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Abstract—Global Virtual Time (GVT) is a powerful ab-
straction used to discriminate what events belong (and what
do not belong) to the past history of a parallel/distributed
computation. For high performance simulation systems based
on the Time Warp synchronization protocol, where concurrent
simulation objects are allowed to process their events specula-
tively and causal consistency is achieved via rollback/recovery
techniques, GVT is used to determine which portion of the
simulation can be considered as committed. Hence it is the
base for actuating memory recovery (e.g. of obsolete logs that
were taken in order to support state recoverability) and non-
revocable operations (e.g. I/O). For shared memory imple-
mentations of simulation platforms based on the Time Warp
protocol, the reference GVT algorithm is the one presented
by Fujimoto and Hybinette [1]. However, this algorithm relies
on critical sections that make it non-wait-free, and which
can hamper scalability. In this article we present a wait-
free shared memory GVT algorithm that requires no critical
section. Rather, correct coordination across the processes while
computing the GVT value is achieved via memory atomic
operations, namely compare-and-swap. The price paid by our
proposal is an increase in the number of GVT computation
phases, as opposed to the single phase required by the proposal
in [1]. However, as we show via the results of an experimental
study, the wait-free nature of the phases carried out in our
GVT algorithm pays-off in reducing the actual cost incurred
by the proposal in [1].

I. INTRODUCTION

In the context of Discrete Event Simulation (DES), a
classical technique for achieving high performance model
execution is Parallel-DES (PDES) [2]. It is based on par-
titioning the simulation model into several distinct objects,
also known as Logical Processes (LPs), which concurrently
execute simulation events on top of a parallel/distributed
computing system. The core aspect in designing/developing
PDES platforms is synchronization, the goal of which is
to ensure causally-consistent (e.g. timestamp-ordered) ex-
ecution of simulation events at each LP. To cope with
this aspect, several synchronization protocols have been
proposed, among which the optimism-oriented ones, such
as the Time Warp protocol [3], are recognized to be highly
promising.

In Time Warp, block-until-safe policies for event pro-
cessing at the LPs are avoided, thus allowing speculative
computation, which is reflected into great exploitation of

parallelism. At the same time, causal consistency is guar-
anteed through rollback/recovery techniques, which restore
the simulation model to a correct state upon the a-posteriori
detection of consistency violations. These are originated
when LPa schedules a new event destined to LPb having a
timestamp lower than the one of some event already specu-
latively processed by LPb. In case this occurs, the rollback
of LPb might also require undoing the send operation of
events that were produced by LPb during the rolled back
portion of the computation. This is usually achieved via
so called anti-messages (carrying anti-events), which are
aimed at annihilating the originally sent events, thus possibly
causing cascading rollbacks across chains of LPs.

A core abstraction underlying Time Warp-based platforms
is Global Virtual Time (GVT), which is defined as the small-
est timestamp among those of events (or anti-events) that
are still unprocessed, or that are currently being processed.
It indicates the commitment horizon of the speculative
simulation run (in fact no LP can ever rollback to simulation
time preceding the GVT value [3]), and is used both to
execute actions that cannot be subject to rollback, such as
displaying/inspecting intermediate simulation results (see,
e.g., [4], [5]), and to recover memory (see, e.g., [6]) (1).

Computing the GVT value (e.g. on a periodic basis)
requires the employment of some GVT algorithm, and
different algorithms have been devised (see, e.g., [7], [8])
depending on the specific features of the underlying platform
(e.g. shared vs distributed memory) hosting the Time Warp
system. For shared memory platforms, the reference GVT
algorithm is the one provided by Fujimoto and Hybinette in
[1]. This work exploits the so called observability property,
commonly matched by shared memory implementations of
Time Warp, in order to provide a GVT algorithm that does
not rely on any message acknowledgment scheme.

Essentially, in an observable Time Warp system, the send
operation of any message/anti-message leads to the direct
incorporation of the sent information into the message-

1Events with timestamps lower than GVT will never need to be re-
executed after a rollback, therefore they can be discarded. The same happens
to obsolete state information, if any, maintained to support recoverability
of the LP state. The action of recovering memory after GVT calculation is
typically referred to as fossil collection.



queuing data structure of the receiver, which removes the
notion of in-transit message. This feature is exploited in [1]
to devise a GVT algorithm relying on a single phase in
which, once aware of a new GVT computation request, each
process simply (A) keeps track of the minimum timestamp
of any message/anti-message it sent out (towards any other
process) and (B) after incorporating into its event-queue any
message/anti-message detected as incoming in its message-
queuing data structure, it contributes to the GVT compu-
tation by writing its so called local minimum, namely the
minimum across the timestamps of its sent out and incoming
messages/anti-messages, into a proper memory location. The
last process that ends the above tasks is also in charge of
computing the global minimum (namely the GVT value to
be adopted) across all the local minima.

In this approach, the start of the GVT computation phase
takes place by atomically setting a GVT-flag to the value N ,
which corresponds to the number of participating processes.
The GVT-flag is then decreased by one each time a process
ends the activities in the above task B, and is atomically
checked to have reached the value zero in order to trigger the
computation of the global minimum value. Overall, task B
is executed within a critical section (which possibly includes
the actual computation of the global minimum), namely in
a sequentialized fashion, in order to guarantee correctness
and progress of the GVT algorithm. However, such a critical
section may represent an impairment to scalability.

In this article we propose a GVT algorithm still coping
with observable shared memory Time Warp systems, but
which does not require any critical section, hence standing as
a wait-free algorithm [9]. Our proposal is based on memory
atomic operations, namely compare-and-swap, which are
used to keep track of the advancement of any thread within
the different phases of GVT computation. In fact, as opposed
to [1], our GVT algorithm requires multiple phases (rather
than one), but given the wait-free nature of any task carried
out in any of its phases, our proposal can reduce the actual
cost (and also the latency) for computing the new GVT
value especially for deploys on non-minimal scale multi-
core systems. Overall, our proposal stands as an alternative
to the GVT algorithm in [1], which is aimed at better coping
with scalability aspects of Time Warp platforms to be run on
top of multi/many-core shared memory computing systems.
Also, its wait-free nature allows our GVT algorithm to
better cope with contexts where the computing system can
be shared across Time Warp processes and other kinds of
workload that may interfere on CPU usage, thus possibly
stretching the time-span of the critical section required by
the algorithm in [1] (e.g. in case a Time Warp thread
currently running the critical section is context-switched
off the CPU). With our proposal, no wait-phase is induced
across Time Warp threads in case some or more of them are
context-switched off the CPU while GVT computation is in
progress, in fact all the other threads can continue processing

simulation events.
We have implemented our GVT algorithm into the open

source ROOT-Sim speculative PDES platform [10], exactly
based on the Time Warp paradigm, and we have also
performed tests assessing the effectiveness of the algorithm
when running this platform on top of a 64-bit NUMA
machine equipped with 32 CPU-cores using a version of
the well-known PHOLD benchmark [11] as the application
test-bed.

The remainder of this paper is organized as follows. In
Section II we discuss related work. Our wait-free GVT
algorithm is presented in Section III. Experimental results
are provided in Section IV.

II. RELATED WORK

GVT algorithms can be barely divided in two categories,
depending in whether they can cope with distributed mem-
ory systems, or require tightly coupled nodes in a shared
memory platform.

As for the first category, several proposals have been
based on explicit message acknowledgment schemes [12],
[13], [14] in order to determine which messages (or anti-
messages) are still in transit and which processes are respon-
sible for keeping into account the timestamps of in-transit
messages while computing the new GVT value. Some of
these algorithms (see, e.g., [12], [14]) opt for acknowledging
individual messages, which reduces the time interval along
which a message can result as still in-transit. On the other
hand, other approaches (see, e.g., [13]) opt for acknowledg-
ing batches of messages (rather than individual ones) which
allows for reducing the overhead due to acknowledgment
messages, but stretches the interval of time along which a
message still results in-transit (although being potentially
already processed at the destination). This, in its turn, leads
to worsening the approximation provided by the algorithms
on the actual GVT, given that “obsolete” timestamps might
be still considered in the global reduction while computing
the new GVT value.

An approach where explicit message acknowledgments
are not required has been provided in [7]. In this solution,
messages are associated with kind of “phases” (represented
by different message coloring schemes) so that it is possible
for the processes in the system to determine whether the
timestamp of any message (or anti-message) needs to be
accounted for in the current GVT computation. However,
this algorithm requires control messages to set-up the start
of a new GVT computation.

The need for both control messages and acknowledgments
is removed by the proposal in [8], which has been tailored
to distributed memory clusters where specific bounds can be
assumed on the message delivery transfer across the nodes,
and the clocks of the different machines can be assumed
to be (perfectly) synchronized. In this proposal, new GVT
computations are triggered by specific timeouts, which occur
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Figure 1. Data structures and send operations in observable Time
Warp systems (the unique event-queue is the logical collection of the
corresponding event-queues of the LPs managed by the worker-thread).

in synchronized way across all the nodes in the system.
This gives rise to the scenario where all the nodes observe
the start of the GVT algorithm at the same identical time
instant, and are able to determine which messages (or anti-
messages) can be still in transit since the start of the current
GVT computation, given the knowledge on the upper bound
delivery delay.

Differently from all the above proposals, we target shared
memory Time Warp systems. Hence our GVT algorithm
copes with orthogonal settings.

As pointed out before, for the case of tightly coupled
shared memory systems, the reference GVT algorithm is the
one by Fujimoto and Hybinette [1]. This algorithm requires
the Time Warp system to be observable, a property that we
have already pointed out, which expresses that no message
(or anti-message) can ever be in-transit, given that the corre-
sponding send operation leads to directly incorporating the
message into the recipient message-queue. In this algorithm,
the start of the GVT computation phase is instantaneously
visible to all the processes, given that it simply requires
setting the value of a flag into shared memory, namely a
counter, to the number of participating processes. However,
as we already pointed out, the computation of the local
minimum at each process and the decrease of the counter
in order to indicate that the contribution by the process has
been made available, are executed within a critical section,
which may represent a major impairment to scalability
and resilience to interfering external workload (which may
impact the duration of the critical section). In our approach
we avoid any critical section, by trading-off in a completely
different way synchronization costs and the number of
phases required to compute the new GVT value.

Similar considerations apply to the work in [15], which
presents a GVT algorithm for observable shared memory
Time Warp systems (although observability was formally
defined later in literature by [1]). In particular, this work is
based on a critical section that is used to atomically update
the entries of an array of elements, with size equal to the
number of participating processes/threads. This leads the
algorithm not to be wait-free, a property which is instead
guaranteed by our proposal.

III. THE WAIT-FREE GVT ALGORITHM

A. Algorithm Overview

In classical implementations of Time Warp, each worker-
thread running within the simulation platform is in charge
of managing a set of LPs. Particularly, it is in charge of
handling the event-queues of these LPs, which are used to
keep all the events that have been scheduled for them. In
shared memory Time Warp versions (see, e.g., [16], [17])
the worker-thread is also associated with an input messaging
data structure (the message-queue), where messages/anti-
messages incoming from other worker-threads are directly
buffered right upon the corresponding send operation (see
Figure 1). The message-queue and the event-queue are
accessible by the corresponding worker-thread in such a way
that it can “observe” at any time the value of the timestamp
of any message/anti-message that has been sent to the LPs
it is managing. Hence, no sent message/anti-message is ever
in-flight across worker-threads, thus being not accessible (in
terms of ability to read its timestamp) by the destination
worker-thread.

We consider the typical case where messages/anti-
messages produced by any worker-thread are actually sent
towards the destination while completing the current event
processing loop. In this type of organization, the GVT value
corresponds to the global minimum (across all the worker-
threads) of the timestamps of messages/anti-messages that
are either into the message-queue or that have already been
incorporated into the event-queue. Hence, building a GVT
algorithm actually means determining some right moment
for the worker-thread to look at its data structures and
to compute its local minimum, which will be then used
for the calculation of the global minimum. With no loss
of generality, in our approach the local minimum will be
computed after having incorporated the already incoming
messages/anti-messages into the event-queue, meaning that
if an anti-message cancels a specific event, then the times-
tamps of both the canceled event and the anti-message
will no longer have to be accounted for. This complies
with observability operations as described in [1], while
simplifying the computation procedure, given that the local
minimum will correspond to the minimum value of the
timestamps of events kept by the event-queue. Also, the
incorporation of any message/anti-message is meant to leave
the event-queue in a consistent state, with the meaning that
if a message/anti-message incorporation leads some LP to be
flagged for rollback, then the event-queue is refilled with the
already processed events that need to be reprocessed after
the LP rollback is finalized.

In our approach, we determine the right moment(s) for
a worker-thfread to look at its data structures and compute
the local minimum by having all the worker-threads partic-
ipating in the GVT computation to pass through a sequence
of different phases. No successive phase can be entered by
any worker-thread unless all the other worker-threads have
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already executed the previous phase. An example of this type
of behavior is shown in Figure 2, where we represent the
start of the GVT algorithm as the atomic set of a special
GVT-flag to the value TRUE, operation that occurs (at
time t1 in the example) as instantaneously visible to all
the worker-threads, given the shared memory (and cache
coherent) nature of our target platform. On the other hand,
the conclusion of the different phases on different threads
can occur at different time instants of wall-clock-time, as
explicitly shown in the picture (although the actual system-
wide end of the phase, and the begin of the successive phase,
correspond to the latest wall-clock-time instant in which the
end occurs on some thread).

Our algorithm is based on partitioning the computation
of the GVT value in a sequence of phases according to
which each worker-thread WTi computes its local mini-
mum two times, hence determining two values minA

i and
minB

i . The actual local minimum provided by WTi for
the computation of the global minimum will then result
as min(minA

i ,minB
i ). Between the two computations of

min∗
i , whose phases are referred to as phase-A and phase-

B, we interpose an additional phase, marked as phase-send
(see Figure 2). This phase is such that each worker-thread
WTi is requested to process at least one pending event
(destined to some LP it is managing), if any, and to send
newly scheduled events produced during such processing
phase towards the destination worker-threads. phase-send
starts right after all the worker-threads ended their tasks
related to phase-A. For the example in Figure 2 this occurs
at wall-clock-time t2. We note that when the last one of
the send operations by WTi is performed while being in
phase-send, any other message/anti-message previously
produced by WTi (destined to whichever worker-thread) is
guaranteed to be already incorporated into the destination
data structures (namely the message-queue of the destination
worker-thread), given the intrinsic sequential nature of the
activities at worker-thread WTi and system observability.

At this point, indicating with MINTSi the minimum
timestamp of any message/anti-message sent by WTi up
to the end of phase-send, we have the following two
possibilities:
(A) minA

i ≤ MINTSi, in this case minA
i incorporates

the lower bound on the logical time value that can be
affected by any activity possibly occurring (or already

occurred) at WTi up to the end of phase-send.
(B) minA

i > MINTSi, in this case minA
i does not

represent the lower bound on the logical time value
that can be affected by some activity occurred at WTi.

However, given that any worker-thread WTj recom-
putes minB

j after phase-send is already over, all the
messages/anti-messages sent by any worker-thread to WTj

up to the end of phase-send, and hence up to the end
of phase-A, have been already incorporated into the data
structures handled by WTj (some of them might have been
already processed, thus already belonging to the past of the
computation). Hence, minB

j represents the lower bound on
the logical time value that can be affected by WTj when also
considering incoming information after phase-send is over.
Therefore, min(minA

i ,minB
i ) is the absolute lower bound

on the logical time value that can be affected by the generic
worker-thread WTi after phase-send is over. By having
each worker-thread WTi writing min(minA

i ,minB
i ) into a

proper memory location, and then computing the absolute
minimum across all the values kept by these locations we
determine the GVT value. Such a computation is realized in
our scheme via an additional phase, occurring after all the
worker-threads have posted their local minimum into their
associated memory locations (e.g. the entries of a shared
array, each one associated with a specific worker-thread).

We note that, if the worker-threads were perfectly syn-
chronized, thus computing their minA

∗ values at the same
identical time instant, then GVT would simply correspond
to the global minimum across these values, given system ob-
servability. However, to avoid thread synchronization, minA

∗
values are computed at different time instants, hence some
message/anti-message might have not yet been incorporated
into the message-queue of the recipient upon calculating
its minA

∗ , but might have been sent before the sender
computes its minA

∗ . An example is shown in Figure 2,
where a message m is sent at wall-clock-time ts from WT2

to WT1 after WT1 already computed minA
1 , but before

WT2 computes minA
2 . The timestamp of this message/anti-

message would therefore be missing in the global reduction.
However, in our proposal, this timestamp gets recovered (if
not yet belonging to the past of the computation) by having
the worker-threads computing minB

∗ when we are sure that
any message sent by some worker-thread up to the end of
phase-A is (or has been, if already processed) observable.

How to carry on the different phases in a wait-free manner
and how to embed this GVT calculation scheme into a
classical thread execution flow for Time Warp systems is
discussed in the following section, where the pseudo-code
of our algorithm is provided.

B. Algorithm Pseudo-code

To support the detection of the end of each phase, we
use atomic counters. The startup of GVT computation is
therefore handled according to what reported in Algorithm



1. It simply consists in setting the GV T flag shared
variable to the value TRUE after having set to the value
N (number of participating threads) five different atomic
counters. The counters CA, Csend and CB directly map to
the above presented algorithm execution phases, while the
other atomic counters Caware and Cend are used to identify
the completion of two additional phases where the worker-
threads actually become aware of the newly computed GVT
value, so that the GVT algorithm is allowed to terminate and
to be triggered again for a subsequent computation round.

Algorithm 1 GVT INIT
CA = Csend = CB = Caware = Cend = N ; // shared atomic counters
GV T flag = TRUE; // shared flag

By the structure of Algorithm 2, in case GV T flag is
found to be set to TRUE, the generic worker-thread WTi

immediately ends its permanence in phase-A, which is done
by computing minA

i (see line 15), updating its local phase
variable to send, and notifying to the other worker-threads
that it ended this phase (see line 17). While executing the
main loop, with the local phase variable set to send, as soon
as all the threads have ended their execution in phase-A
(namely CA is found to be zero—see line 20), the thread
is forced to execute at least one event, by also sending
output messages/anti-messages (if any) towards the other
threads. Then it again notifies the end of the current phase
(by decrementing Csend—see line 25), and sets its local
phase variable to B. When all the threads have done the
same (hence Csend has reached the value zero), phase-B
can start. At this point, each thread WTi incorporates the
incoming messages into the event-queue, and then computes
minB

i and its local minimum, which gets then stored in
memory (see lines 28–31). It also decreases CB and moves
its phase to aware, so that when this counter reaches the
value zero, all the local minima are already stored, and any
worker-thread can compute the GVT (see lines 36–43), by
also decrementing Caware, so as to indicate awareness of
the new GVT value. When this counter reaches the value
zero, GV T flag is reset via a compare-and-swap (CAS)
atomic operation, which leads only one of the worker-
threads to succeed in the reset task. At this point, the
worker-threads trap into the code block in lines 5-10, hence
re-initializing their phase to A (so as to allow the GVT
algorithm to correctly restart for a subsequent round). When
all of them have re-initialized their phase control-variable,
the Cend counter reaches the value zero, so that the if
condition in Algorithm 3 can be satisfied. Hence the GVT
algorithm can be re-triggered for a subsequent round, which
is done atomically via a CAS operation involving a global
(shared) round-counter current GV T round, and a local
one local GV T roundi. Only one worker-thread will be
allowed to update the shared round-counter, also triggering
the restart of the GVT algorithm. On the other hand, any

Algorithm 2 Main simulation loop (worker-thread WTi)
current GV T round← 0; //shared round-counter
my phasei ← A; // thread local
my GV T roundi ← 0; //thread local

while (not end){
1 incorporate messages into event-queue;
2 execute next-event (if any);
3 send output messages/anti-messages (if any);

4 switch(GV T flag){

5 case FALSE:
6 if(my phasei = end){
7 my phasei ← A; //back to phase-A for next GVT round
8 atomic dec(Cend);
9 }
10 break;

11 case TRUE:
12 my GV T roundi ← current GV T round;

13 if (my phasei = A){
14 incorporate messages into event-queue;
15 compute minA

i ;
16 my phasei ← send; // entering phase-send
17 atomic dec(CA); // notify finalization of phase-A
18 break;
19 }

20 if (my phasei = send && CA = 0){
21 incorporate messages into event-queue;
22 execute next-event (if any);
23 send output messages/anti-messages (if any);
24 my phasei ← B; // entering phase-B
25 atomic dec(Csend); // notify finalization of phase-send
26 break;
27 }

28 if (my phasei = B && Csend = 0){
29 incorporate messages into event-queue;
30 compute minB

i ;
31 store min(minA

i ,minB
i );

32 my phasei ← aware; // entering phase-aware
33 atomic dec(CB); // notify finalization of phase-B
34 break;
35 }

36 if (my phasei = aware && CB = 0){
37 compute GV T as the global min of all stored local min;
38 my phasei ← end; // entering phase-end
39 atomic dec(Caware);//notify finalization of phase-aware
40 if (Caware = 0){
41 CAS(GV T flag, TRUE,FALSE);
42 }
43 break;
44 }

}//end switch
}//end while



Algorithm 3 GVT algorithm start (worker-thread WTi) - this might be triggered by timeout
if (GV T flag = FALSE && Cend = 0 && CAS(current GV T round, local GV T roundi, local GV T roundi + 1))

goto GVT INIT;

worker-thread re-aligns its local round-counter to the shared
one as soon as it becomes aware that the GVT algorithm
has been started by some thread (see line 12 of Algorithm
2).

With this scheme, no worker-thread enters any wait phase
due to delays in the processing of specific GVT-computation
steps by any other thread (e.g. because of a context-switch
off the CPU for any reason like, e.g., a page fault), which
is what leads our algorithm to stand as a wait-free solution.

IV. EXPERIMENTAL DATA

A. Experimental Platform
We have integrated the presented wait-free GVT algo-

rithm within the ROOT-Sim simulation platform [10]. This
is a C-based open source simulation package targeted at
POSIX systems, which implements a general-purpose sim-
ulation environment based on the Time Warp synchroniza-
tion paradigm. It offers a very simple programming model
relying on the classical notion of simulation-event handlers
(both for processing events and for accessing a committed
and globally consistent state image upon GVT calculations),
to be implemented according to the ANSI-C standard, and
transparently supports all the services required to parallelize
the execution. More in detail, we integrated the wait-free
GVT algorithm in the symmetric multi-threaded version of
ROOT-Sim that has been presented in [17]. This version
adheres to the observability property of Time Warp systems
given that message/anti-message exchange across different
worker-threads is supported by directly en-queuing the sent
information within a bottom-half queue, which is accessible
by the destination worker-thread at any time. On the other
hand, the partitioning of the message send/receive across
top/bottom-half operations allows for high scalability of the
simulation platform.

This platform has been run on top of a 32-core HP
ProLiant server equipped with 64GB of RAM and running
Debian 6 on top of the 2.6.32-5-amd64 Linux kernel.

B. Test-bed Application
This experimental study has been based on the PHOLD

benchmark application [11]. Particularly, we have run the
implementation of this benchmark presented in [18], which
is based on homogeneous LPs that perform memory al-
location/deallocation operations, across lists of buffers of
different sizes, as well as memory read/write operations onto
these buffers. In the configuration of the benchmark that we
have used, each LP schedules for itself memory-deallocation
events that, once processed, lead the LP to deallocate some
buffer belonging to its state. On the other hand, when de-
allocating the buffer, a memory-allocation event is scheduled

for some other LP in the system. The concept underlying this
implementation/configuration of PHOLD is to have a stable
value of the global amount of memory used to represent
the state of the whole simulation model, by also having
continuous variations of the amount of memory used for the
local states of individual LPs. Also, scheduled simulation
events tend to be clustered (along simulation time) across
LPs exhibiting higher memory usage for their states. This is
useful in our tests given that we may have short-lived exe-
cution phases where a few worker-threads may have a few
events to process, which possibly increases the likelihood for
these threads to compete for the access to critical sections (if
any) used to support specific housekeeping operations, such
as GVT computation (which is especially true when fixing
the size of the simulation model, and running with larger
numbers of worker-threads). This is therefore a good test
case for evaluating wait-free implementations of Time Warp-
suited housekeeping algorithms like the GVT algorithm we
are presenting.

C. Results
We have compared the run-time behavior of our wait-free

GVT algorithm (which we refer to as WF in the plots) with
the one of the algorithm by Fujimoto and Hybinette (referred
to as FH). The latter has been integrated within ROOT-Sim
as an alternative to WF.

We have fixed the size of the used PHOLD model to 32
LPs (with a total amount of live memory for the correspond-
ing states of the order of 1 GB — about 32 MB per-LP
on the average), with read (resp. write) operations touching
20% (resp. 10%) of the current LP state size, and we have
performed experiments in two different configurations.

In the first configuration, the computing platform has been
reserved for the simulation runs, and we have varied the
number of worker-threads used for running the PHOLD
benchmark between 2 and the maximum number of available
hardware-cores, namely 32. We recall that, having the size
of the PHOLD model been fixed to 32 LPs, variation of
the number of worker-threads towards the maximum value
of 32 leads to scenarios with increased parallelism. There-
fore we get an increased likelihood of the aforementioned
phenomenon where, for short-lived phases, some worker-
thread may not have simulation work to be performed (being
the scheduled events temporarily clustered to occur on LPs
hosted by other worker-threads, just depending on how the
size of the memory used to keep the LPs’ states varies
over time in relation to deallocation/allocation operations
occurring upon processing the events). For this experiment,
we fixed the timeout for triggering a new GVT computation
to 1 sec (this value looks reasonable for allowing prompt



recovery of memory, while not making GVT computation
a predominant housekeeping task), and we measured the
wall-clock-time required to complete the run of the PHOLD
model in the selected configuration. The reported values re-
fer to the average wall-clock-time observed over 10 different
runs, all done with different pseudo-random seeds. However,
the same seed has been used for the corresponding runs with
the two different GVT algorithms so as to allow the same
trajectory for the evolution of the simulation model when
taking each individual wall-clock-time sample for the two
algorithms. For FH, we also report the number of spin-lock
tries per Wall-Clock-Time (WCT) unit experienced by the
worker-threads while attempting to enter the critical section
proper of this GVT algorithm. This parameter provides
an indication on how the worker-threads tend to compete
in the access to GVT-support structures of FH, in mutual
exclusion. The outcoming results are shown in Figure 3,
and we observe that, while increasing the number of worker-
threads, WF allows for reducing the wall-clock-time required
to complete the run up to 50% when compared to FH, a
phenomenon which is strictly related to the higher overhead
paid by FH in terms of CPU-time requested for running tasks
related to GVT computation. In fact, as shown by the data
on the bottom of Figure 3, as soon as the degree of paral-
lelism increases (and the aforementioned short-lived phases
with no simulation event to be processed at some worker-
thread materialize), the likelihood of concurrent execution
of the worker-threads in housekeeping mode increases, with
consequent increase of the incidence of the critical-section
access delay when running the FH algorithm. This is avoided
by WF due to its wait-free nature.

We have also measured the execution time required to
run the same identical PHOLD model (same code) in a
serial fashion, by relying on a calendar-queue scheduler for
storing the events and selecting the next-to-be processed one.
It was on the order of 62 secs, which leads to the observation
that the parallel runs provide speedup while increasing the
number of worker-threads (up to about 10, which is achieved
when running with 24 worker-threads and WF as the GVT
algorithm). Hence, the presented results refer to the case of
competitive parallel executions, which further strengthen the
relevance of the improvements provided by our algorithm.

On the other hand, we note that wall-clock-time does not
scale down when running with more than 24 worker-threads,
which is due to two main reasons. One is that rollbacks tend
to increase while increasing the level of parallelism, thus
increasing the likelihood of performing non-useful work.
Second, the aforementioned short-lived phases with no event
to be processed at some worker-thread (which especially
materialize when increasing the number of worker-threads)
prevent fully exploiting the computing power offered by the
underlying platform. However, by the data we see much
higher resilience of the WF algorithm towards performance
degradation phenomena caused by these “over-parallelism”
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Figure 3. Results with the computing platform reserved for the simulation
runs.

 0

 5

 10

 15

 20

 25

 30

 35

8 12 16 20 24

O
ve

ra
ll 

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Number of Busy (with external workload) CPUs

WF FH

Figure 4. Results with interfering workload.

scenarios.
In the second configuration, we ran the same PHOLD

model by fixing the number of worker-threads to 24 (which
was the best parallelism level observed in the previous
configuration). However, we injected external workload on
the computing platform, which is made up by CPU-bound
processes simply executing a busy loop. The number of
such processes has been varied between 8 and 24. In this
scenario, we have that ROOT-Sim worker-threads compete
for CPU usage with the external workload (at least when
the number of interfering CPU-bound processes oversteps



the value 8), a phenomenon which can give rise to delays
in the completion of the critical section employed by FH in
case the worker-thread running the critical section is context-
switched off the CPU, and to consequent delays in the access
to the same critical section by the other worker-threads. This
experiment is therefore intended as a means to assess the
resilience of WF (vs FH) to performance degradation in
case of interference by external workload on the execution
of the simulation application. By the data shown in Figure 4,
we see that FH rapidly leads to performance degradation as
soon as the number of interfering processes tends to increase.
This phenomenon is noted also for WF. However, with this
algorithm, the performance degradation is mainly expected
to be generated by the reduced computing power exploited
by the Time Warp system and by secondary costs, such as
(a) those related to cache invalidation and refill in case of
context-switch between a ROOT-Sim worker-thread and an
interfering process, and (b) those related to the increase of
rollback due to more skewed advancement in logical time
of the different worker-threads in case of interference. In
any case, WF still provides 30%-50% reduction of the wall-
clock-time to complete the simulation run when compared
to FH, a gain which is noted as soon as minimal interference
by the external workload occurs.

V. CONCLUSIONS

In this article we have presented a wait-free GVT algo-
rithm suited for shared memory “observable” Time Warp
systems. We have also reported the results of an experi-
mental study comparing the run-time behavior of our wait-
free proposal with the state of the art GVT algorithm for
shared memory Time Warp platforms, namely the one by
Fujimoto and Hybinette [1]. By the experimental analysis
we have observed a reduction of the overhead due to GVT
computation by our wait-free proposal, and increased re-
silience to performance degradation when running with over-
parallelism levels and/or with external workload interfering
with the Time Warp simulation platform on the usage of
hardware resources.
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