurrently and rely on explicit event-exchange
(or event-scheduling) primitives as the means to support mutual dependencies
and notification of their state updates. With this approach, the application
developer is necessarily forced to reason about state separation across the ob-
jects, thus being not allowed to rely on shared information, such as global
variables, within the application code. This implicitly leads to the shift of the
user-exposed programming model to one where sequential-style global variable
accesses within the application code are not allowed. In this article we remove
this limitation by providing support for managing global variables in the con-
text of DES code developed in ANSI-C, which gets automatically parallelized.
Particularly, we focus on speculative (also termed optimistic) PDES systems
that run on top of multi-core machines, where simulation objects can concur-
rently process their events with no guarantee of causal consistency and actual
violations of causality rules are recovered through rollback/recovery schemes.
In compliance with the nature of speculative processing, in our proposal global
variables are transparently mapped to multi-versions, so as to avoid any form
of safety predicate verification upon their updates. Consistency is ensured via
the introduction of a new rollback/recovery scheme based on detecting global
variables’ reads on non-correct versions. At the same time, efficiency in the
execution is guaranteed by managing multi-version variables’ lists via non-
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blocking algorithms. Furthermore, the whole approach is fully transparent,
being it based on automatized instrumentation of the application software
(particularly ELF objects). Hence the programmer is exposed to the classi-
cal (and easy to code) sequential-style programming scheme while accessing
any global variable. An experimental assessment of our proposal, based on a
suite of case study applications, run on top of an off-the-shelf Linux machine
equipped with 32 CPU-cores and 64GB of RAM, is also presented.

1 Introduction

Timeliness in the delivery of simulation outputs is an increasingly relevant is-
sue to cope with, especially in contexts where simulation is exploited as a tool
for decision making. For the case of Discrete Event Simulation (DES) models,
which are particular instances of the class of event-based applications, perfor-
mance issues have been traditionally targeted via the Parallel DES (PDES)
paradigm [29], which is based on the partitioning of the simulation model
into distinct simulation objects (SOBJs), to be executed concurrently. Each
SOBJ models a portion of the simulated system, namely the modeled (vir-
tual) world, and the interactions between the different portions of the model
are captured by the exchange of timestamped events across the SOBJs. Thanks
to concurrent SOBJs’ execution, PDES allows exploiting the computing power
offered by (high-end) parallel/distributed platforms in order to speedup model
execution and to make very large and/or accurate models tractable.

A SOBJ is usually implemented as a set of data structures managed (e.g.
updated) via proper callback functions, which resemble classical methods in
object oriented programming. Also, the execution of any callback function is
dispatched by an underlying simulation-platform (see, e.g., [13, 51]), namely
the PDES run-time environment, and represents the processing of a simulation
event at the target SOBJ. It may give rise to updates of the SOBJ’s state
and to the injection of additional timestamped events destined to whichever
concurrent SOBJ.

Correctness of PDES runs is ensured via synchronization mechanisms,
which are used to maintain causality patterns across simulation events and as-
sociated SOBJ state transitions. Although differentiated definitions of causal
consistency have been devised in literature [12, 32, 64], the most widely ex-
ploited correctness criterion states that each SOBJ must process its input
events (scheduled either by itself or by other SOBJs) in non-decreasing times-
tamp order. To support local timestamp ordering at the SOBJs, two synchro-
nization approaches have been proposed: conservative and optimistic.

The conservative approach (see, e.g., [19]) avoids at all the possibility for
any event to be executed out of timestamp order. This is achieved via block-
until-safe policies that suspend processing activities at the SOBJ until the
underlying run-time environment determines that the execution of its next
pending event is coherent with logical-time ordering. On the other hand, the
optimistic approach (see, e.g., [47]) allows the SOBJ to speculatively pro-
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cess its available input events under the assumption that timestamp-ordering
will not be violated. If any violation is eventually detected, rollback recovery
mechanisms bring the involved SOBJs (i.e. the ones affected by the causality
error) back to a correct snapshot of their states, starting from which execution
is resumed. Literature results show that the optimistic approach is prone to
higher parallelism exploitation. This advantage is reflected also on the side of
scalability, as shown in [16], where very large platforms (with thousands of
CPU-cores) are employed for a comparative analysis of conservative vs opti-
mistic approaches.

Motivated by such a great potential, a lot of effort has been spent in inves-
tigating how to support optimistic PDES runs by hiding state recoverability
(namely synchronization) and other parallelism-related aspects (such as load
balancing) to the programmer. Along the path of transparency of data struc-
tures (namely SOBJs’ states) recoverability, we find various works, which are
either based on classical log/restore facilities [62] or on reverse computing tech-
niques [17]. Some of them also cope with dynamic memory based layouts of
the SOBJs’ state [58,60], and with the interaction of the application level soft-
ware with third-party libraries (thus being able to recover side effects caused
by common third party libraries on the SOBJ’s state). These approaches offer
support for the ease of programming, thanks to their ability to fully mask
state recoverability aspects to the application code developer, who is therefore
requested to only design/develop the code for forward (normal) mode execu-
tion of the SOBJs. More in detail, the ultimate target of the proposals coping
with parallelism transparency, in combination with transparent speculative
processing, is to provide the programmer with the illusion that SOBJs’ call-
back procedures are executed sequentially, one a time on the basis of the order
of events’ timestamps. Hence, the programmer is exposed to a programming
model based on the notion of objects and on sequentially-executed methods
operating on the state of individual objects, which are allowed to always ob-
serve causally-consistent state information.

However, all these literature solutions have been tailored to the conven-
tional (and classical) optimistic PDES scenario where no sharing of informa-
tion is allowed across the different SOBJs within the same application. Ac-
cording to this programming model, each SOBJ is only allowed to modify its
private state upon processing new events. This could be a limitation given
that having different SOBJs sharing (at least a portion of) the state of the
whole application state may result in a more flexible paradigm, whose rele-
vance has been recognized as a crucial issue for the (ease of) development of
DES code [31, 54]. Such a relevance is further motivated by the advent (and
the large diffusion) of shared-memory parallel machines, like multi/many-core
machines, which (as opposed to historically used distributed memory clusters)
offer the technical possibility to directly (and efficiently) share memory slices
across parallel threads, concurrently running the different SOBJs, by relying
on a unique address space and/or operating system supported shared-memory.

In this article we tackle the issue of transparently and efficiently sup-
porting shared-state in optimistic PDES applications run on top of shared-
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memory/multi-core machines, by enabling the application programmer to ac-
cess within the event processing routines both the private state of the SOBJ
(as already allowed by literature proposals) and a global portion of the state
(as allowed by our innovative proposal), whose instance is represented by the
value of global variables admitted within the application-level code.

We implemented a fully-featured shared-state management system tar-
geted at x86 64 architectures and ELF executables. Also, we have integrated it
within the open-source ROOT-Sim (ROme OpTimistic Simulator) package [43],
an optimistic run-time environment supporting ANSI-C compliant application-
level software implementing the SOBJs’ logic in the form of event handlers.

In order to provide efficient support for the management of shared-state
variables within the speculative processing scheme, in terms of both forward
and backward (namely recovery) computation, our proposal relies on applica-
tion transparent multi-versioning of global variables, which is based on non-
blocking access/update operations of version lists. Thanks to this scheme, each
SOBJ’s callback procedure is allowed to observe the correct snapshot of the
shared-state upon reading any global variable. In fact the global variable ver-
sion that matches the timestamp of the event currently being processed at the
SOBJ is transparently accessed (in non-blocking mode) via our software facil-
ities. This allows maximizing the level of parallelism when the shared-state is
actually accessed by multiple SOBJs callback procedures that are concurrently
dispatched on different CPU-cores. Also, global variables’ read operations that
are eventually revealed to be non-consistent are automatically undone, which
is achieved by rolling back any global variable update that is detected to be
dependent on the incorrect read operation. The innovative rollback scheme for
managing causally inconsistent dependencies due to accesses to (transparently
multi-versioned) global variables has been also integrated with classical roll-
back schemes aimed at recovering the private state of each SOBJ, thus allowing
to always maintain causal consistency of both SOBJ-private and shared-state
information. Further, the whole process of accessing and manipulating global
variables, in their multi-version form, is achieved via application software auto-
matic instrumentation techniques (of ELF object files), which are the fulcrum
of parallelization (and speculation) transparency vs the application code de-
veloper.

The results of an experimental assessment of the shared-state management
architecture are also reported for the case of a suite of DES applications in-
cluding a classical synthetic benchmark and various real-world applications.
All the case study applications have been run on top of an HP ProLiant server
equipped with 32 CPU-cores and 64GB of RAM memory, a machine that
is representative of current off-the-shelf commodity hardware exploitable for
scientific computing like DES.

The remainder of this paper is structured as follows. For readers who are
less familiar with PDES concepts, we provide in Section 2 a brief overview of
the optimistic (speculative) approach. Related work is discussed in Section 3.
Our innovative shared-state management architecture is presented in Section
4. A proof of correctness of the devised approach based on the notion of seri-
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alizability is provided in Section 5. In Section 6 we present experimental data
aimed at assessing the pragmatical viability of our proposal.

2 Recap of Optimistic PDES

Each SOBJ included in a PDES application is associated with its own view
of logical time, known as Local Virtual Time (LVT), which is used to locally
track the advancement of the computation along the logical-time axis. Any
event execution at the SOBJ (possibly) updates its state, and moves the LVT
to the timestamp of the processed event. Clearly, it is the responsibility of the
underlying run-time environment [29] to keep track of changes of the LVT of
some SOBJ upon dispatching the event to be processed by the SOBJ’s callback
procedure. While executing the callback procedure in charge of processing
some event, new events (still marked with timestamps) destined to whichever
concurrent SOBJ can be produced, and injected into the system by relying on
some API provided by the run-time environment. We note that this kind of
structuring of PDES applications leads them to fall into the broader class of
event-based ones.

The core aspect of PDES is that causality rules among the state transitions
concurrently occurring while executing SOBJs’ callback procedures are based
on enforcing non-decreasing timestamp order for the processing of events at
any SOBJ. This is recognized as a sufficient condition for the correctness of
the computation [29]. Under this enforcement, each SOBJ in the system has a
coherent view of the flow of logical time, given that its LVT never decreases.

In the optimistic (speculative) approach to synchronization, also known as
Time Warp [47], events are stored by the run-time environment into per-SOBJ
event-lists, each of which is logically partitioned into a future-event-list and
a past-event-list. The future-event-list stores events not yet processed, while
the past-event-list records already processed events. Each SOBJ’s callback
procedure is eligible for CPU-dispatching unless the SOBJ’s future-event-list
is empty. Once dispatched, the callback procedure is allowed to process the
event kept by the future-event-list having the minimum timestamp. Such an
event is moved to the past-event-list once dispatched for processing it.

Timestamp order violations might arise since any SOBJ may receive an
event with timestamp lower than its LVT (given that SOBJ dispatching is not
subject to safety verification of causal consistency of its next to-be-processed
event). If a timestamp order violation is detected, all the events that were
executed out of timestamp order are rolled back by the run-time environment
(they are moved back from the past-event-list to the future-event-list). Also,
the LVT of the SOBJ is pushed back to the timestamp of the last event ex-
ecuted in correct order, and the SOBJ’s state is recovered to its value prior
to the timestamp order violation, which is achieved by either relying on tradi-
tional checkpointing methods (see, e.g, [62,63,65]) or by the means of reverse
computing approaches (see, e.g., [17]), where reverse versions of the SOBJs’
callback procedures are executed with the events to be rolled back as input, or
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where dynamically generated reverse versions of code blocks leading to actual
memory updates are exploited (see, e.g., [22]).

For the classical scenario where SOBJs’ states are disjoint data structures,
with no cross read/write operations performed by the application-level call-
backs, recovering the system to a correct state actually entails recovering in-
dividual SOBJs’ state images separately. In particular, in case dependencies
have been materialized due to the scheduling of some event between a rolling
back SOBJ, say SOBJa, and another one, say SOBJb, these dependencies are
undone via so called anti-events1. More in detail, an anti-event is materialized
for each event injected in the system by SOBJa during the rolled back por-
tion of the computation, and is used to retract the originally injected event.
Upon the delivery of an anti-event associated with an already executed event
by SOBJb, the recipient rolls back as well. Instead, if the event has not yet
been executed, the anti-event has the only effect to “annihilate” the originally
injected event, which occurs within the run-time environment. After rolling
back, any SOBJ resumes the execution of the events from its future-event-list,
still dispatched by the run-time environment.

A concept that is relevant to optimistic synchronization is Global Virtual
Time (GVT), which is defined as the smallest timestamp among those of (i)
unexecuted events already inserted into the SOBJs’ event lists, (ii) events being
executed, (iii) events/anti-events in transit from source to destination. Since
no SOBJ can ever rollback to logical time preceding GVT [47], the GVT value
indicates the commitment horizon of the speculative computation. It is used
both to execute actions that cannot be subject to rollback, such as displaying
of intermediate results [3, 24], and for recovering memory. Specifically, event-
buffers with timestamps lower than the GVT value will never need to be
re-executed after a rollback, therefore the run-time environment can discard
them from the past-event-lists of the SOBJs. The same happens to obsolete
state information, if any, maintained to support state recoverability. The action
of recovering memory after GVT calculation is typically referred to as fossil
collection.

By the above description, it is clear that the inclusion of support for shared-
state information, directly accessible in read/write mode by the application-
level callback procedures concurrently dispatched along multiple threads, leads
to enriching the traditional PDES programming model, which (as hinted) has
been historically based on disjointness of SOBJs’ states. In this paper, we pro-
vide such a support for the case of global variables included within the applica-
tion code. Also, our support operates fully transparently to the programmer,
who is therefore allowed to design SOBJs’ callback procedures entailing the
capability of accessing whichever global variable in read/write mode, under
the illusion that the accesses are performed as if the application were exe-
cuted serially, with SOBJs’ callback procedures dispatched in non-decreasing
timestamp ordering of the events they are processing. As already hinted, this

1 An anti-event is an exact copy of the corresponding event, or of its digest, except for a
single-bit value.
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means exposing to the application developer a programming model based on
the notion of objects and sequentially executed methods, possibly accessing
both object-private and shared data.

3 Related Work

The work in [9] discusses how state sharing might be emulated by using a
separate SOBJ hosting the shared data and acting as a centralized server. To
tackle performance issues, a modification of the rollback behavior of this spe-
cial SOBJ is presented via the notion of version records. This is an approach
similar to the one proposed in [54], where a theoretical presentation of algo-
rithms to implement a Distributed Shared Memory mechanism is provided in
terms of protocols to keep replicated instances of a variable coherent. In par-
ticular, one of these algorithms proposes to realize variables as multi-version
lists where write operations install new version nodes and read operations find
the most suitable version. Although this approach shows similarities to ours,
read and write operations are mapped to message passing primitives, which is
instead not the case for our proposal. As for performance, this can pose a hard
burden on the centralized node(s), which in the case of computations perform-
ing very frequent read/write operations on shared variables can give rise to a
non-sustainable overhead, even in case message-passing based interactions op-
erate on top of tightly coupled shared-memory systems. Overall, to mimic the
access to a memory location, a whole stack of layers, including message passing
ones, needs to be involved in the operation, which does not favor performance.
Also, these specific solutions do not provide methods to automatically map a
direct access to the shared-state onto the message-passing based one. Hence
the programmer is himself exposed to the usage of remote interaction APIs
(e.g. remote procedure calls) for coding the access in the application software.
Overall, these approaches are strongly oriented to distributed environments,
while we target the trend of shared-memory/multi-core machines. Further, in
the above solutions, the centralized server processes the read/write requests
sequentially, while we allow non-blocking concurrent read/write operations to
be carried out by the threads running the application.

In [27] the notion of state query is introduced. Specifically, a SOBJ’s call-
back procedure that needs to access a portion of the state whose owner is
a different SOBJ can issue a query event to it, and wait for a reply-event,
piggy-backing the target information. In case this value is later detected to be
no longer valid (i.e., the access to the value was served violating the times-
tamp ordering of the events, including query-events), a classical anti-event is
injected by the run-time environment in order to invalidate the query. Again,
this approach relies on explicit query-events to be injected by the application
code, hence access to the shared-state is not transparent to the application
programmer, i.e., it is not mapped to direct read/write statements within the
application code. Overall, this solution is still bound to the classical program-
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ming model based on disjoint state accesses by SOBJs’ callback procedures
and pure event-based interactions.

The work in [35] proposes to integrate the support for shared-state in
terms of global variables, by basing the architecture on [20]. Although this
proposal supports in-place read/write operations as we do, they provide no
transparency, as the application-level code must explicitly register the SOBJ
as a reader/writer on the shared variables. Furthermore, synchronization of
the accesses by the concurrently executed callback procedures along different
threads is based on locks, while we provide non-blocking shared-state manage-
ment support.

In the context of the High-Level-Architecture (HLA) standard [44,45], pro-
posals for supporting shared-state can be found in [34,50]. These solutions are
again targeted at distributed environments, since they are based on a mid-
dleware component that relies on a timestamp-ordering approach for imple-
menting a request/reply protocol. Additionally, these approaches are targeted
at the conservative synchronization protocol, where there is no need to detect
and handle causality violations associated with out of timestamp order data
accesses, while we target speculative processing and optimistic synchroniza-
tion.

The Software Transactional Memory (STM) paradigm, originally intro-
duced in [67], allows multiple threads to access shared data while ensuring con-
sistency wrt concurrent accesses. The main differences between multi-version-
based STMs [11] and our proposal lie in that (i) STM does not enforce trans-
parency wrt the application-level programmer, since transactions must be ex-
plicitly marked; (ii) when an update is externalized, it cannot be undone, i.e.,
there is no need for supporting rollback operations on externalized values, as
instead it may occur in the optimistic synchronization protocol we target.

The work in [21] proposes a framework targeting multi-core machines and
optimistic synchronization where Extended SOBJs (Ex-SOBJs), defined as a
collection of SOBJs, can access state variables of each other directly. However,
only one of them can be active at any time since an Ex-SOBJ can be run by
a single thread in the system, hence no concurrent accesses can ever occur
(and need to be handled) on these state variables. Every Ex-SOBJ should
anyhow manage an event-list to perform rollback operations due to causally
inconsistent shared-data accesses (along time) by the SOBJs it is hosting. In
addition, public attributes are referred to variables which can be accessed by
SOBJs in other Ex-SOBJs. These can actually be accessed concurrently along
different threads, and the work proposes to handle the accesses to shared-
attributes by relying on a specifically targeted STM implementation, where
events are mapped to transactions and the actual implementation of the STM
is based on [35]. This proposal inherits most of the features of the general
STM paradigm, so that our proposal is set aside this one. Specifically, in this
solution the accesses to shared attributes need to be carried out via a specific
STM API, while in our proposal the access to shared-data is performed by
simply referencing some shared (global) variable using its name, or a classical
pointer to it.
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As for pointer-based concurrent cross-state accesses by the SOBJs, the re-
cent proposal in [58] provides an application-transparent support, integrated
within a speculative processing environment. This solution relies on an ad-hoc
Linux memory management subsystem that allows to detect, at run-time, any
pointer de-reference (in read/write mode) to the state of some SOBJ. All the
SOBJs’ states touched by processing a specific application-level callback proce-
dure are temporarily locked for access by the thread executing the procedure.
A core difference between this proposal and the work we present here is that we
provide application transparent non-blocking support for the access to shared
data plus transparent multi-versioning, whose combination favors concurrency,
while the approach in [58] is based on a blocking scheme and does not provide
multi-versioning. As a consequence, upon trapping into an access to the state
of some SOBJ, the executing thread needs to temporarily block the current
processing activities till the unique active copy of the target SOBJ’s state gets
aligned (in terms of current logical time) to the one of the event being pro-
cessed by the thread. Further, our proposal and the one in [58] can be seen as
targeting orthogonal problems, since we deal with transparency and specula-
tive access to global variables while the solution in [58] deals with accesses into
the heap. Also, we use lightweight (and transparent) software instrumentation
for tracking memory accesses, while the proposal in [58] is based on operating
system level memory faults (dealt with by the ad-hoc memory management
architecture). These orthogonality aspects lead these two approaches not to be
competing ones, rather they could be ideally integrated in order to achieve a
fully transparent support for speculative parallelization when considering the
possibility to access both the heap and the data sections along any running
thread.

As for non-blocking algorithms, avoiding mutual exclusion has been con-
sidered a benefit since the early 1970’s [26]. Lamport [49] gave the first non-
blocking algorithm for the problem of a single-writer/multiple-reader shared
variable. Herlihy [40] proved that for non-blocking implementations of most
interesting data types (linked lists among them), a synchronization primitive
that is universal, in conjunction with reads and writes, is both necessary and
sufficient. A universal primitive is one that can solve the consensus problem [28]
for any number of processes. In our implementation we rely on Compare&Swap
(CAS), which is a universal primitive. The work in [38] presents the implemen-
tation of a non-blocking linked list, which we have readapted for our own
purposes.

A subtle problem associated with most lock-free algorithms is the ABA
problem. It was first reported in association with the introduction of the CAS

instruction on the IBM System 370 [23]. It occurs when a thread T1 reads
a value A from a shared object and then an interrupting thread T2 modifies
the value of the shared object from A to B and then back to A. When T1
resumes, it erroneously assumes that the object has not been modified. Given
such behavior, there is a serious risk that T2’s execution is going to violate the
correctness of the object’s semantic. Practical solutions to the ABA problem
include the use of hazard pointers [55] or the association of a version counter
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to each element in platforms supporting a double-word compare-and-swap
primitive (CAS2) such as IA-32 [46]. We explicitly rely on the latter solution
to avoid the ABA problem in our non-blocking implementation of the support
for managing shared-state information.

4 The Shared-State Management Architecture

4.1 Overview of the Methodological Approach

As hinted, our approach is targeted at PDES platforms to be run on top of
shared-memory computing systems. Furthermore, we tailor our solution to
run-time environments based on the multi-threading paradigm. These have
been shown to provide a set of benefits, such as optimized usage of the com-
puting resources (see, e.g., [21,71,72]) when compared to the traditional coun-
terpart where parallelization is achieved by running a set of single-threaded
processes within the PDES platform. Overall, we designed a shared-state man-
agement architecture allowing not to loose the benefits from multi-threading.
As a consequence, the shared-state managed by our architecture represents
the data and bss sections of a single executable, and all the multi-versioned
variables (plus any metadata kept to correctly manage them) are allocated
within the same address space that is accessible by the concurrent threads
running within the executable, although the actual access/manipulation to/of
multi-version lists occurs in a fully transparent manner to the application ex-
ecutable modules ultimately included in the text sections of the finally built
application.

Keeping metadata and version lists into the same address space where the
application threads operate is the basis for supporting fast access to the data
structures. Further, speed in managing the concurrent accesses to the data
structures by the different threads is (as already pointed out) further favored
by the exploitation of non-blocking coordination algorithms [41].

A schematization of the overall approach we rely on is provided in Fig-
ure 1. The scheme shows how the actual organization and run-time behavior
of our system is related to what is exposed to the application programmer.
Particularly, the left side of the picture shows how the management of global
variables within the application software can be actually coded by the software
developer by relying on classical in-place accesses (via either variable names or
pointers). When relying on classical compilation tool-chains (such as gcc plus
ld), the final executable is guaranteed to perform causally consistent (times-
tamp ordered) accesses to global variables (within either the data or the bss

sections) only under the constraint that the program is executed according
to a single thread mode (provided that the events are passed as input to the
application code according to timestamp ordering from an underlying sched-
uler library, such as an implementation of, e.g., a calendar-queue sequential
scheduler [8]).
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Fig. 1: A Schematization of the Approach

With our proposal we still support in-place access to global variables by
the application code, avoiding the need for inclusion of causal consistency
management modules within the application code. Rather, as shown in the
right side of the picture, we rely on application transparent instrumentation in
order to generate an actual executable where memory accesses (to either data
or bss sections) are intercepted at run-time, and are served by transparent
redirection to a multi-version implementation of the global variables. Multi-
versioning associates with each global variable value a timestamp, so that each
thread living in the transparently enabled multi-threaded run can access the
version that complies with the per-thread view of logical time (namely its
LVT), just depending on what SOBJ has been scheduler for event execution
along that thread. On the other hand, when some thread produces a new
version of a global variable (say it writes on a global variable), the version will
be assigned a timestamp that is equal to the LVT associated with the SOBJ
that has been scheduled along that thread. Also, miss-speculation (hence the
miss of the correct version) upon read access to some global variable, which
may occur in case some concurrent threads posts an update on the variable in
the past of (i.e. with a timestamp lower than) the LVT of the reading thread
is automatically handled with no programmer intervention. This is done via
an ad-hoc rollback protocol guaranteeing mutual consistency of SOBJs’ states
kept within the heap and shared data.

In our proposal, the identification of the actual address for a memory ac-
cess is carried out at run-time, so as to cope with, e.g., non-determinism and
CPU state dependent memory referencing (e.g. register-displacement based ac-
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cesses). Hence, in the memory management system that we propose, data and
bss sections represent kind of virtual resources, given that the actual memory
access to global variables takes place as an access to multi-version lists, whose
storage is transparently mapped to the heap. These virtual resources are ex-
clusively exploited in terms of their boundary. In fact, any access to a global
variable is discriminated by the transparently instrumented code depending on
whether the referenced memory address falls within the global variable area
boundaries. We also note that the reliance on the heap for the transparent
allocation of multi-version lists allows for maximal flexibility in terms of the
exploitation of virtual memory for speculation (namely for the maintenance
of multiple speculatively generated versions of the global variables). Also, in
principle this might even be integrated with secondary storage management
of speculative data (by moving speculative data that have likely exited the
locality of the application to secondary storage before their commitment and
final removal–which is determined periodically upon GVT advancement–thus
early freeing virtual memory buffers) according to suggestions and guidelines
provided in, e.g., [73]. As we already hinted, scalability in the access to multi-
version lists (hence to actual versions of global variables) is supported via
the reliance on non-blocking dynamic lists’ management. These avoid mutual
blocking of the threads, at the expense of the possibility for some thread to
retry its own operation in case a conflicting access by some other thread mate-
rializes. However, we might expect such a conflicting access to occur especially
in kind of corner case scenarios entailing (severe) hot-spot accesses (especially
in write mode) to some global variable.

Concerning atomicity of the access to multi-version lists, as we already
hinted, our solution has relations with the STM paradigms, although they
typically do not support in-place access to shared data, which is instead sup-
ported by our proposal. Also, an additional variation with respect to STM
lies in that speculatively produced versions of a global variable are exposed
(hence made accessible to concurrent threads) prior to the actual commit of
the events that led to the production of those versions. This complies with the
classical optimistic PDES philosophy, which is based on (ideally unbounded)
chains of speculatively processed events possibly exhibiting data dependen-
cies, whose causal consistency and committability is verified a-posteriori on
a periodic basis—say upon periodic GVT computation2. As for this aspect,
our methodology has relations with recent proposals in the context of trans-
actional systems speculative replication [66], where individual processes can
speculate along some highly likely transaction serialization order (say the one
associated with request arrival order from the clients), whose commitability
is then established a-posteriori (in case all the replicas have agreed upon the
speculated order), which avoids a-priori synchronization across the replicas.
We achieve a similar objective given that we avoid threads’ synchronization
for causal consistent (timestamp ordered) accesses to be carried out a-priori

2 The only limitation to unbounded speculation is represented by storage constraints for
keeping the speculatively processed/produced data records [25].
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of the actual access to the timestamped versions of global variables. In fact,
we tackle miss-speculation via rollback schemes operating a-posteriori of the
access to global variables.

As an additional note, our proposal is fully based on user-space software
solutions, thus neither requiring special hardware nor ad-hoc operating system
support.

In the remainder of this section we initially provide hints on the instru-
mentation mechanisms we used to transparently track the accesses to global
variables by the application code. Successively we present the data structures
used to manage multi-versioning, and the non-blocking algorithms for the ac-
tual management operations. Then we present the schemes that we devised
for integrating classical rollback operations of the SOBJs’ states with the ones
related to non-causally consistent access/manupulation of global variables.

4.2 Detecting Read/Write Memory Operations

In order to provide complete transparency to the application-level program-
mer, accesses in read/write mode to global variables must be explicitly inter-
cepted, which has been supported by relying on instrumentation techniques
aimed at modifying the actual instructions executed by software executables,
without altering their semantics. To this purpose, we exploited the free soft-
ware instrumentation tool called Hijacker [57], which we previously worked
on, by further extending its capabilities in order to match our application
transparent instrumentation objectives.

The instrumentation process we rely on works at compile-time, and is able
to handle relocatable objects. It does not allow to alter finally linked exe-
cutables (this has been a specific design choice, preventing possible security
issues), but it can be seen as an additional compilation stage within the whole
compilation tool-chain.

We have specifically targeted x86/x86 64 compliant assembly code [46],
and have focused on the ELF executable formats for x86 and x86 64 archi-
tectures [53, 68]. This combination currently represents the vast majority of
modern computing architectures targeted at parallelism and high-performance
computing, as it is shown3 in Figure 2 and Figure 3, for which the provisioning
of transparent support for parallelization of the application code is a core topic
to address.

In our approach, the application-level instruction code (i.e., the assembly
byte-stream) is modified at compile-time in order to replace operations loading
data to and from memory with actual function calls, where the invoked func-
tions represent the entry points of our shared-state management architecture.

The following two API functions are provided as the entry points to our
innovative shared-state management facilities:
- write global variable(void *orig addr, time type lvt, ...)

3 Figures are drawn with data taken from http://www.top500.org as of March 2014.
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Fig. 2: Top500: CPU Vendors Share Over time
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Fig. 3: Top500: OS Share Over Time

- long long read global variable(void *orig addr, time type my lvt)

These functions allow the application code to access (in either read or
write mode) any global variable according to the transparently managed multi-
version scheme, and on the basis of the current LVT value experienced by the
SOBJ for which the application level callback procedure accessing the global
variable has been dispatched. We note that the LVT value of any SOBJ is at
anytime known by the run-time environment that manages and schedules the
SOBJs for event processing.

We have identified two main groups of instructions/code-blocks which have
to be handled within the application-level assembly code, and transparently
instrumented via calls to the above API functions. First, in x86/x86 64 simple
load and store operations are identified by mov instructions. Whenever our
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instrumentation process identifies a mov instruction, it is analyzed in order to
determine whether it is targeting memory as a source or destination operand,
and a call to write global variable or read global variable is transpar-
ently replaced accordingly. When the mov instruction involves a load operation
from memory, an additional postamble to the function call is placed, in or-
der to have the actual value returned by read global variable placed into
the correct CPU register where the application-level software is expecting the
value to be found. Of course, the register used by the read global variable

function is pushed/popped on stack, which is done in order not to alter the
actual view on the processor state by the application.

Second, the x86/x86 64 instruction set provides more complex instructions
which allow an executable to efficiently modify memory areas in-place. As a
relevant example, we mention instructions like ADD m32, r32 or INC m32. In
this case, our instrumentation scheme replaces the memory read/write in-
struction to be instrumented with a block of instructions, entailing a couple
of calls to the shared-state manager read and write API, and re-implementing
the same logic with several CPU instructions. This implementation, although
adding some overhead, allows fully transparent integration of our shared-state
management system with the application code, independently of the actual as-
sembly instructions the compiler (e.g. a classical gcc compiler) selects for the
translation of programmer-specified application level statements into machine-
level code blocks.

High-level programming languages also allow to access memory locations in
a non-direct way, namely through the use of pointers. Since our instrumenta-
tion process works at compile-time (a choice motivated by the need for avoiding
the instrumentation overhead of, e.g., dynamic disassembly schemes, to be-
come predominant and to hamper performance of the transparently achieved
parallel run [60]), it is not possible to statically determine whether a pointer
will target a global variable or not. To cope with this issue, we instrument any
mov instruction which can handle pointers through a call to a globvar monitor

function, namely an assembly level routine, which efficiently determines if a
pointer targets a global variable. To this purpose, we cache some disassembly
information, allowing to fast determine the address targeted by the mov in-
truction into a record which is accessed by globvar monitor, thus paying the
disassembly overhead only once at compile-time.

In particular, x86/x86 64 architectures identify a memory address as the
linear combination of (up to) five parameters, namely segment, base, index,
scale and displacement. However, in common operating system technol-
ogy (such as for Linux), global data segments are mapped to the same linear
address, therefore the corresponding parameter becomes irrelevant in the de-
termination of the actual target address in the linear address space4. Hence,
cached data from the disassembling of one single mov instruction (namely, the

4 Thread local storage data rely on segment registers to identify data positioning in mem-
ory. However, thread local storage is out of the scope of our proposal, due to its non-global
nature.
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record to be accessed by globvar monitor to determine wether the mov is
targeting a global variable), are organized as follows:

struct globvbar_monitor_entry {

unsigned int size;

char flags, base, index, scale;

long displacement;

};

The flags field is used to identify which of the aforementioned four param-
eters are actually relevant and should be considered by globvar monitor for
computing the exact address (and size) of the memory-write operation. If this
complies with the positioning of global variables within the ELF layout, then
the internal mechanism of global variables’ multi-versioned access is triggered
via the proper API functions, as we already illustrated for the case of global
variable access by the variable name within the application code (namely the
case of mov instructions directly targeting global variable locations/addresses).

Given that the execution of the globvar monitor module is an operation
to be executed along the critical path of the application execution, hence
directly impacting the event-execution cost experienced at the application
level, we have adopted the following strategy for minimizing the performance
overhead while accessing cached disassembling information (namely, the in-
stance of the above record associated with any instrumented mov instruction).
For each mov instruction involving a memory read/write, a set of push in-
structions are injected before the actual call to the globvar monitor mod-
ule, to let globvar monitor directly find on the stack (rather than search-
ing for it into some data structure) a memory area structured as struct

globavar monitor entry, where the values of the fields describe the original
mov instruction which caused the actual invocation of the module. In other
words, the monitor pushed the record in question (as defined at compile-time)
onto the stack right before accessing it. We recall that this approach has also
the advantage that the pushed data (namely, the cached dissembling data)
will be immediately accessible into the higher level hardware-cache, having it
just been wrote to memory.

As a last note, the x86/x86 64 instruction set provides string instructions
which allow to perform operations on memory buffers instead of single memory
locations. In particular, movs and stos instructions allow the program to copy
or modify large buffers at once. In order to cope with the presence of these
complex instructions, our shared-state management architecture provides two
additional functions within its API, namely copy buffer and set buffer,
which simulate the execution of these operations on version lists if they are
found to target global variables (e.g., global arrays). Otherwise, they just ex-
ecute the original movs or stos operations. Therefore, at compile-time, the
instrumentation process replaces every string operation involving memory up-
date with a function call to these APIs, accordingly. Also, cmov instructions
are handled by replacing them with an assembly code snippet which mimics
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their semantic, and in turn relies on mov instructions (adopted to perform the
memory update in case the condition is met) which are subject to the same
instrumenting procedure as the one depicted above.

The last operation we perform at compile-time while transparently instru-
menting the application code is the inspection of the application-level ELF
object file in order to extract information concerning individual global vari-
ables. In particular, by exploring the application object we extract from the
symbol table .symtab all the STT OBJECT / STT COMMON symbols and store
their name, address and size in a text file which will be later used at startup
time of the shred-state management architecture for setting up the version
lists. In this way, by exploiting the ⟨name, address, size⟩ tuple, we are able to
transparently identify any access to global variables which will be likely used
by the application-level code during the execution, allowing the programmer
to rely on the complete set of constructs provided by ANSI-C. We note that,
due to the multi-threaded nature of our reference run-time environment, a
global variable’s address is a common information shared among all the ac-
tive threads within the same executable. This leads to cross-thread validity
of the above information extracted by the instrumentation process, and used
for setting up the multi-versioned memory model ultimately accessible by the
concurrent threads during their execution.

Since we address (and rely on) assembly mov instructions in the instrumen-
tation, we note that their opcode immediately provides information about the
size of the memory operation. Therefore, we can easily rely on the long long

read global variable() function, as its return type actually represents the
largest type which can be accessed by any x86/x86 64 assembly instruction.
Therefore, our injected code will simply copy the return value from this func-
tion into the proper used register (in case of an original mov operation from
memory) using only the necessary bits for the associated mov.

4.3 Accounting for Third-Party Libraries

The possibility to rely on third-party libraries depends on whether they will
be invoked on global variables or not. As for this aspect, we have explicitly ad-
dressed the case of read/write operations performed by third-party software,
just focusing on stdlib. Specifically, we have implemented a set of function
wrappers which produce in-memory accesses via pointer passing. At compile-
time, via the usage of a custom ld-based linker script, we insert symbols called
bss start, bss end, data start, data end, within the application-level
ELF executable, which mark off the area containing global variables. As al-
ready mentioned in the methodological overview, these are used to detect at
run-time whether a memory access falls within the global variables area. We
exploited these same symbols while handling third party libraries. Specifically,
the wrappers simply check whether global variables are involved in the oper-
ation, by comparing the variable’s address with that of the injected symbols,
before applying the actual access. In case a passed pointer targets a global vari-
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able, operations are redirected to the shared-state management architecture
API, which actually access version lists.

4.4 Memory Map and Version Lists

In order to significantly enhance performance, we have decided to avoid re-
questing to the underlying memory manager (namely malloc) memory seg-
ments on-demand, whenever the shared-state management architecture needs
to install some data structure. On the other hand, we install and manage
large pre-allocated segments, by relying on the mmap service, and by select-
ing high (close to the stack) virtual addresses, so as to avoiding interfering
with the malloc library (e.g., in the management of the program brk). Each
pre-allocated memory segment is partitioned according to the definition of the
following structure:

typedef struct _globval_mem {

int num_vars;

globvar_info *variables;

volatile int first_node_free;

globvar_node *versions;

} globvar_mem;

In particular, the shared memory segment is divided into several fixed-
sized portions. One portion, namely variables, is an array which is used
to manage global variables. The choice of having only one memory segment,
rather than per-thread ones, is because global variables can be accessed by
all worker threads. Hence, in case of per-thread segments, a read operation
by some worker thread would need to find the correct version by scanning all
the per-thread data structures, which would entail a non-negligible overhead,
especially for large number of threads to be managed.

The field num vars is used to keep track of how many variables are actu-
ally handled, and for each of them an entry in the variables array is pop-
ulated. To allow a fast retrieval of the global variables, we use a fast hash
function to determine which entry in the variables array will store the in-
formation associated with a specific variable. In particular, the position in
the array is determined with a fast bitwise operation — namely, address &

(∼(-MAX GLOBVARS)) — since MAX GLOBVARS (which is used to store the size
of the hash table) is set to be a power of two. Given that at startup the total
number of global variables is known, MAX GLOBVARS is increased (always keep-
ing it a power of 2) until the collision is less than 20%. This choice uses more
memory than needed, but can generate a significant speedup when accessing
variables.

Anyway, in case collisions are found even after the increment, separate
chaining is used as a means for finding a free place. Although this might seem
sub-optimized, we note that global variables’ virtual addresses are clustered in
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a contiguous portion of the address space, therefore the least significant bits
are more likely to define a different key for each of them in the hash table.
Each entry in the variables array is structured as:

typedef struct _globvar_info {

void *orig_addr;

unsigned short int size;

long long head;

long long tail;

} globvar_info;

where orig address stores the global variable’s original address, which is used
as hash table’s key, and size describes which is the size (in bytes) of the global
variable.

Since we rely on memory pre-reserving, version lists must be implemented
using nodes scattered around the pre-reserved segment. In particular, versions
is an array of fixed-sized nodes which can be used for any list, and head and
tail are indices within this array, which is composed of entries structured as
follows:

typedef struct _globvar_node {

volatile int alloc;

time_type lvt;

unsigned char value[MAX_BUFF];

spinlock_t read_list_spinlock;

long long next;

time_type *read_list;

} globvar_node;

where lvt is the logical time (namely, the LVT value) associated with the
version (i.e., the timestamp Te associated with the event e processed by some
SOBJ callback procedure during the execution of which the version was gen-
erated), value is the global variable’s value, and next is used to identify the
following node in the list. A node can therefore be seen as a snapshot of the
state of a single global variable at a certain logical time. In Figure 4 we provide
a complete picture of the memory map installed onto the pre-reserved memory
segment.

Node versions’ entries can belong to any list, and given that lists are ac-
cessed without the use of locks, a special allocation function must be used,
ensuring that no two threads running concurrently are given the same entry
for handling two different versions.

The Allocate pseudo-code is reported in Algorithm 1 in the Appendix.
In order to allow non-blocking concurrent accesses, it relies on CAS. The
globvar mem data structure holds in first node free the value of the first el-
ement of the versions array to start trying to allocate from. Its manipulation
is based on the classical algorithm used by the Linux kernel for managing the
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bitmap of file descriptors associated with a process. Specifically, it is always
atomically increased upon allocation, and gets atomically decreased in case
an entry is released having index less than the first chunk currently available
within that block (the decrease leads the final value to correspond to the index
of the freed node). Starting from that slot, a kernel instance tries to allocate
a node by storing via a CAS operation a non-zero value into the alloc field of
globvar node, which tells whether a node is currently in use. In case the CAS
fails, the next node in the array is selected and the procedure is repeated, until
it eventually succeeds5. The companion function Release is much simpler,
as it only entails resetting the alloc and updating first node free via an
atomic set operation, implemented again relying on CAS.

In order to cope with the ABA problem [18], we have explicitly decided to
consider a node allocated if the alloc field is non-zero. In particular, we store
into it a unique value every time a node is allocated, so that two allocations
can be identified as different. The macro generate mark produces an integer
value which is based on the Cantor pairing function:

(n1 + n2)(n1 + n2 + 1) + n2

2
(1)

where we set n1 to the thread logical identifier (as defined by the run-time
environment in the internal [0,maxThreads − 1]), and n2 to the value of a
monotonic per-thread counter (initially set to 1) which is incremented upon
each call to generate mark. This function is very fast, as it is mostly based
on integer operations, and allows to generate system-wide unique marks6.

Once a node is allocated, it gets organized into a non-blocking linked list,
which is implemented according to a modified version of the one proposed
in [39]. Concurrent insertions are handled via the use of a single CAS operation,
which is used to introduce the newly allocated node into the list by acting on
the next field of the predecessor node. As for deletions, two CAS operations are
used, one to mark the next field of the deleted node as logically deleted, and

5 To check if the space is up, a counter of available free nodes is kept as well in shared
memory, which is managed via an atomic decrement operation.

6 generate mark can of course return two equal values when the counter overflows, but
this situation can happen after a significant wall-clock-time is elapsed, so we consider it to
be statistically non-significant for the ABA problem.
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another to actually delete the node. We have slightly modified the algorithm
in order to take into account our specific needs. In particular, the Find-Node
procedure from [39] has been augmented in order to return the alloc field,
to explicitly cope with the ABA problem, and the Insert procedure does not
fail if a node with the same key (i.e., the logical time value associated with the
timestamp Te of the generating event e) already exists. Specifically, the new
node is simply linked after the originally existing one. This allows tracking
causality among versions generated at the same logical time instant.

In addition, we note that SOBJs’ callback procedures are more likely to
access versions associated with higher logical time values, since well parti-
tioned/balanced PDES computations usually proceed relatively evenly (along
logical time) across all the SOBJs [15, 36, 61, 71], hence the locality of the
accesses by the threads processing different events moves in a balanced way
towards the latest snapshots of the global variables. Therefore, we sort the
versions in the lists in descending order, to avoid a complete scan of the list
every time we want to find a node in it.

To avoid the ABA problem in linked lists, “pointers” (i.e., indices) to nodes
are composed (every time they are updated) by a unique mark generated via
the aforementioned macro generate mark and the real index, allowing to cap-
ture the situation where two nodes are still adjacent but one was deallocated
and then reallocated during the execution of the non-blocking algorithm by
different concurrent thread instances. The operations performed on version-
lists are depicted in Figure 5.

4.5 Accessing Version Lists

As hinted, the API offered by our shared-state management architecture pro-
vides two functions to access global variables, namely read global variable

and write global variable, which we will refer to as Read and Write from
now on.

The pseudo-code for Read operations is reported in Algorithm 2 in the
Appendix. For efficiency reasons, before letting any SOBJ callback procedure
execute an event, the shared-state manager sets up an AccessSet, i.e., a map-
ping between version nodes and variables. Whenever a variable is accessed for
the first time, Find-Node determines which is the most suitable version for
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the current LVT associated with the SOBJ, and the tuple ⟨slot, version⟩ is
placed into AccessSet in order to speedup the retrieval of the version, avoid-
ing the scan of the list upon subsequent accesses while processing the same
instance of callback.

As for Write operations, the associated pseudo-code is reported in Algo-
rithm 3 in the Appendix. Its behavior is twofold, depending on whether it is
invoked for the first time since the beginning of the current event’s execution.
In particular, upon the first access on a variable, the AccessSet for that partic-
ular event is populated. In any case, a call to Insert-Version is performed,
which, as stated in Section 4.4, creates a new version. The second part of the
Write operation entails checking the ReadList for ensuring consistency, as it
will be clearly depicted in Section 4.6.

4.6 Synchronization and Rollback Operations

In order to strengthen the optimism-oriented (namely, speculative) nature of
our implementation, we allow interleaved reads and writes on any version list,
and we explicitly avoid a version k installed at logical time Tk to invalidate
every version j such that Tk < Tj . In fact, we note that consistency is violated
only if, at logical time Tx, some SOBJ callback procedure reads the version
associated with logical time Ty such that Ty ≤ Tx, and at a certain point
during the execution a new version node associated with logical time Tz such
that Ty ≤ Tz < Tx is installed.

This means that every SOBJ callback procedure which reads a certain
version node must leave a mark of that operation, i.e., visible reads [10] are
enforced. In fact, as shown in Figure 6, we are interested in undoing only
the events’ processing instances that have read a version older than the just
inserted one.

To this end, we augment the classical notion of rollback as presented by the
Time Warp synchronization protocol for PDES [47] (based on state separation
across the SOBJs), by injecting (after any write operation) a special anti-event
towards all the SOBJ which have read a so-defined causally inconsistent ver-
sion. This is reflected into Algorithms 2 and 3. In fact, in the Read operation,
before returning the variable’s value, the couple ⟨sobj, lvt⟩ is inserted into the
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ReadList for that particular version. This operation is included within a spe-
cially designed critical section to ensure consistency. In fact, a spinlock for
that particular ReadList is taken, ensuring that no other thread will start
the rollback operation while the ReadList is being updated. Otherwise, this
scenario would produce a non-trackable read operation.

In addition, after the spinlock has been taken, a check on the variation
of the alloc field for that particular version is performed, so as to avoid
the ABA problem due to a critical race between the deallocation/allocation
procedure and the ReadList update. At the same time, at the end of the
Write operation, the ReadList of the left node is checked in order to find
all the SOBJs which have read the previous node’s value, while they were
requesting a version at a logical time such that they should have read the one
in the version list which was just installed. Although the list is linked in only
one direction, given the implementation of Find-Node, locating the previous
node is immediate, as it is in the current left node.

We note that another step must be undertaken in order to ensure correct-
ness. In particular, whenever a special anti-event is received because of an
inconsistent read, any version node installed due to that particular event must
be removed. To this end, we augmented the concept of event queue (managed
a the level of the run-time system) and modified the Write function so that
whenever a node is installed during the execution of an event, the event queue
keeps track of this operation via pointers to the nodes created during the
event’s execution. In case a rollback operation undoes that event, the node
is removed from the version list, and the ReadList is scanned for injecting
anti-events towards every SOBJ which has read that particular node.

4.7 Memory Recovery and Management

In order to correctly manage memory recovery and prune obsolete data within
the multi-version scheme, we had to extend the classical fossil collection ap-
proach used in the context of SOBJs’ state disjointness (i.e. no global vari-
ables). Before entering the details, let us recall a few aspects related to recov-
erability of private SOBJ states.

Commonly, not all state snapshots of the private SOBJ can be directly re-
stored via checkpoint recoverability, due to the need for reducing the cost (and
memory footprint) of logging state information, e.g., by taking checkpoints in-
frequently [62, 63]. State snapshots that are not directly available in the log
are reconstructed by reloading some older state image and by reprocessing
intermediate events in a fictitious way, namely with no actual externalization
of the processing outcome (such as the injection of events in the system). All
these activities can still be supported transparently to the application code
by the run-time environment, if designed/implemented according to proper
schemes [14, 60]. This allows to optimize the tradeoff between logging and
recovery costs, under the assumption that the replay leads to the same iden-
tical trajectory of the state updates, which is achieved by making the SOBJs’
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callback procedures live within piece-wise-deterministic environments (e.g. by
relying on piece-wise-deterministic versions of the used libraries—for example,
random number generators). The state reconstruction phase based on fictitious
events reprocessing is termed coasting forward.

When coasting forward is admitted, once a new GVT value is computed
(which is typically done by the run-time environment on a periodic basis,
and according to various reduction-algorithm variants, see, e.g., [6,33]) and is
available at time t, say GV T (t), event buffers and SOBJ-state recoverability
data can be pruned according to the following scheme:

– for each SOBJ, say SOBJi, it is determined which is the latest directly
recoverable state snapshot (based on recoverability data) with logical time
less than or equal to GV T (t); we denote as Ti the corresponding logical
time value. This state (namely the corresponding log) cannot be discarded
given that it would be needed to be recovered just in case a rollback pushes
the SOBJ logical time back to GV T (t), namely to the commitment horizon.
Recall that no rollback to logical time earlier than the commitment horizon
can ever occur.

– An event buffer keeping any event e that has been delivered to SOBJi can
be pruned in case its logical time Te satisfies the condition Te < Ti. Any
other event buffer needs to be retained just for SOBJ’s state recoverability
purposes, given that it may be requested to be reprocessed in a coasting
forward phase.

Under the above scenario, we can consider the retained event buffers as
(potential) inputs for the SOBJs’ callback procedures. However, when we ad-
mit global variables within the application program, then the global variables’
versions in our multi-version scheme also represent potential input data to the
SOBJs’ callback procedures. As a consequence, we need to retain all the global
variable versions whose logical time might be requested to be accessed in read
mode during any coasting forward phase by some dispatched SOBJ’s callback
procedure.

As a consequence, we integrated the above depicted fossil collection scheme
with the following additional steps:

(i) the absolute minimum value across all the Ti values related to directly re-
coverable snapshots of the SOBJ private states is identified. We denote this
value as T̂ , and its identification can be easily carried out by an additional
reduction step after GVT has been already computed.

(ii) those versions of a global variable such that their logical time is less than
or equal to T̂ are pruned, except for the latest one, which can be used to
serve read requests falling in the past (in logical time) up to T̂ .

By point (ii) above, on any multi-version list, at least one version is retained
(the latest one with logical time less than or equal to T̂ ). Hence the list of
versions associated with any global variable can be seen as logically partitioned
into two disjoint sublists, namely the one including all the elements that are
subsequent to the one to be retained (these are the elements to be kept alive),
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and another one including all the elements to be discarded. This allows pruning
the list while still concurrently admitting the insertion of additional nodes in
the part devoted to keeping the alive entries, and both these activities can be
carried out via the non-blocking (allocation/deallocatoin) algorithms we have
already devised. Hence we can allow some concurrent thread to perform list
pruning while some other thread can dispatch SOBJs’ callback procedures in
forward (normal) execution mode, leading to the creation of new versions in
some global variable version-list. In other words, our scheme can be integrated
with non-blocking GVT and fossil collection algorithms, such as the one in [59],
which do not impose kind of barrier synchronization across the threads prior
to admitting them to reprocess events after a GVT/fossil-collection phase has
been run, hence enhancing scalability and resilience to thread reschedule delays
at the level of the operating system.

Other two points need to be noted. One is related to how to distribute
the pruning of version lists across the active threads running the application
(and hence running within the run-time PDES environment). This aspect is
non-trivial given that different global variables may show different patterns
of usage (e.g. update patterns) by the application, hence some multi-version
list may include a lot of versions to be pruned, while other version-lists might
include a reduced amount of versions to be pruned. Statically binding the
pruning of partitions of the global variable set across the threads may therefore
lead to suboptimal distribution of the pruning load, which in turn does not
favor balanced advancement in logical time of the SOBJs managed by the
threads, given that the threads sustaining less pruning load can promptly
resume (according to the aforementioned non-blocking GVT/fossil-collection
scheme) the forward execution mode of the SOBJs they are managing.

To overcome this problem, we have devised a scheme where a bit into a
prune-bitmap is associated with each global variable, hence with its multi-
version list. Once, T̂ is computed, the threads running the application scan
the prune-bitmap by performing a CAS to update one single bit within a word
of the bitmap. In case the CAS instruction succeeds, then the thread is charged
with the responsibility to prune the corresponding multi-version lists. Hence,
threads that are fast in pruning their currently associated multi-version list,
promptly try to take on the job of pruning other multi-version lists, since they
fast try to win the race on the subsequent bits in the prune-bitmap. We note
that in this scheme the bit-map does not even need to be reset after pruning,
given that at alternate GVT computation and prune phases the CAS is used
in order to support either the bit-transition from 0 to 1, or the opposite one
from 1 to 0. With this scheme, the load of pruning the multi-version lists is
more fairly (dynamically) distributed, given that if a thread prunes lists that
are found to be short, it will more likely be in charge of pruning a greater
amount of them.

Another relevant observation is related to the management of write opera-
tions of global variables in case of coasting forward processing activities (due
to whichever rollback instance execution). As hinted above, in case a SOBJ’s
callback procedure is executed in a coasting forward phase, it needs to carry
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out side effects onto the private SOBJ state (for realignment purposes of the
private state snapshot to the correct logical time), but no externalization of
this execution via side effects on global variables needs to be actuated. To cope
with this problem, the shared-state management architecture has been aug-
mented with a dual mode execution capability of the write global variable

internal API. More in detail, in case the write operation of the global vari-
able is performed in coasting forward mode of the dispatched SOBJ, then the
write global variable execution path boils down to a null one, given that
the version to be inserted has been already created in the original (still cor-
rect) part of the computation of the dispatched SOBJ’s callback procedure,
along which we are simply coasting forward.

As the very last note, in case the memory buffer pre-allocated for keeping
the version nodes gets filled, we reallocate it by doubling its size. This is ac-
tually done by copying separately the nodes and read list entries on a larger
memory area—this is the reason why we have relied on indices to identify
slots rather than standard pointers, as this frees from the need to correct in-
ternal pointers during this resize operation. Due to its intrinsic non-atomicity,
resizing the version list requires some sort of synchronization. In particular,
whenever a worker thread finds the buffer full, it relies on a CAS operation to
atomically set the first node free field to the value -1, which tells all the
other worker threads that someone is already resizing the structure. To avoid
the scenario where the resize is executed while some other thread is already op-
erating on the data structure, the variable list’s metadata is augmented with a
presence counter, namely a counter of the threads which are currently operat-
ing on the variable list. This counter is incremented/decremented atomically,
by relying on assembly instructions (namely lock inc and lock dec). After
that first node free has been set to -1, the worker thread spins waiting for
the presence counter to become zero. In this way, the thread waits for other
ones (which accessed the data structure before setting first node free to -1)
to complete their operations. After the resize is executed, the current worker
thread relies on a second CAS to set first node free to the first position
available in the new portion of allocated memory, thus giving other threads
access to the variable list.

5 Correctness of the Approach

In this section we provide a proof of correctness of the presented scheme for
shared-state management. Particularly, we show that the application level
callback functions processing the events ultimately lead to a linearizable his-
tory [42] of operations on the shared-state, whose serialization order is compli-
ant with the timestamp order of all the events that are concurrently executed
by the threads (whenever dispatching any SOBJ), and that are eventually
committed due to the advancement of the GVT along wall-clock-time.

Our shared-state management architecture allows dispatched SOBJs’ call-
back procedures to concurrently access global shared variables in an optimistic
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way and postpones synchronization among concurrent read/write operations
executed on the shared-state to the time of conflict materialization. There-
fore the implemented concurrency control scheme maintains a high degree of
parallelism by ensuring that:

1. the read/write operations executed by a committed event e on the shared-
state appear as they happened at the same indivisible point in time, asso-
ciated with the logical time Te in which e has been processed;

2. all the committed events execute the same operations and produce the
same outcome as they were processed sequentially without violating the
advancement of logical time.

For this reason, if we model an event e’s execution as an atomic transac-
tion τe [7] to be considered committed whenever e is committed according to
the classical Time Warp algorithm (i.e., at a wall-clock-time instant t it can
be established a GVT value GV T (t) such that each event e′, executed at a
logical time Te′ < GV T (t), cannot be revoked anymore), we can adopt the
serializability consistency criterion [2, 7] over the histories of the committed
events as the target correctness criterion of the proposed solution.

Even if in practice our shared-state management system behaves as an
STM system, we have not designed it having in mind the typical STM-oriented
correctness criterion, namely opacity [37]. In fact, guaranteeing that every read
operation always returns a value consistent with the LVT of the reading thread
would not prevent some SOBJ’s callback procedure to see an inconsistent
state due to the intrinsic speculative nature of the underlying Time Warp
algorithm. Hence, independently of the presence or not of shared-state, as
discussed in [56], a user defined code may be executed using data arguments
that are inconsistent with the logical state of the application. These particular
scenarios require complementary techniques to avoid anomalies, which are out
of the scope of this paper.

Before showing the proof of correctness of our approach, we formalize the
concepts of history on committed events and operation. A history HGV T (t)

over a set E of committed events e at the GVT value GV T (t) consists of:

1. a partial order of operations that reflect the write/read operations per-
formed within e on the shared-state together with the begin (i.e., the invo-
cation of e) and the complete (i.e., the commit of e);

2. the version order ≪ that specifies a total order on the variable’s versions
created by committed events. A write operation on a variable x issued by
an event e is denoted by w(xe) while a read operation on a version xe′ of
variable x is denoted by r(xe′).

We can build a Direct Serialization GraphDSG(HGV T (t),≪) over a history
HGV T (t) as stated in [2] in order to define serializability in terms of topological
properties on that graph. In particular a graph DSG(HGV T (t),≪) contains a
node Ne for each committed event e in HGV T (t) and a directed edge Ne −→ Ne′

for each pair of committed events e, e′ inHGV T (t) such that one of the following
dependencies occurs:
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(i) e′ directly read-depends on e if there exists a variable x such that e′ executes
a read r(xe);

(ii) e′ directly write-depends on e if there exists a variable x such that e executes
a write w(xe), e

′ executes a write w(xe′) and xe′ immediately follows xe in
the total order defined by ≪ on x;

(iii) e′ directly anti-depends on e if there exists a variable x and a committed
event e′′ such that e executes a read r(xe′′), e

′ executes a write w(xe′) and
xe′ immediately follows xe′′ in the total order defined by ≪ on x.

Then a history HGV T (t) is serializable if the associated DSG(HGV T (t),≪)
does not contain oriented cycles as defined in [7].

Therefore the correctness proof of our shared-state manager is formalized
in the following Theorem:

Theorem 1 At any wall-clock-time instant t, for the associated value GV T (t)
and for each history HGV T (t) of committed events admitted by the shared-state
management algorithms then the DSG(HGV T (t),≪) graph does not contain
any oriented cycle.

Proof We prove that the DSG(HGV T (t),≪) does not contain any oriented
cycle by showing that for each edge Ne −→ Ne′ , Te < Te′ always holds.

If an edge Ne −→ Ne′ is in DSG(HGV T (t),≪) we have to distinguish three
cases:

1. e′ directly read-depends on e. In this case the shared-state manager has
performed a read operation on a variable x by returning the version xe

having the greatest logical time Te less than Te′ . Therefore Te < Te′ .
2. e′ directly write-depends on e. e′ overwrites a value (by adding a new

version xe′) of a variable x already written by e. This is admitted only if
Te < Te′ .

3. e′ directly anti-depends on e. e′ adds a new version of a variable x after the
version read by e. If Te ≥ Te′ holds then the shared-state manager forces
a rollback for e. Since both e and e′ are committed then Te < Te′ .

By Theorem 1, it follows that every committed history generated by our
shared-state manager does not violate serializability.

6 Experimental Data

In this section we provide experimental data related to the run-time behavior
of our shared-state management architecture. We note that, beyond the ob-
jective of simplifying the programmer job via automatic parallelization (with
speculative processing) of the access to global variables, another objective is
clearly the one of avoiding explicit event-based interactions across the SOBJs
in case some of them encapsulates in its state data that need to be read/written
as a result of the system wide execution of SOBJs’ callback procedures. The
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avoidance of these interactions may result in reduced overhead while manag-
ing state information, as actually confirmed by the data we provide in this
experimental study.

We initially provide information on the run-time environment where we
have integrated our shared-state management facilities. Then we present the
case study applications and the data related to their run-time behavior.

6.1 Run-time Environment and Experimental Computing Platform

All the software facilities forming the presented shared-state management ar-
chitecture have been integrated and made available for free download within
the ROOT-Sim platform [43], which is an open source C/POSIX environment
for the development and the execution of discrete event applications. It imple-
ments a general-purpose environment relying on the optimistic synchronization
paradigm, which offers a very simple programming model based on the classi-
cal notion of simulation-event handlers (as typical of several well known PDES
systems such as [14,52]) to be implemented according to the ANSI-C standard,
which represent application entry points for providing control to the SOBJs
involved in the application.

More in detail, a unique callback needs to be specified by the programmer
for application coding, whose signature is the following one:
int ProcessEvent(int me, ltime t now, int event type, void *content,

int size, void *state)

where the parameters have the following meaning:

– me identifies the dispatched SOBJ;
– now is the timestamp (the logical time) of the event being dispatched for

processing, which represent the logical time currently seen by the dis-
patched SOBJ;

– event type is event numerical code;
– content is the buffer keeping size bytes of event payload (if any);
– state is the pointer allowing the SOBJ to access its state (namely the top

level data structure representing the state) into the heap.

Upon running the application, the user can specify the number N of SOBJs
to be managed, whose identifiers are automatically mapped by the run-time
system on the interval of values [0, N − 1]. Also, at startup time the above
callback is called at least once for each SOBJ, with the special event INIT

filled as input, so as to allow them to perform startup operations, such as
initial allocation of their states into the heap and initial injection of application
specific events into the system. The latter task is achieved by exploiting a
proper API, still exposed by the run-time environment, having signature:
int ScheduleNewEvent(int where, ltime t timestamp, int event type,

void *content, int size)

where some of the parameters have the same meaning as above, while the
parameter where is the identifier of the destination SOBJ, and the parameter
timestamp is the logical time at which the event will need to be processed.
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All the aspects related to how to concurrently call the above callback func-
tion for the different SOBJs, how to (dynamically) bind the SOBJs to the
threads that are activated at startup, how to provide support for recoverabil-
ity of the SOBJs’ states within the heap (with run-time selected optimal state
log frequency) and how to flush output results (e.g. produced by printf calls
within the event handlers) only when they refer to the actually committed
portion of the computation are fully transparently managed by the ROOT-
Sim run-time environment (details can be found in [3, 60,61,71]).

By the above API, the application programmer is requested to reason on
no aspect related to parallelism. However, prior to the introduction of the
currently presented shared-state management architecture, no ProcessEvent

callback was allowed to manage global variables. More in detail, these vari-
ables, if present within the application code, were not managed according to
correct causality rules of read/write dependencies by the concurrently pro-
cessed application callbacks. The integration of the presented shared-state
management proposal in the run-time environment leads to offer to the pro-
grammer the possibility to develop truly ANSI-C applications, including global
variables, according to a sequential style programming model, which are then
automatically parallelized according to speculative processing schemes.

This run time environment, and the hosted case study applications, have
been run on top of a 64-bit NUMA machine, namely an HP ProLiant server,
equipped with four 2GHz AMD Opteron 6128 processors and 64GB of RAM.
Each processor has 8 cores, for a total of 32 CPU-cores, that share a 12MB
L3 cache (6 MB per each 4-cores set), and each core has a 512KB private L2
cache. The operating system is 64-bit Debian 6, with Linux Kernel version
2.6.32.5. The compiling and linking tools used are gcc 4.3.4 and binutils (as
and ld) 2.20.0.

6.2 The PHOLD Case Study

We initially exploit a well known benchmark for PDES systems, originally pro-
posed in [30], which is called PHOLD. The objective of the study in this section
is primarily to assess the overhead imposed by our share-state management
approach and how it impacts synchronization dynamics.

PHOLD is a synthetic application where each SOBJ executes fictitious
events only involving the advancement of the local simulation clock to the
event timestamp. Each time an event is executed, a new fictitious event is
scheduled, destined to some SOBJ inside the system, with a timestamp in-
crement following some exponential distribution. The execution of an event is
typically implemented as a busy loop (which emulates a specific CPU delay
for event processing, hence a reference event granularity) plus some specific
memory access in read/write mode into the LP state (e.g. to mimic specific
locality patterns [70]).

We have considered a configuration of PHOLD with 512 concurrent SOBJs
and event granularity of the order of 50 µs, which is representative of medium
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grain DES applications. The SOBJs schedule events for each other with prob-
ability 0.2, which expresses moderate (but non-negligible) interactions across
the concurrent SOBJs.

This configuration, entailing no-global variables at all (which we will refer
to as baseline in the plots), has been then modified so as to implement a varia-
tion of the PHOLD benchmark where a global array of long long variables is
kept, with one entry associated with each SOBJ. When a SOBJ is scheduled
for event execution, beyond executing the classical actions specified by the
benchmark, it also reads and then writes a new value on its associated vari-
able within the global array. In this new configuration, the global variables are
accessed in data separation by the concurrent SOBJs. Hence this settings is
useful for assessing the overhead imposed by the management of multi-version
lists (including the overhead for pruning the lists upon GVT computation and
fossil collection) without altering the interactions across the SOBJs. In fact,
they will never generate causal dependencies in relation to the usage of global
variables (given the data separation access-profile). For this configuration we
considered two different probability values for an event executed by a SOBJ to
actually access the per-SOBJ entry with the global variables’ array, say 10%
(representing a scenario with moderate usage of global variables) and 30%
(representing a scenario characterized by more intensive access, in both read
and write modes, to the global variables).

We have also developed a second variant of the PHOLD benchmark where
the global variables within the array are no more accesses in data separation.
More in detail, we have replaced the generation of cross-SOBJ events with the
update of the global variable associated with the destination SOBJ for the
interaction. This way, the concurrent SOBJs never develop dependencies due
to cross-scheduling of events. Rather they only develop mutual dependencies
due to updates performed onto the global variables, given that each SOBJ
accesses in read mode to its own global variable instance upon executing the
events. This occurs according to a causality pattern that complies to the one
characterizing the original benchmark configuration (the baseline). This addi-
tional configuration allows us to assess in a comparative manner the scalability
and actual performance provided by the two alternative interaction methods
(the classical one based on events’ cross-scheduling and the one supported by
our innovative proposal, which is based on read/write operations on global
variables implementing the shared-state).

For all the considered settings, we report in Figure 7 the variation of the
benchmark execution time while varying the number of used worker threads
within the underlying PDES platform (up to 32, which is the number of avail-
able physical CPU-cores in the underlying machine)7. By the data we can
observe that the configuration with global variables accessed in data separa-
tion and 10% access frequency gives rise to negligible overhead with respect
to the baseline benchmark configuration, indicating how a moderate usage of

7 All the samples reported in the experimental study result as the average over 5 obser-
vations collected in different runs and with different seeds for pseudo-random generation.
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Fig. 7: Execution Time Results with the PHOLD benchmark

global variables is fully affordable in term of run-time overhead induced by our
share-data management system. On the other hand, when the access frequency
is increased to 30%, the overhead tends to increase. However, an interesting
point is that the overhead tends to scale down when increasing the level of
parallelism (say when employing more worker threads), which is imputable to
the reduction of the negative impact by the management of version-lists on the
execution locality (e.g. thanks to the increase of cache storage when increasing
the number of used physical CPU-cores). In fact, while the overhead with re-
spect to the baseline is of the order of 25% when employing 4 worker threads,
it decreases to the order of 10% when running with 32 worker threads.

As for the configuration with global variables based interactions (replacing
SOBJs’ cross-scheduling of events), it provides significant performance im-
provements when the degree of parallelism is relatively limited (say up to 16
worker threads). However, when the level of execution parallelism is set to
32, it induces a small slow down of the execution (compared to the baseline).
Clearly, this is due to the fact that with more worker threads, and accesses no
more carried out in data separation, the likelihood of experiencing a conflicting
access to multi-version lists (with consequent need for retry of the operation)
increases. Recall that with no data separation, the multi-version lists need
to be concurrently accessed also upon rollback operations, given the need for
undoing speculative SOBJ-interactions that eventually reveal non-consistent.
This does never occur in case of data separation accesses, since a rollback
operation leads a unique worker thread to operate on any multi-version list,
say the thread running the rolling back SOBJ associated with a specific global
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variable instance. On the other hand, we note that the slow down with 32
worker threads is limited to the order of 10%, a price that looks justifiable in
any context where the reliance on global variables’ in-place read/write accesses
can lead to reducing the complexity of code development (via the avoidance
of cross-scheduling of events).

6.3 The PCS Case Study

In this section we move to a real-world case study by focusing on a DES appli-
cation that models the evolution of a Personal Communication System (PCS),
namely a mobile network adhering to GSM technology. In this application,
each SOBJ is used to model the state’s evolution of an individual wireless cell
(modeled as a hexagon), and the whole set of cells provides wireless coverage
on a square region of variable size. Each cell handles a number N of wireless
channels, which are modeled in a high fidelity fashion via explicit simulation of
power regulation and interference/fading phenomena, according to the results
in [48]. The event types which can occur at any SOBJ are: Start Call, which
simulates a new call installation on a target cell; End Call which simulates a
call termination; Handoff Leave which simulates the leave of an on-going call
from the current residence cell; Handoff Receive which simulates the installa-
tion of a call handed-off from an adjacent cell.

Upon the start of a call (or upon an hand-off between adjacent cells),
power regulation is performed by the target SOBJ, namely the one modeling
the target cell. This involves scanning a dynamic list of records included in
the SOBJ state, whose elements keep track of current power allocations for
standing calls, for computing the minimum transmission power allowing the
current call setup to achieve the threshold-level Signal-to-Interference (SIR)
value.

This application is highly parameterizable. Beyond the already mentioned
number N of wireless channels per cell, the set of configurable parameters
entails: i) τA, which expresses the inter-arrival time of subsequent calls to
any target cell; ii) τduration, which expresses the expected call duration; iii)
τchange, which expresses the residual residence time of a mobile device into
the current cell. These parameters affect the utilization factor of available
channels, expressed as τduration/(τA ∗N). This impacts the granularity of the
events processed by the SOBJ callback procedure since the more the busy
channels, the more power-management records are allocated and consequently
scanned/updated during the processing of different events. At the same time,
higher values of the channel utilization factor lead to higher memory require-
ments for the state image of individual SOBJs.

In our study, we considered a scenario with 1024 cells (SOBJs), each one
managing N = 1000 wireless channels (resembling macro-cell technology).
Also, τduration has been assumed as exponentially distributed, with average
value 120 seconds, τchange has been still assumed as exponentially distributed,
with average value of 300 seconds, while the inter-arrival time τA (still assumed
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as exponentially distributed) has been varied in terms of its mean value in order
to get 3 different values for the average wireless channels’ utilization factor,
namely 25%, 50% and 75%, so as to significantly diversify the actual execution
pattern (CPU/memory demand) by the application. These three scenarios will
be referred to as Low/Medium/High load in the plots.

In this case study, global variables are not used to represent part of the
modeled system. Rather, they have been used to implement global (aggre-
gated) statistics (such as the average transmission power selected upon set-
ting up the call, or the likelihood of SIR dropping under the predetermined
threshold due to dynamic fading phenomena). This is an explicit choice, which
gives rise to a scenario where the size of the global variables’ area is relatively
small, when compared to the heap storage used for keeping the private state
of the 1024 SOBJs running within the application. Also, the access to the
global variables’ area leads the SOBJ’s callback procedure to perform both
read and write operations on the global variables, given that the update of
the global statistics is performed incrementally. This leads to a scenario where
any SOBJ can develop read/write dependencies with any other upon access-
ing the global variable area along the execution’s logical time axis. In order to
achieve different settings in which such dependency materializes with different
frequency along wall-clock-time, we have parameterized the period according
to which any SOBJ’s callback procedure accessed the global variables’ area for
updating global statistics, in compliance with the updates of local statistics
occurred on the private state of the SOBJ. In particular, the global statistics
update occurs either after 100 or 5000 events processed at any SOBJ. With
high update frequency (each 100 events), referred to HAF in the plots, we get
higher likelihood of actual concurrent accesses to the global variable area by
different threads, which may lead to increased likelihood of failure/retry of the
operations that depend on the success of CAS updates (as compared to the low
update frequency case, referred to as LAF in the plots), which are required to
managed the various algorithms that underlie the shared-state management
architecture.

For this case study, we report in Figures 8-10 the variation of the appli-
cation execution time vs the number of used CPU-cores, in the configuration
where we activate in the run-time environment one thread per each used CPU-
core. In particular, we compare the execution time of our shared-state proposal
vs the one achieved by encapsulating the global statistics into the private state
of a proper SOBJ, and coding in the application additional events for inter-
acting with this SOBJ (particularly for pushing to this SOBJ the incremental
variation of the statistics observed by any other individual SOBJ on the basis
of the information recorded into its private state). This is the only alternative
for allowing on-the-fly update (and possible inspection) of global statistics in
case no support for directly accessing a shared piece of information (like the
one we offer) is provided. We also consider the scenario where global statistics
are not updated on-the fly, hence excluding any shared-state at all. In this
scenario, the SOBJ only keeps its own view of the statistics, which is flushed
to a file for off-line analysis and aggregation. This is a baseline configuration



Transparent Parallelization of DES Applications Using Global Variables 35

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  5  10  15  20  25  30  35

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Number of Worker Threads

SOBJ Encapsulation (HAF)
SOBJ Encapsulation (LAF)

No Global Variables
With Global Variables (HAF)
With Global Variables (LAF)

Fig. 8: PCS—High Load
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Fig. 9: PCS—Medium Load
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Fig. 10: PCS— Low Load
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Fig. 11: PCS—High Load
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Fig. 12: PCS—Medium Load
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mostly used to assess the validity (e.g. in terms of reduced overhead) of the
others.

By the data we can observe that the optimum number of threads for all
the settings of the PCS application, when running with our support for trans-
parent parallelization in the access to global variables, is on the order of 8/16.
In fact we observe a great reduction of the execution time when increasing
the number of used CPU-cores up to the value 8/16. On the other hand, af-
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ter this value, the performance stabilizes. However this phenomenon is not
primarily due to scalability issues in our proposal, since the same (or very
similar) performance trend is noted for the baseline configuration entailing
no shared-state at all. In fact, this configuration tends to significantly favor
performance while increasing the number of used CPU-cores up to 32 limited
to the case of High workload, as expected due to the higher resource demand
of this settings and to the fact that running with no global variables (no on-
the-fly computation of global statistics) leads to a scenario with very reduced
coupling of the SOBJs’ state transitions along the logical time axis (in fact
in this scenario the coupling is caused exclusively by hand-off events, which
occur relatively infrequently). In other words, 8/16 CPU-cores looks the best
suited parallelism degree for the execution of this case study application in
most of its different configurations. Hence, further increasing the number of
CPU-cores beyond the value 8/16 leads (in most of the settings) to scenarios of
over parallelism, which do not pay off independently of the reliance on global
variables or not. Overall, when running with over parallelism, our shared-state
management architecture does not induce significantly increased performance
penalty compared to the scenario when global variables are not used at all.
This is an indication that all the optimizations included in the architecture
(e.g. in terms on non-blocking management of shared-state operations) pro-
vide an effective transparent support. This also allows the overhead by our
solution, as compared to the baseline, to stay (almost) flat vs the increase of
the number of used CPU-cores.

On the other hand, the execution scenario based on the proper SOBJ,
whose private state is used to encapsulate the global statistics, manifests scal-
ability issues as soon as the number of used CPU-cores increased beyond the
value 4/8. As expected, the scalability issue is more evident for the case of fre-
quent updated of the global statistics, given the increased workloads of events
to be processed by this SOBJ. Overall, beyond simplifying the programming
model, our shared-state management architecture also leads to improved con-
currency of useful work carried out on the shared-state portion, as compared
to the case of encapsulation of the shared-state within a single application
object.

Given the real world nature of PCS (as opposed to the synthetic nature
of PHOLD), memory usage represents another interesting aspect to study,
for which we provide run-time data. Specifically, we report in Figures 11-13
the variation of the total amount of memory requested by the application (as
periodically sampled via the top command and averaged at the end of the run)
when running with our shared-state management support and with the other
considered configurations. An interesting observation is related to the fact
that, increasing the number of threads leads to a reduction the overall memory
demand, up to a point where the memory usage stabilizes. This phenomenon
is due to the fact that increasing the number of threads leads to the increase
in the amount of work committed per GVT/memory-recovery cycle (executed
each 1 wall-clock-time unit in our runs), which leads to more efficient/prompt
pruning of the data structures. On the other hand, the interesting point in this
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Table 1: PCS—Maximum Speedup vs the Calendar-Queue based Serial Run

Load Global Variables No Global Variables SOBJ Encapsulation
HAF LAF HAF LAF

Low 2.82 2.80 9.18 0.50 0.91
Medium 10.54 10.42 23.98 1.18 1.90
High 21.80 22.37 46.65 2.33 3.10

plot is related to the fact that the configuration with no shared-state at all
has very similar memory demand as the one employing our support for shared-
state, which indicates that the additional memory requirement for managing
the multi-lists of global variables’ versions (even in case of frequent updates
and nodes insertions into the multi-version lists) is very limited. Although we
may have expected this outcome, given the reduced size of the global variables
section, as compared to the overall size of the collection of SOBJs’ private
states, the experiments fully confirm it. We also note that the reduction in
memory usage vs the increase of the number of used CPU-cores does not arise
in case of the configuration based on encapsulation of global statistics into the
state of the SOBJ. Again, this is mostly due to the fact that, with this settings,
the run commits events much slower that with the other settings, hence leading
to less prompt recovery of memory buffers keeping obsoleted data (since data
become obsolete after longer time). The only exception to this behavior is
noted for the case of Low load, with LAF, a configuration where the memory
demand by the application layer is anyhow reduced, hence leading the memory-
reclaiming procedure of obsolete buffered data (e.g. committed events’ buffers)
to exhibit a reduced impact on the actual memory usage of the whole system
(run-time environment included).

The very last part of this section is devoted to reporting data related to the
speedup achieved by the parallel runs vs an optimized sequential run where the
same application code is executed on top of a calendar-queue event scheduler
[8] (in fact the data in Figures 8-10 show, for the case of single CPU-core, the
execution latency that has been achieved with a run-time environment, namely
ROOT-Sim, which is optimized for parallel executions, rather than with one
optimized for sequential execution). By the data in Table 1 we see that except
for the case of encapsulation of shared information in the SOBJ state, the
optimal speedup provided by the parallel runs, over the optimized sequential
one, is significative, which points out how the whole experimental study has
been conducted with competitive parallel executions. This strengthens the
relevance of the achieved outcomes. Also, the shared-state architecture allows
for achieving (especially for higher workload contexts) on the order of 50% of
the maximum speedup achieved in case of no global variables at all, which is a
significant results when considering that this speedup percentage is achieved
vs the one characterizing an execution scenario that is much more biased
towards an embarrassingly parallel one (given the reduced coupling of SOBJs’
state trajectories in case of no usage of global variables).
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6.4 The TCAR Case Study

The Terrain Covering Ant-Robots (TCAR) application models the evolution
of a scenario where specialized mobile agents (the robots) are used to explore a
bi-dimensional space-region, e.g., for rescue purposes. Our implementation of
this application conforms to the specification in [69]. More in details, a group
of robots is set out into an unknown space, with the goal of fully exploring it,
while acquiring data from sensors which are used to map the environment.

Robots are equipped with enough processing power to elaborate the sensors
data online (thus, the map is constructed during the exploration), so as to
allow them to rely on the acquired knowledge to drive the exploration in
a more efficient way. Specifically, whenever a robot has to make a decision
about which direction should be taken to carry on the exploration, it is done
by relying on the notion of exploration frontier. By keeping a representation of
the explored world, the robot is able to detect which is the closest unexplored
area it can reach, computes the fastest way to reach it and continues the
exploration.

Robots explore independently of each other until one coincidentally detects
another robot. Whenever two robots enter a proximity region, they perform
three different actions: i) they use their sensors to estimate their mutual physi-
cal position—recall that they are just in proximity ; ii) they verify the goodness
of their position hypothesis by creating a rendez-vous point in the explored
part of the region, and trying to meet again there; iii) if the hypothesis is ver-
ified, they exchange the data acquired during the exploration, thus reducing
the exploration time and allowing for a more accurate decision of the actions
to be taken. Additionally, in case step ii) succeeds (i.e., the robots actually
meet in the rendez-vous point), it means that the estimation of their respec-
tive position is correct. Therefore, they can form a cluster, i.e. they can start
exploring the environment in a collaborative way. Specifically, this collabora-
tive exploration can take place in two different ways. On the one hand, they
jointly define (by relying on cost and utility functions, as defined in [69]) their
next exploration targets, so that they can minimize the time required for a
complete environment exploration. On the other hand, they might decide to
make a guess about the position of other robots (the total number of which
is known) which are not part of the cluster yet. In the latter case, one of the
robots (the one for which the utility/cost ratio is convenient) targets the hy-
pothesized position. If a robot is found there, the aforementioned steps are
carried out, so as to increase the knowledge of the environment.

When implementing the above model according to PDES style rules, e.g. by
relying on disjoint SOBJs’ states to model the evolution of the entities within
the system, three main hindrances are found. First, discovering the presence
of a nearby robot can be difficult. In fact, either the associated SOBJs must
communicate to each other their current position by injecting events, or they
have to notify it to proper SOBJs, used to model the state of the regions
(portions) of the whole area to be explored, again via the injection of events.
Third, exchanging map information by notifying it as events’ payloads could
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entail a data transfer non-negligible in size across the SOBJs. Additionally,
all these programmatic steps are not straightforward, as they force the appli-
cation developer to reason according to the classical SOBJs’ state-separation
paradigm.

Thanks to our shared-state management architecture, this application has
been developed by having SOBJs representing only the active entities in the
system, namely the robots, while representing the state of the regions belong-
ing to the area to be explored into the global variables’ section of the applica-
tion code. In particular, a presence bitmap is embedded within the structured
global variable representing the state of the region, each bit of which is associ-
ated with a specific robot, and its value is associated with the robot currently
being registered as located in the region (or not). By relying on a fast bitmap
scan, each robot (thus each dispatched SOBJ’s callback procedure) is able
to discover which ones are present in the region. Upon entering one cell, the
SOBJ (beyond updating the bitmap) simply transfers its (so far acquired)
local knowledge into a prober buffer in the global variables’ section in order
to make it available for knowledge merging with any other robot currently
present in the same region.

This case study significantly differs from PCS in two main aspects. First,
global variables are explicitly used to model part of the whole target scenario,
namely the current state of the regions (e.g. in terms of robots’ presence in the
region). Second, the global variable area, a portion of which is touched by any
SOBJ’s callback procedure, represents a good percentage of the whole main
memory storage used to represent the model. On the other hand, any SOBJ’s
callback procedure will access in read/write mode a reduced portion of the
global variables’ section, given that only the data structure representing the
state of the region being entered (or exited) by the robot will be accessed. In
other words, locality of the accesses to global variables changes depending on
the level of (temporary) clustering of the robots into specific regions (instead,
in the PCS case study, accesses to global variables were always localized on the
same structured record, namely the one keeping the global statistics). In our
study we consider a case where the environment to be explored is formed by
4096 regions (still modeled as hexagons) that globally represent a square bi-
dimensional area. Also, 100 robots are used to explore the area, giving rise to
an average density of robots per-region equal to 0.02, realistically representing
cases where, e.g., a reduced number of highly specialized agents (robots) is
employed for the exploration of a non-minimally sized region.

In Figure 14 we show the execution latency of the application for the case
of employment of global variables, as well as for the case of the settings where
regions are modeled by encapsulating the corresponding data structures into
SOBJs’ private states, hence requiring event-based interactions across regions
and robots (as discussed above). We also report the execution latency for the
case of an optimized serial run (based on the calendar-queue event scheduler)
of the same (parallelized) application code exploiting global variables. For the
parallel runs we report data while varying the number of worker threads (WT)
used to sustain the application execution. By the data we see that the scheme



40 Alessandro Pellegrini et al.

 50

 100

 150

 200

 250

Serial SOBJ Encapsulation Global Variables

O
ve

ra
ll 

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Configuration

Serial 8 WT 16 WT 32 WT

Fig. 14: TCAR—Execution Time

 1

 10

 100

 1000

 10000

Serial SOBJ Encapsulation Global Variables

M
em

or
y 

(M
B

)

Configuration

Serial 8 WT 16 WT 32 WT

Fig. 15: TCAR—Memory Usage

relying on encapsulation is not able to outperform the optimized sequential
run, while the configuration based on global variables it able to (providing a
maximum speedup on the order of slightly less than 4). The core reason lies
in that, for the particular settings of the TCAR application we have used,
events are very fine grain (in fact an event takes, on the average, about 10
microseconds for being processed by the corresponding application callback),
which leads to unsuitability (due to excessive overhead for cross-SOBJ data
exchange) of the pure event-based interaction model for accessing some shared
information. We also note that such a fine grain profile of individual tasks to
be executed is generally adverse to parallelization, especially in contexts where
the tasks need to be actually synchronized to ensure causal dependency, as for
the case of PDES applications. Hence, achieving speedup of the order of 4 for
this scenario via our shared-state management architecture looks a promising
result, even if it is achieved with a non-minimal amount of threads.

As for memory usage, the run-time data are reported in Figure 15. By the
data, we see similar memory usage by both the parallel configurations. Also,
as expected, the memory usage of the parallel runs is much greater than the
one by the sequential run. This is due to the need for keeping either logs of the
region-SOBJ states (in the encapsulated configuration) or multi-versions of re-
gion information (in the global variable scheme). However, such an increased
memory demand is not a major impairment to performance improvements by
the parallel runs based on global variables, at least for the adopted test set-
tings. Further, the increase in memory demand in speculative computations
is a well known issue that can be tackled (if requested, given potential, or
actually materialized, impact on performance due to reduced locality) with
techniques that stand as orthogonal to the share-state management architec-
ture we have presented, such as those based on artificially limiting speculation
in order to avoid excessive growth of data to be kept in memory for recover-
ability purposed [25].
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6.5 The Traffic Case Study

As final case study, we have used traffic, a real world application that we have
developed in cooperation with colleagues from logistic engineering so as to
provide support to decision making processes (such as scheduling of delivery
services across the country). This application simulates a complex highway
system (at a single car granularity), where the topology is a generic graph,
in which nodes represent cities or junctions and edges represent the actual
highways.

Every node is described in terms of car inter-arrival time and car leaving
probability, while edges are described in terms of their length. At startup
phase, the simulation model is asked to distribute the highway’s topology on a
given number of SOBJ. Every SOBJ therefore handles the simulation of a node
or a portion of a segment, the length of which depends on the total highway’s
length and the number of available SOBJs.

Cars enter the system according to an Erlang probability distribution, with
a mean inter-arrival time specified (for each node) in the topology configuration
file. They can join the highway starting from cities/junctions only, and are later
directed towards highway segments with a uniform probability. If after having
traversed part of the highway a car enters a new junction, according to a certain
probability (again specified in the configuration file) it decides whether to leave
the highway. Whenever a car is received from any SOBJ, it is enqueued into a
list of traversing cars, and its speed (for the particular SOBJ it is entering in)
is determined according to a Gaussian probability distribution, the mean and
the variance of which are specified at startup time. Then, the model computes
the time the car will need to traverse the node, adding traffic slowdowns which
are again computed according to a Gaussian distribution. In particular, the
probability of finding a traffic jam is a function of the number of cars which
are currently passing through the node. A LEAVE event is scheduled towards
the same SOBJ at the computed time. Additionally, when a car is enqueued,
the whole list of records associated with cars is scanned, in order to update
their position in the queue, which reflects updates on the relative positions of
the cars along the path they are traversing.

Accidents are derived according to a probability function as well. In par-
ticular, they are more likely to occur when the amount of cars traversing the
highway portion modeled by a SOBJ is about half of the cars which can be
hosted altogether. In fact, if few cars are in, accidents are less frequent. Sim-
ilarly, if there are many, the traffic factor produces a speed slowdown, thus
reducing the likelihood of an accident to occur. Therefore, the model dis-
cretizes a Normal distribution, computing the Cumulative Density Function
in a contour defined as cars in the node ± 1

2 , having as the mean half of the
total number of cars which are at the current moment in the system, and as the
variance a factor which can be specified at startup. The total number of cars
which can be hosted by a SOBJ is computed according to the actual length of
the simulated road, which is determined when the model is initialized. When
an accident occurs, the cars are not allowed to leave the path portion modeled
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by the corresponding SOBJ, until the road is freed. In fact, if a LEAVE event is
received, but its execution is associated with a car involved in an accident, the
record associated with the car is not removed from the queue. Rather, its leave
time is updated according to the accident’s durations, and a new LEAVE event
is scheduled. The duration of an accident phase is determined according to a
Gaussian distribution, the mean and the variance of which are again specified
at startup.

During the scan of the queue entries, with a certain small probability (spec-
ified at startup), a car decides to stop for a certain amount of time (e.g. for
fuel recharge). This is reflected by setting a special flag in the record, and a
duration for the stop is drawn from a Gaussian distribution. In this case, if
a LEAVE event is received associated with a stopped car, the behavior of the
model is the same as in the case of an accident. During a queue scan, if a
stopped car expires its stop time, the relevant flag is reset, so that the next
LEAVE event will allow it to exit from the path portion modeled by the current
simulation object.

We have simulated the whole Italian highway network (particularly one
hour of its evolution), by distributing the model over 1024 SOBJs. We have
discarded the highways segments in the islands in order to simulate an undi-
rected connected graph, which allows to have the actual workload migrating
overall the highway. The topology has been derived from [4], and the traffic
parameters have been tuned according to the measurements provided in [5].
The average speed has been set to 110 Km/h, with a variance of 20 Km/h,
and accident durations have been set to 1 hour, with 30 minutes variance. This
model has provided results which are statistically close to the real measure-
ments provided in [1].

Also, for the purpose of the present study, we have further expanded the
modeled scenario by having the highway model integrated with a model of
a traffic/congestion monitoring system, which is aimed at building a simu-
lated picture of the global state of the highway (e.g. for possible spreading via
aside diffusion services to the customers). In particular, the 5 most important
nodes (say SOBJs) in the highway (associated with five main cities within the
Italian country) have been augmented with the capability of modeling data-
aggregation centers. These periodically receive notifications by other SOBJs
in relation to the state of the highway nodes/segments and on possible jams.
This information is used to build the view of the global state of the traffic in
the highway. We have implemented this model extension by either relying on
cross-scheduling of events for traffic condition notifications (as in the classical
approach not entailing shared-data among the SOBJs), or by relying on global
variables so as the update of the traffic state for a given node/junction occurs
by posting the corresponding information on some globally accessible record
within an array. The array is periodically accessed by the SOBJs modeling the
data-aggregation centers, so as to actually build the global view of the state
of the highway.

Compared to the other two real world case studies we provided (say PCS
and TCAR), traffic offers a still different execution pattern. Specifically, in
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the implementation based on global variables, most of the SOBJs access them
in write mode, while only a few SOBJs (those modeling the data-aggregation
centers) access the global variables in read/write mode. This leads to a sce-
nario where synchronization across the concurrent SOBJs along the simulation
time axis (due to the management of data-aggregation within the simulation)
takes place via causal dependencies materialized by a few of them upon read-
ing the global variables. In case of a miss of some version (due to speculative
read operations that are eventually revealed as inconsistent), these SOBJs are
forced to rollback, with consequent rollbacks possibly induced on the others as
a secondary phenomenon. Clearly the same causal dependencies (and synchro-
nization dynamics) are expected to appear for the version not relying on global
variables. In fact, the scheduling of a data update event by whichever SOBJ
towards one modeling some data-aggregation center may lead to a rollback
operation in case the destination SOBJ already (say speculatively) stepped a
head of the corresponding logical time of data delivery8.

We report in Figure 16 the plots for the execution time of the two different
configurations of traffic (the one with global variables and the one compliant
with traditional style PDES coding, say with no shared-state) while varying
the number of used CPU-cores. By the data we can draw the following main
conclusions. The implementation based on global variables provides a notice-
able gain in the execution speed, at any scale of the underlying computing
platform. In fact, for this particular application, beyond simplifying the pro-
gramming job, the reliance on global variables allows each SOBJ to notify all
the SOBJs modeling the data-aggregation centers about its current state with
a single write of a record in globally-shared memory, clearly managed by our
shared-state architecture via multi-versioning. Instead, with traditional style
PDES coding, each SOBJ needs to explicitly schedule multiple data-update
events, each one destined to one of the 5 SOBJs modeling the data-aggregation
centers, which induces a non-minimal amount of additional work on the data-
exchange subsystem within the run-time PDES environment. Also, the corre-
sponding overhead tends to increase with more worker threads given that the
data structures supporting cross-scheduling of events within the ROOT-Sim
run-time environment are managed via critical sections, whose conflicts for
their access tend to increase with increased levels of execution parallelism.

Another interesting point is related to the data we report in Figure 17,
where we plot the memory usage by the different runs. Here we can note
that the configuration relying on global variables shows a moderate increase
of the used memory when increasing the number of worker threads, which is
somehow physiologic given that the speculative run progresses more fast, hence
needing more memory for keeping speculatively produced data (event-buffers
and multi-versions of global variables) prior they are pruned. However, this
phenomenon is exacerbated for the settings based on tradition style PDES
coding just because of the need for using more memory buffers for scheduling

8 Clearly, these synchronization dynamics are mixed with–hence additional to–those al-
ready induced via the simulation of the passage of vehicles across different SOBJs.
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a same data-update event with multiple instances towards the different SOBJs
modeling the data-aggregation centers. Clearly, the more evident increase of
the memory requirements by the traditional style PDES coding configuration
leads, as secondary effect, to reduced locality in the access, which additionally
contributes to the performance loss of this configuration compared to the one
based on global variables. As a final note, although not reported in the plots,
also for this application the parallel runs provided remarkable speedups (say
up to the order of 10) with respect to the corresponding sequential execution.

7 Conclusions

In this article we have addressed the issue of transparently parallelizing the
access to global variables in discrete event applications based on the C pro-
gramming language, particularly those relying on timestamped events as the
input to application entry points (callbacks) that can operate on the memory
image of the application, and where causal consistency is ensured by forcing
timestamp-ordered accesses to slices of data. Our proposal has direct applica-
tions in the context of Discrete Event Simulation (DES), where the applica-
tion code is typically based on multiple simulation-objects, each one having its
own private state (generally allocated in the heap) and its own callbacks, and
(possibly) shared-state information (such as global variables), accessible while
executing any dispatched object-callback. Our proposal is based on speculative
processing schemes and rollback/recovery techniques that can cope with global
variables accesses that are eventually revealed as causally inconsistent (along
logical time). Also, we use application transparent multi-versioning of global
variables, plus non-blocking algorithms for managing the multi-version lists,
in order to fully fit the nature of speculative processing schemes. A rollback
scheme that integrates the classical one where the private states of the objects
are restored to mutually consistent snapshots (due to causally inconsistent
event-based interactions across the objects) has been devised so to account for
non-consistent interactions due to read/wite operations on global variables by
any concurrently executed application level callback. Application transparency
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is guaranteed in our approach via automatic software instrumentation, tailored
to the Executable-and-Linkable-Format (EFL), leading the application code
to transparently interact with the multi-version scheme. An experimental as-
sessment of our proposal has been also presented, based on running a suite of
case study DES applications on top of an off-the-shelf 32-core Linux machine.
By the outcome of the experimentation, our approach has both the capabil-
ity of simplifying the application code development and the one of improving
performance compared to sharing information across concurrent objects by
relying on event based interactions, as in the classical style to parallelization
of DES applications.
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Appendix

Algorithm 1 Memory Allocation

1: procedure Allocate
2: m← generate mark( )
3: slot← first node free

4: while true do
5: alloc← vers[slot].alloc;
6: if alloc ∨ ¬ CAS(vers[slot].alloc, alloc, m) then
7: slot← next slot in circular policy
8: else
9: break
10: end if
11: end while
12: atomically update first node free

13: return slot;
14: end procedure

Algorithm 2 Global Variable Read

1: procedure Read(addr, lvt)
2: slot← hash table’s entry associated with addr
3: hasRead← false
4: if slot ∈ AccessSet then
5: version← AccessSet[slot]
6: else
7: while ¬hasRead do
8: ⟨version, alloc⟩ ← Find-Node(slot, lvt)
9: AccessSet[slot]← version
10: spin lock(read list lock)
11: if alloc has been changed then
12: spin unlock(read list lock)
13: continue
14: end if
15: add ⟨lp, lvt⟩ into ReadList
16: spin unlock(read list lock)
17: hasRead← true
18: end while
19: end if
20: return vers[version].value;
21: end procedure
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Algorithm 3 Global Variable Write

1: procedure Write(addr, lvt, val)
2: slot← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: vers[version].value← val
6: else
7: version← Insert-Version(slot, lvt, val)
8: AccessSet[slot]← version
9: end if
10: for all ⟨sobj, lvt′⟩ ∈ ReadList s.t. lvt′ ≥ lvt do
11: inject anti-event towards sobj
12: end for
13: end procedure


