
Transparent Multi-Core Speculative Parallelization of DES
Models with Event and Cross-State Dependencies

Alessandro Pellegrini
pellegrini@dis.uniroma1.it

Francesco Quaglia
quaglia@dis.uniroma1.it

DIAG – Sapienza, University of Rome
Via Ariosto 25, 00185 Rome, Italy

ABSTRACT
In this article we tackle transparent parallelization of Dis-
crete Event Simulation (DES) models to be run on top of
multi-core machines according to speculative schemes. The
innovation in our proposal lies in that we consider a more
general programming and execution model, compared to the
one targeted by state of the art PDES platforms, where the
boundaries of the state portion accessible while processing
an event at a specific simulation object do not limit access to
the actual object state, or to shared global variables. Rather,
the simulation object is allowed to access (and alter) the
state of any other object, thus causing what we term cross-
state dependency. We note that this model exactly com-
plies with typical (easy to manage) sequential-style DES pro-
gramming, where a (dynamically-allocated) state portion of
object A can be accessed by object B in either read or write
mode (or both) by, e.g., passing a pointer toB as the payload
of a scheduled simulation event. However, while read/write
memory accesses performed in the sequential run are always
guaranteed to observe (and to give rise to) a consistent snap-
shot of the state of the simulation model, consistency is not
automatically guaranteed in case of parallelization and con-
current execution of the simulation objects with cross-state
dependencies. We cope with such a consistency issue, and
its application-transparent support, in the context of par-
allel and optimistic executions. This is achieved by intro-
ducing an advanced memory management architecture, able
to efficiently detect read/write accesses by concurrent ob-
jects to whichever object state in an application transpar-
ent manner, together with advanced synchronization mech-
anisms providing the advantage of exploiting parallelism in
the underlying multi-core architecture while transparently
handling both cross-state and traditional event-based depen-
dencies. Our proposal targets Linux and has been integrated
with the ROOT-Sim open source optimistic simulation plat-
form, although its design principles, and most parts of the
developed software, are of general relevance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS’14, May 18–21, 2014, Denver, CO, USA.
Copyright 2014 ACM 978-1-4503-2794-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2601381.2601398.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete Event, Parallel

Keywords
PDES; Parallelism Transparency; Speculative Processing

1. INTRODUCTION
Traditionally, Parallel Discrete Event Simulation (PDES)

has been based on explicitly partitioning the entire simu-
lation model into distinct simulation objects (also referred
to as Logical Processes) [7] to be dispatched concurrently,
whose states are disjoint and whose memory access opera-
tions (upon event processing) are confined within the state
of the simulation object executing the event. This approach
implicitly requires the application programmers to shift from
a sequential programming model where the application is de-
signed and coded to run serially (namely to process one event
at a time) and to have the possibility to access any valid
memory location upon the execution of whichever event. In
other words, parallelism is achieved by a-priori, namely at
code design/development time, forcing separation of the ac-
cesses to slices of the simulation model state, each one rep-
resenting an individual object.

Undoubtedly, such a classical PDES approach has been
the only way to parallelism at the time when (massively)
parallel architectures were mostly based on clusters of (single-
core) machines. On the other hand, the advent (and the
large diffusion) of shared-memory parallel machines, such
as multi-core and SMP machines, offered the technical pos-
sibility to directly share state information across different
objects, e.g., by relying on a unique address space and/or
operating system supported shared memory. However, the
synchronization approaches provided by the PDES litera-
ture, and the actual simulation platforms relying on them,
definitely need to be adapted in order to support correct
concurrent execution of simulation objects while jointly al-
lowing the possibility to directly share data and masking
synchronization (and hence actual parallelization) to the ap-
plication programmer. We note that the final target along
the path of supporting shared data across different simula-
tion objects actually translated into enabling a sequential-
style programming approach (augmented with the concept
of “object”, which allows for improving expressiveness while
coding complex simulation models), characterized by full ac-
cess capabilities to any valid memory location (logically be-
longing to the state of any involved object) upon executing
whichever event, in either read or write mode.

One proposal along this direction has been recently pro-
vided in [19] for the case of simulation code based on the C
programming language, where direct sharing of information
across the simulation objects has been supported for the case
of global variables included within the simulation program.
This approach has been based on multi-versioning plus code
instrumentation (for accessing multi-version chains) as the
means to achieve programmer transparent concurrent ac-
cesses to global variables jointly to optimistic synchroniza-
tion [12]. However, sharing based exclusively on global vari-
ables limits the actual possibility to share data in size, given
that the storage for global variables is statically defined
at compile time. Also, it still constraints the program-
mer, who is not allowed to directly access arbitrary slices of
(dynamically-allocated) memory destined to keep portions
of the simulation model (e.g. by having them logically rep-
resenting the state of a generic simulation object).
In this article we exactly tackle the above problem, namely

how to support direct access by concurrent simulation ob-
jects to memory locations that are dynamically allocated by
any simulation object, and logically included within its local
state via, e.g., pointer based referencing. The same pointers
can be used as payloads of events so that the recipient simu-
lation object can use them to directly access the local state
of a different object, in either read or write mode. This
breaks disjointness in memory access at the programming
level, hence enabling the support for sequential-style DES
programming (where any valid memory location keeping a
portion of the state of whichever object, is accessible while
processing any simulation event), and creates a new kind
of dependency that we term cross-state dependency, which
stands as complementary with respect to the classical event
dependency proper of PDES. On the other hand, guaran-
teeing correct (e.g. causally consistent) execution of simula-
tion events in the presence of cross-state dependency across
concurrent simulation objects requires proper application-
transparent synchronization mechanisms to be put in place,
which we provide in this article.
Overall, the contributions by this article can be summa-

rized as follows:

1) We present the design and implementation of an in-
novative memory management architecture, oriented
to Linux systems, which allows to detect the materi-
alization of cross-state dependencies across simulation
objects that are run concurrently, in an application-
transparent manner. The architecture requires a min-
imal patch to the Linux kernel, given that it is almost
exclusively based on an external loadable module.

2) We present a synchronization scheme, entailing specu-
lative processing, which takes into account both event
and cross-state dependencies and allows the parallel
run to mimic a classical sequential one where the sim-
ulation events are processed in non-decreasing times-
tamp order, while jointly being allowed to access any
valid memory location belonging to the state of the
simulation model (namely any memory location logi-
cally belonging to the state of some object). On the
other hand, our scheme, which we name ECS (Event
and Cross-State synchronization), allows running sim-
ulation events destined to different simulation objects
concurrently (again transparently to the programmer).

All the presented software modules and algorithms have
been integrated within the ROOT-Sim open source simula-

tion package [10] and are available for download1. Further,
experimental data for an assessment of the whole ECS ar-
chitecture are provided.

The remainder of this article is organized as follows. In
Section 2, we discuss literature results related to our pro-
posal. The innovative memory management architecture
transparently tracking cross-state dependencies and the ac-
tual ECS synchronization protocol are presented in Section
3. The results of the experimental study are provided in
Section 4.

2. RELATED WORK
The issue of bypassing state disjointness for concurrent

objects in PDES systems has been dealt with by several
studies. The work in [2] discusses how state sharing might
be emulated by using a separate simulation object hosting
the shared data and acting as a centralized server. This
proposal also introduces the notion of version records, where
multi-versioning is used for shared data in order to cope with
read/write operations occurring at different logical times,
and to avoid unneeded rollbacks of the centralized server
in case of optimistic synchronization. This is an approach
similar to the one proposed in [17], where a theoretical pre-
sentation of algorithms to implement a Distributed Shared
Memory mechanism is provided in terms of protocols to keep
replicated instances of a variable coherent. In particular,
one of the provided algorithms proposes to implement vari-
ables as multi-version lists where write operations install
new version nodes and read operations find the most suit-
able version. The above approaches are different from what
we propose given that read/write access to shared variables
is mapped to message-passing (namely, event schedule oper-
ations), while we support a truly sequential-style access to
any (by default sharable) buffer within the simulation ob-
ject states, e.g., via pointers. Also, in our proposal sharing
is not limited to a particular memory slice (such as the state
image of the centralized server), while we allow access, and
hence sharing, of any memory buffer representing a portion
of the whole simulation model state. Also, by design the
above approaches are strongly oriented to distributed sim-
ulation environments, while we target the trend of shared-
memory/multi-core machines.

In another proposal [6] the notion of state query is intro-
duced. A simulation object needing a portion of the state
which belongs to a different object can issue a query mes-
sage to it, and wait for a reply containing the suitable value.
In case this value is later detected to be no longer valid, an
anti-message is sent so as to invalidate the query. Again, this
approach relies on message passing, and is not transparent
to the application programmer.

The work in [9] proposes to integrate the support for
shared state in terms of global variables, by basing the ar-
chitecture on [3]. Although this proposal supports in-place
read/write operations as we do (i.e., simulation objects di-
rectly access the only copy of the data, avoiding a commit
phase at the end of the execution of an event), it provides
no transparency, as the application-level code must explic-
itly register a simulation object as a reader/writer on shared
variables. Our proposal avoids this limitation by also allow-
ing the sharing of dynamically-allocated buffers, for which
pre-declaration of the potential need to access cannot be
raised at startup (hence intrinsically leading actual access

1
http://svn.dis.uniroma1.it/svn/hpdcs/root_sim/trunk

to be determined as a function of the specific execution tra-
jectory while running the application). The issue of trans-
parency has been tackled in [19], where shared data are
allowed to be accessed by concurrent objects without the
need for pre-declaring the intention to access. This has been
achieved via user transparent software instrumentation, in
combination with a multi-version scheme, either allowing the
redirection of read operations to the correct version of the
data (on the basis of the timestamp) or forcing rollbacks of
causally inconsistent reads. However, this solutions is lim-
ited to the management of global variables, while our pro-
posal is suited for allowing data sharing across dynamically
allocated memory chunks logically incorporated within the
state of each individual simulation object, while providing
parallelism and synchronization transparency.
In the context of the High-Level-Architecture (HLA), pro-

posals for supporting shared-state can be found in [8, 15].
They are again targeted at distributed environments, since
they are based on a middleware component which relies
on a timestamp-ordering approach for implementing a re-
quest/reply protocol. Additionally, these approaches are
targeted at the conservative synchronization protocol, where
there is no need to detect and handle causality violations,
while we target optimistic synchronization.
The work in [4] proposes a framework targeted at multi-

core machines and based on Time Warp, where so called
Extended Logical Processes (Ex-LP), defined as a collection
of LPs, have public attributes that are associated with vari-
ables which can be accessed by LPs in other Ex-LPs. The
work proposes to handle shared attributes accesses by rely-
ing on a specifically targeted Transactional Memory (TM)
implementation, where events are mapped to transactions
and the actual implementation of the TM is based on [9].
One core difference between our proposal and the one in [4] is
that the latter requires a-priori knowledge of the attributes
to be shared, which need therefore to be a-priori mapped
to TM managed memory locations. Rather, our proposal
allows for sharing any memory area, without the need for
a-priori knowledge of whether some sharing on a specific
area can occur. This increases the level of transparency,
again allowing a truly sequential-style programming model
to be exposed to the programmer. In fact, she is allowed
to let any simulation object that takes control touch any
valid memory location within the global simulation state
without the need for any particular care, just like it occurs
in sequential-style programming and related sequential ex-
ecution scenarios. Overall, we “transactify” the access to
memory chunks across different concurrent objects without
the need for marking data portions subject to transactional
management by the programmer.

3. EVENT AND CROSS-STATE SYNCHRO-
NIZATION

3.1 Cross-State Dependency Tracking
In this section we present the memory management archi-

tecture we have designed and developed in order to support
cross-state dependency, and to actually track the material-
ization of such type of dependency across simulation objects
that are run concurrently. Let us stress again that our ar-
chitecture supports cross-state dependency in a fully trans-
parent manner with respect to the application level software.
As an additional preliminary note, in our design we targeted

DirectoryPML4 Directory Ptr Table O�set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

Figure 1: The paging scheme in x86 64 processors.

PDES platforms relying on the multi-threading paradigm.
These have been shown to provide a set of benefits and
to support optimized resource usage policies (see, e.g., [4,
11, 27, 26]) when compared to the traditional counterpart
where parallelization is achieved by running a set of single-
threaded processes within the simulation platform. Overall,
we designed a memory management architecture allowing
not to loose the benefits from multi-threading.

On the basis of the above considerations, we target the
scenario where multiple threads can take care of dispatching
whichever simulation object for execution (although we will
still rely on temporary-binding schemes between objects and
worker threads in order to cope with, e.g., locality and other
performance-related aspects), which takes place by simply
calling an event-handler function, with proper input param-
eters, along that thread. Also, we target the C programming
language, so that the event-handler function taking control
at the application level is an ANSI-C function. As typical for
DES-style coding rules, this function has a set of input pa-
rameters which includes the state base pointer, namely the
memory address of the data structure starting from which
the object is allowed to access any other dynamically allo-
cated buffer belonging to its state via pointers.

In our architecture, virtual memory is destined for usage
to any simulation object according to stocks. More in de-
tail, when the object requests new memory buffers (which
we support via the traditional malloc service, redirected to a
proper memory allocator), the memory management archi-
tecture reserves an interval of page-aligned virtual memory
addresses, namely the stock, which is achieved via the stan-
dard mmap POSIX API. We note that any page in the stock
is an empty-zero page, thus being not really allocated in
memory until the first read/write access to it is performed.
This is the standard management performed by POSIX (e.g
Linux) systems.

To understand how we use the stock for supporting cross-
state dependency tracking, let us consider the actual paging
scheme offered by x86 64 architectures. As shown in Figure
1, any 64-bit logical address has only 48 valid bits, which are
used as access keys for a 4-level paging scheme, ultimately
supporting pages of 4KB in size. The top level page ta-
ble is called PML4 (or also PGD—Page General Directory)
and keeps 512 entries. All the other page tables, operating
at lower levels, also have 512 entries each. In our design,
the stock of virtual memory pages destined for allocation of
memory buffers for a given simulation object corresponds to
the set of contiguous virtual-pages whose virtual-to-physical
memory translation is associated with a single entry of the

PML4

PDP
simulation object x

simulation object y

constant time access map

updated via the SET_VM_RANGE

ioctl command

O-th PDPTE

1-st PDPTE

Figure 2: Example of association between stocks of
virtual memory pages and simulation objects.

second-level page table, which is called PDP—Page Direc-
tory Pointer (its entries are therefore referred to as PDPTE).
Note that a single stock corresponds to 5122 pages, for a to-
tal of 1GB of virtual memory. Hence, a single stock allows
managing an object-state requesting up to 1GB of (dynamic)
memory. On the other hand, reserving multiple stocks for
a same simulation object will lead to manage object states
reaching multiple gigabytes in size.
We have created a special device file (whose driver is

loaded into the Linux kernel via an external module) which
can be handled via proper ioctl commands, whose logic
we have implemented within the driver. The SET_VM_RANGE
command allows the special device to register the stocks
to be reserved, and their association to the simulation ob-
jects (which are distinguished via classical unique numerical
identifiers, as in typical PDES-platform implementations).
When this command is issued, the state of the device file
changes so that the driver sets up a kernel-level map (acces-
sible in constant time) where for each reserved stock, which
is logically related to one entry of a PDP page-table, the
identifier of the simulation object destined to use that stock
is recorded. In Figure 2 we show an example where a given
PDP table has its 0-th entry, and hence the corresponding
stock of virtual memory pages, reserved for object x, and its
1-st entry reserved for object y.
By this kind of organization, if simulation object x ac-

cesses any virtual address included in the stock reserved for
object y, we know that such a memory access (which can
be either in read or write mode in our execution model) is
occurring outside the boundaries of its local state, and is ac-
tually involving the state of another object. Therefore, we
are experiencing a cross-state dependency. We recall again
that this may occur, e.g, if object y scheduled a simulation
event destined to object x, carrying as payload the pointer
to some memory buffer belonging to the state of y, just to
indicate to x where to take (and possibly update) the infor-
mation requested for processing the event.
The core problem to cope with in order to exploit the

stocks as the means to capture whether the generic sim-
ulation object x (currently dispatched for execution along
any worker tread WTi within the PDES platform) is mate-
rializing a cross-state dependency is related to how to de-
termine that event processing gives rise to a memory refer-
ence falling outside the boundaries of the stocks currently
reserved for object x. We note that classical memory pro-
tection mechanisms supported by the operating system (and
related segmentation-fault handling schemes) are not suited
for our purposes. Particularly, given that we are targeting
multi-threaded PDES platforms, we cannot simply a-priori

PML4

PDP
simulation object x

O-th PDPTE

Sibling PML4

Sibling PDP

NULLCR3 register

access to

simulation object x

opened upon

issuing the command

SCHEDULE_ON_PGD

Figure 3: Example scenario where the memory stock
associated with simulation object x is opened for
access onto a sibling PDP page table.

protect the accesses to stocks that are reserved for simulation
objects other than x upon dispatching x along any worker
thread WTi. This is because these simulation objects might
be requested to run concurrently with respect to x along
other worker threads, which all share the same page table
and experience the same protection rule as WTi. Overall,
closing to WTi the access to the stocks not reserved for sim-
ulation object x upon dispatching it (e.g. via the mprotect
POSIX API) would lead to a change of the state of the page
table where any other thread would not be allowed to access
those stocks. This would clearly hamper concurrency, also
leading to unneeded memory faults (by threads running ob-
jects other than x) in contexts where the object x does not
require any access to “remote” stocks while processing the
event. On the other hand, addressing the above problem via
(user transparent) code instrumentation would require to in-
strument not only memory write instructions (as typically
done when supporting transparent incremental checkpoint-
ing in optimistic PDES platforms [28, 20]), but also all the
memory reads, which would lead to overhead to be paid even
in case no cross-state dependency, although admissible, will
ever materialize (a scenario leading the tracking of mem-
ory read operations un-useful on the side of synchronization
tasks related to cross-sate dependencies).

In order to cope with the above depicted core issue, we
have devised a memory management architecture where any
worker thread WTi is associated with a sibling PML4 page
table, whose entries point to sibling PDP page tables. The
sibling page tables (both PML4 and PDP) destined for us-
age by a worker thread can be instantiated by relying on the
GET_PGD command included in the special device file driver,
which returns a descriptor for subsequent operations. By
default, the entries of the sibling PDP page tables, which
are associated with the stocks that have been destined for
usage by the simulation objects, are all set to NULL. This
means that they do not allow to reach the lower level page
tables, hence not allowing access to any already allocated
stock (therefore, any attempt to access the stocks will lead
to a memory fault). On the other hand, when WTi dis-
patches simulation object x for event execution, the entries
of the PDP sibling tables that correspond to the virtual
memory stocks destined for usage by x are “opened” to cor-
rectly allow the retrieval of the lower level page tables that
contain the actual mapping of virtual-to-physical memory

(or indications about whether the pages are not present,
e.g., they are swapped-out pages). This is done by copying
the corresponding entries of the original PDP tables onto the
destination entries within the sibling PDP page tables (see
Figure 3 for an example scenario where the stock associated
with simulation object x is again related to the 0-th entry of
a given PDP page table). In our architecture, this operation
can be executed via the additional SCHEDULE_ON_PGD com-
mand we have included within the special device file driver,
which can be issued via the ioctl interface. In other words,
via this command, the worker thread is allowed to switch to
what we refer to as simulation-object mode, where the only
accessible stock is the one associated with the dispatched ob-
ject (say x in the example discussion), while the other stocks
are no way accessible (given that their corresponding entries
into the sibling PDP page tables are still set to NULL). As
schematized in Figure 3, in our implementation this opera-
tion also leads to a change of the CR3 register (namely, the
page table pointer register in x86 64 processors), thus al-
lowing to switch to the sibling PML4 for virtual-to-physical
address resolution purposes.
Having different sibling PML4 tables, associated with the

different concurrent worker threads, leads to the possibility
to concurrently dispatch and execute different simulation ob-
jets (this is done by having each worker thread opening the
access to the stocks associated with the object it is currently
dispatching) while still having the possibility to determine
whether any of the dispatched objects is confining its mem-
ory references within its own stocks. The assumption un-
derlying this type of organization is that, when there is the
need for opening access to a given stock, the corresponding
memory management information is already present in the
corresponding PDP entry of the original page tables. This
is not guaranteed by simply validating virtual memory ad-
dresses via mmap, which leaves memory into the empty-zero
state. To overcome this problem, our architecture entails a
stock allocation policy that beyond calling mmap, also explic-
itly writes a null byte into one single virtual page of the stock
(the initial one). In this way, the Linux kernel traps the ac-
cess to empty-zero memory and allocates the whole chain
of page tables for managing the pages within the stock (al-
though a single one of these pages is really allocated), which
guarantees the existence of the PDP entry associated with
the stock, to be filled into the corresponding sibling PDP
entry upon dispatching the object owning the stock.
Two additional points need to be discussed. First, having

all the stocks closed for access by the worker thread, except
the one(s) related to the dispatched object, leads (as noted
before) to memory faults in case of a memory access to stocks
other than open one(s), namely in case of materialization of
a cross-state dependency across concurrent simulation ob-
jects. However, these faults cannot be tracked (and handled)
via classical segmentation-fault handling given that the “re-
mote” stocks have already been validated via mmap, and the
Linux kernel would simply lead the fault to reallocate the
whole chain of page table entries for mapping the accessed
virtual page in memory. This would lead the whole system to
a state where for the same virtual page we would have mul-
tiple chains of page table entries representing its state (e.g.
the frame used for mapping the page, which might be differ-
ent along the multiple chains of page table entries) which is a
discrepancy not directly hand-able by the Linux kernel (ex-
cept if using invasive patches). To avoid this scenario, upon
installing the driver for the special device file, via loading

p
platform mode

(CR3 points to the

original PML4)

simulation-object

mode (CR3 points to

the sibling PML4)

SCHEDULE_ON_PGD

UNSCHEDULE_ON_PGD

faulting access to

a remote stock

Figure 4: The state diagram for switch operations
between original and sibling PML4 page tables.

the external module, we change the IDT table (directly ac-
cessible via the IDT register) in order to make the pointer
to the page-fault handler point to an ECS-proper handler
(rather than the original do_page_fault kernel function).
In case the fault is not related to accesses to remote stocks
within the sibling paging scheme, then the original handler
is invoked. Otherwise, the ECS-handler pushes control back
to user mode in order to let the PDES platform to actuate
ECS synchronization policies, exactly aimed at coping with
cross-state dependencies.

Upon a memory-fault occurring on sibling PDP entries,
due to cross-state dependency materialization, the faulting
thread is put back into what we call platform mode, which
implies that it is switched back onto the original PML4.
This is done in order for this thread to operate any memory
access required to reconcile the execution of the concurrent
objects according to ECS synchronization. This aspect will
be treated in detail in the next section. On the other hand,
in case event processing at the currently dispatched object
ends, the worker thread can switch back to platform mode
on demand (hence gaining access to any memory location
or data structure supporting the parallel execution) by us-
ing the UNSCHEDULE_ON_PGD command that we have imple-
mented within the driver, which can be triggered by again
exploiting the ioctl POSIX API. In Figure 4 we show the
state diagram where the events causing the switch between
simulation-object and platform modes are depicted.

Second, our architecture needs anyway to co-exist with
the kernel scheduler, which poses issues on the side of man-
aging the sibling PML4. Particularly, all the threads within
a same Linux process share the same memory management
information (the so called memory context), including the
pointer to the original page table. This pointer is used by
the kernel scheduler upon re-dispatching the thread after it
has been context-switched off the CPU. Particularly, this
pointer is reloaded into the page-table pointer register CR3
upon the occurrence of a context switch that gives control
to the thread. However, if the thread was executing in
simulation-object mode, CR3 would need to be filled with
the address of the sibling PML4 (rather than the original
page table). To achieve this, a minimal patch to Linux has
been adopted, which has been located right at the end of the
kernel schedule function. The patch simply checks whether
the value of a special function-pointer we inserted into the
kernel is not null, in which case the function-pointer is in-
voked, which gives control to a proper CR3 manager imple-
mented within our external module. This manager checks
whether the thread is running into simulation-object mode
(which can be done by checking per thread meta-data that
were setup via the SCHEDULE_ON_PGD command) and, in the
positive case, it loads the sibling PML4 pointer into the CR3

register (thus maintaining the simulation-object mode when
running the thread). Note that the aforementioned special
pointer is exported as a kernel symbol, and can be set to
a value different from NULL upon inserting the external
module. If this pointer is not set the Linux kernel behaves
as usual, by simply restoring the CR3 register according to
the standard rules when the thread is rescheduled after a
context switch.
Before ending the presentation of the memory manage-

ment architecture, let us discuss two aspects related to the
actual memory allocation support for the application code
and to safety of dual-mode execution (platform vs simulation-
object) in the presence of third party libraries. As for the
first aspect, we integrated the memory management archi-
tecture with the DyMeLoR open source allocator [25, 20],
explicitly targeting memory allocation needs in optimistic
PDES platforms. It intercepts dynamic memory calls by the
simulation object (e.g. malloc calls) and handles them by
managing (and delivering to the simulation object) mem-
ory chunks located into a pre-reserved memory segment.
DyMeLoR also keeps bitmaps to determine the currently
in use chunks and the dirty ones, which allows for taking
(incremental) snapshots and restoring past states of the sim-
ulation object (while allowing dynamic memory to be used
by the object). Integration of DyMeLoR with the currently
presented architecture has been straightforward given that,
rather than relying on actual malloc implementations for
pre-reserving the segment destined to allocate the chunks
for a given simulation object, in the integrated architec-
ture we let DyMeLoR rely on the stock allocator. Hence,
the virtual memory segment managed by DyMeLoR boils
down to the stock of virtual memory pages supported in
the presented architecture. We note that identifying dirty
chunks in DyMeLoR relies on compile/link time instrumen-
tation of memory write instructions within the application
level code. The outcoming memory access-tracking scheme
is completely different from the support we are offering for
cross-state dependency tracking, which is able to intercept
read access (not only write access) to whichever application
destined memory area without the need for instrumenting
all the read operations.
As for the second aspect raised above, DyMeLoR is shipped

with wrappers for ANSI-C stateless libraries, so that any
memory allocation by these libraries (such as strdup) is
still handled by DyMeLoR according to the above depicted
scheme. Also, the third-party library interfaces are redi-
rected to an actual logic which is statically linked to the
application code, hence not requiring intervention by the
dynamic linker. This automatically avoids page table up-
dates while running in simulation-object mode which would
otherwise be caused on sibling page tables by memory map-
ping actions by the dynamic linker (in case the shared li-
braries were invoked by the application code while running
in simulation-object mode). The only limitation in terms of
library usage by the application code is that the whole archi-
tecture does not yet support stateful libraries (e.g. strtok)2,
whose data structures could be involved in read/write opera-
tions caused by library invocations by whichever concurrent

2One exception is clearly the malloc library, for which the
above described ad-hoc architecture has been put in place.
On the other hand, for stdio one can rely on, e.g., the I/O
management subsystem presented in [1], explicitly targeting
consistency of I/O operations in optimistic synchronization
transparently to the application code.

simulation object, thus possibly creating indirect cross-state
dependencies not catchable via the above described stock
management policies. Coping with the employment of state-
ful libraries will be the target of future work.

As an additional note, our approach requires reloading
the CR3 register anytime we switch between platform and
simulation-object mode. The penalty incurred consists in
flushing the TLB right upon loading a new value into CR3,
which is done automatically by the firmware logic of x86 64
processors (this is anyhow required in order to make the
access-rule of the target page table – original vs sibling –
visible after the switch, which cannot be achieved without
refilling the TLB). However, the data cache does not require
to be invalidated, hence we expect that the cost for TLB
renewal would look affordable as soon as a certain level of
locality is exhibited while running either in platform or in
simulation-object mode. As for this aspect, the reliance on
DyMeLoR would favor locality in simulation-object mode,
given that DyMeLoR implements policies aimed at maximiz-
ing virtual-memory contiguousness of the memory chunks
delivered for usage by the simulation object.

Finally, we note that the on-demand switch to simulation-
object mode or (back) to platform mode requires invoking
the ioctl system call. While the cost of system calls has
been traditionally considered an issue in high performance
computing, especially when dealing with fine grain tasks,
such costs are nowadays definitely reduced thanks to sysen-
ter and sysexit machine instructions, which are explicitly
designed for low-latency system calls, by relying on oper-
ating systems with a flat memory model and no segmen-
tation. These instructions have been optimized by reduc-
ing the number of checks and memory references that are
normally made so that a call or return has been shown to
take less than one-fourth the number of internal clock cy-
cles when compared to the traditional approach based on
the int instruction, which was explicitly based on segment-
gate retrieval and segmented-to-linear memory addressing
translation.

3.2 The Enhanced Synchronization Scheme
In this section we provide the core mechanisms under-

lying ECS synchronization. The main difference between
classical event-based synchronization and ECS lies in that
ECS-synchronization tasks not only aim at letting each sim-
ulation object process its events in non-decreasing times-
tamp order (in accordance with the reference correctness
criterion for PDES platforms only entailing event depen-
dencies). Rather, ECS synchronization also aims at allow-
ing any cross-state dependency materialized at simulation
time t to let the involved object (namely the one access-
ing remote stocks reserved for other objects) to observe the
state snapshot that would have been observed at simulation
time t in a sequential-run, where simulation events were pro-
cessed in globally non-decreasing timestamp order across all
the objects.

We base ECS synchronization on the following two inno-
vations:

A) the introduction of temporary object blocking phases,
which may even lead to temporary block the execution
of an already dispatched object (namely of an already
dispatched simulation event at that object);

B) the introduction of so called rendez-vous events, which
are kinds of system level simulation events not causing

updates on the destination object state, but only driv-
ing block and unblock actions for processing activities
at the objects. These will be exploited to temporar-
ily disable a simulation object to perform updates of
its state along the simulation-time axis, given that its
state snapshot is currently being involved in a cross-
state dependency.

We note that point A leads to an event processing model
where control (on any worker thread) can return to the plat-
form layer before an already started event-processing phase
actually ends. This takes place according to an interrupt-
driven scheme, different in nature from event-preemption
ones that have been put in place in optimistic PDES sys-
tems to squash the execution of events that are detected to
be causally inconsistent while still being processed, for ei-
ther performance or infinite-loop avoidance reasons [24, 18].
In fact, these proposals have been typically based on polling
(see, e.g., [24]) to be explicitly actuated by the event pro-
cessing code, which is used to periodically query the plat-
form layer to check whether no straggler event/antievent
was delivered. On the other hand, point B leads to bridge
PDES execution models with Transactional Memory mod-
els, particularly by having read/write operations across dif-
ferent stocks serialized according to the logical time for their
occurrence.
In our proposal, each simulation object x is associated

with a cross-state dependency set we refer to as CSDx,
which records the identifiers of all the simulation objects
towards which x has materialized a cross-state dependency
during the processing of an event. CSDx is initialized as
empty upon dispatching object x for the execution of any
new event, and gets possibly updated while processing the
event. ECS synchronization exploits the ad-hoc memory-
fault management architecture presented in the previous
section in order to detect that simulation object x is ac-
cessing a remote memory stock, say the stock associated
with object y, in either read or write mode, while process-
ing its next event, say ex. The identity of the object towards
which the cross-state dependency is being materialized (say
y in our example discussion) is also known, given that the
ECS memory-fault handler, which pushes the thread back
in platform mode, notifies such an identifier into the thread
user-mode stack. The memory fault occurrence gives rise to
the following algorithmic steps:

1. Execution of ex is temporarily blocked, hence object x
transits into a block state;

2. A rendez-vous unique identifier is generated and as-
signed to the event ex, which we refer to as rvid(ex).

3. A special rendez-vous event ervy is scheduled for object
y, marked with timestamp equal to the timestamp of
event ex, and with its identifier (formally ts(ervy) =
ts(ex) and rvid(ervy) = rvid(ex)). We note that rendez-
vous events are not generated by the application layer,
rather they are platform-generated events. Hence they
do not have any associated processing rule at the ap-
plication level.

Rendez-vous events are incorporated into the event list
of the destination object as if they were traditional events.
Given that we are targeting optimistic synchronization, this
means that a rendez-vous event may be a straggler event (in

case its timestamp is lower than the timestamp of some al-
ready processed event at the destination). They need there-
fore to be processed along the sequence of events of the desti-
nation, and the processing actions are platform-level actions
proper of ECS (given that, as hinted above, no application
level processing rule is – and needs to be – specified for
rendez-vous events).

When a simulation object y is dispatched for processing a
rendez-vous event ervy , ECS performs the following algorith-
mic steps:

1. Object y is put into a block state;

2. A special rendez-vous acknowledgment event ervax is
scheduled for object x, marked with no-timestamp but
with the same rendez-vous identifier of ervy (formally
rvid(ervax) = rvid(ervy)).

On the other hand, when the rendez-vous acknowledge-
ment event ervax is delivered to the recipient simulation ob-
ject x, ECS performs the following steps:

1. It inserts the identifier of the sender object, namely y,
into CSDx.

2. It puts the simulation object x back in the ready state
(so that it can be eventually re-dispatched along some
worker thread, thus resuming the execution of the orig-
inally interrupted event ex).

At this point we know that simulation object y is blocked
(thus not being currently allowed to process its events),
hence the snapshot of its state is available to simulation ob-
ject x for read/write operations, such as the operation that
originally gave rise to the ECS memory fault and to the
cross-state dependency being handled via the rendez-vous.
However, upon re-dispatching object x (which leads to re-
suming the processing of ex), the involved worker thread
cannot transit into simulation-object mode by only open-
ing the stock(s) associated with x into the sibling page ta-
bles. Rather, we also need to open access to the stock(s)
associated with object y. In our architectural support, this
can be still achieved via the SCHEDULE_ON_PGD command,
given that this command has been augmented with capa-
bilities to acquire a set of identifiers whose stocks need to
be opened within the sibling page tables when the worker
thread transits into simulation-object mode. Particularly,
upon re-dispatching object x, the SCHEDULE_ON_PGD com-
mand is issued with in input the set x ∪ CSDx, which for
our example discussion, contains the identifiers of both the
objects x and y.

The above algorithmic steps can be iterated in case cross-
state dependencies are materialized towards multiple simu-
lation objects while processing the event ex, which will lead
to the scenario where simulation object x can be resched-
uled multiple times (while being in the processing phase of
ex) with incrementally enlarged sets of open stocks. On the
other hand, once a remote memory stock (associated with a
distinct object) becomes open for access by object x during
the processing phase of event ex, any access to this stock by
x while processing this event will not cause any additional
ECS memory fault.

We only need to discuss how the finalization of the pro-
cessing phase of ex is handled. Essentially, we need to gener-
ate notifications that the stocks associated with simulation
objects towards which cross-state dependencies have been

materialized are no longer locked for access by object x.
Hence, the owner simulation objects can resume their nor-
mal processing activities (thus they can resume from the
block state). This is achieved via the following steps exe-
cuted right after the processing of event ex at object x:

1. An unblock-event eubk is sent towards any object k
whose identifier is logged within CSDx. These events
are marked again with no timestamp value, but with
the rendez-vous identifier of the event ex originating
the cross-state dependency. Then CSDx is reset as
empty.

2. Upon the delivery of eubk , the recipient simulation ob-
ject is simply put back as ready for being dispatched
(hence exiting the block state).

However, some additional mechanisms are required in or-
der for ECS to provide correctness and to also ensure progress
of the parallel run. These two aspects will be dealt with in
the following subsections.

3.2.1 Correctness
Given that ECS targets speculative processing, where ob-

ject blocking is never caused by native event dependencies,
rather by the need for executing memory read/write oper-
ations in multiple stocks as in-memory transactions, some
care must be taken when handling rollback phases. Partic-
ularly, when we process and event ex that gives rise to a
rendez-vous event ervy , we need to define rules for handling
the rollback phase of either object x or object y at a sim-
ulation time t′ < ts(ex) (or equivalently t′ < ts(ervy)). The
peculiarity of this scenario is related to that ex and ervy are
both causally related to each other. Particularly, if ex is
rolled back, then we need to rollback ervy given that object x
may have performed updates on the memory stocks destined
to keep the state of simulation object y while processing ex.
On the other hand, the processing outcome of ex is affected
by values possibly read by object x from the stocks destined
to y at time ts(ex). In case these values change due to a roll-
back of object y at a simulation time preceding ts(ervy), the
updated values should have been observed while processing
ex by object x.
In order to handle such mutual dependency, we devise the

following scheme. When the event ex is rolled back, we sim-
ply send an anti-event for the rendez-vous event ervy that was
scheduled while processing ex. Given that ervy was actually
incorporated into the event list of the destination object y,
the arrival of the anti-event gives rise to a classical annihila-
tion that possibly rolls back y to the latest processed event
with timestamp less than ts(ervy). This solves the problem
of rolling back object y due to the rollback of a rendez-vous
generating event ex on simulation object x.
On the other hand, in case the rollback is originated on

object y, and pushes this object to a simulation time less
than ts(ervy) (which leads to undo the execution of ervy),
the following actions are taken by ECS. A special rendez-
vous-restart event ervrx , marked with the original rendez-
vous identifier (namely rvid(ex)) is sent out towards object
x. This special event has the aim of annihilating the pro-
cessing of the original instance (while not removing it from
the input queue), which will lead to ultimately undo ervy via
an anti-event. Given that when processed after the rollback,
the event ex will give rise to a rendez-vous marked with a

different identifier (with respect to the rolled-back rendez-
vous instance), no mismatch will occur in any annihilation
phase for rendez-vous events associated with different incar-
nations of their generating event (which also avoids cycles
in the annihilation process).

Also, all the other types of events used in ECS, such as ac-
knowledgment and unblock events, are not actually incorpo-
rated into the event lists of the simulation objects, thus being
inherently ephemeral, and not requiring particular care in
the rollback scheme. Assuming FIFO communication across
the objects, these events can be simply discarded at the
recipient side if the rendez-vous associated with their cor-
responding identifier (e.g. rvid(ex) in case of the acknowl-
edgement event sent to x upon the rendez-vous) is no more
in place.

3.2.2 Progress
A bit more complex to deal with in ECS is the guarantee

of progress. Specifically, care must be taken to avoid dead-
locks and live-locks, and the domino-effect in the rollback
scheme. Let us first consider the dealock/live-lock issue. A
deadlock may arise in case of rendez-vous events cyclically
involving a set of simulation objects, where the rendez-vous
associated with the minimal timestamp along the cycle leads
the simulation object raising this rendez-vous to wait for
the rollback of a different object that is, in its turn, in the
block state due to a different rendez-vous it issued, which
needs to be completed. An example situation of this type
is shown in Figure 5, where object x issues at time t1 a
rendez-vous towards object z, which is waiting for object y
to reach time t3 for a rendez-vous between z and y. On the
other hand, object y is waiting for x to reach time t2 for
a rendez-vous with it. To avoid deadlock scenarios, we can
simply adopt the rule that, in case a rollback needs to be
executed by a simulation object x which is currently blocked
due to a rendez-vous it generated while processing and event
ex, this object is simply resumed from the block state by
also squashing the finalization of the rendez-vous (this will
lead to manage the rollback of the rendez-vous as explained
above, e.g., by issuing the anti-event for the already sent
out rendez-vous event). We note that this implies that the
current stack seen by the object also needs to be refilled
with correct information (since, upon resuming, its context
will no more be the processing context for the rendez-vous
generating event). We note that this is a problem similar
to the one of restoring the correct stack of the object upon
resuming the processing of a rendez-vous generating event
that lead it into the block state (so that the worker thread
currently executing this object passes control to a different
object, which needs to operate on a proper stack image). De-
tails on how we handled this issue in our implementation,
where the cross-state dependency tracking architecture and
ECS have been integrated into the ROOT-Sim open source
optimistic simulation platform, will be discussed in Section
4. We also note that annihilating the rendez-vous event via
the corresponding anti-event is safe even in case the destina-
tion object is currently blocked waiting for the finalization
of the rendez-vous. In fact, it can be simply resumed from
the block state (again with proper stack image manipula-
tion) and can be rolled back, thus possibly altering its state
image safely given that the image does no more need to be
locked for the access by a different object in a rendez-vous.

We note however that unblocking the object generating a
rendez-vous so as to prevent deadlock in case a rollback is

object x

object y

object z

t1

t2

t3

issued rendez-vous with

source objects blocked

waiting for acks

deadlock generator

rendez-vous

Figure 5: Example scenario with deadlock origi-
nated by a rendez-vous generating event at time t1
processed by simulation object x.

object x

object y

ex

straggler

log

1) rollback (requires coasting-forward up to ts(ex)

log

2) Snapshot reconstruction for rendez-vous

requires coasting-forward up to ts(ex)

3) Snapshot reconstruction

for rendez-vous requires

coasting-forward from an

older log

ey

Figure 6: Example scenario with domino-effect due
to a rollback originated on simulation object x.

required may, in its turn lead to live-lock. Specifically, live-
lock may in principle arise in case of simultaneous events
materializing circular cross-state dependencies across mul-
tiple simulation objects. Each object x along the circle,
executing an event ex at simulation time ts(ex), is hit by
another object due to a cross-state memory faulting access
at the same simulation time, which may lead to request the
rollback of the events generating the rendez-vous circularly.
This is known to possibly lead the rollback circle to reap-
pear indefinitely [14]. To overcome this problem, we need a
priority management scheme for simultaneous events, that
needs to be reflected also on the management of rendez-vous
events. Particularly, if we have two events ex and ey such
that ts(ex) = ts(ey), and we have a priority scheme telling
that ex → ey (namely, ey is identified as causally depen-
dent on ex), then we need to enforce that any rendez-vous
event ervy generated by ex is also causally related to ey ac-
cording to ervy → ey. This way, the rendez-vous occurrences
that are caused by events having the same timestmap are
anyway sequentialized according to the priority scheme. We
note however, that the guarantee of progress in (optimistic)
PDES systems in the presence of simultaneous events is a
more general problem, with respect to what we might expe-
rience in ECS, and has been extensively studied in literature
[13]. Hence different literature solutions for tie-breaking si-
multaneous events (see, e.g., [16]) can be exploited for inte-
gration with ECS according to the scheme suggested above.
The final issue to cope with is the domino-effect in the

rollback scheme. Particularly, by the ample literature on
log/restore in optimistic PDES systems (see, e.g., [21, 22,
23]), we know that sparse state saving, which avoids log-
ging the simulation object state after the processing of each
event, allows for optimizing the performance tradeoff be-
tween logging cost and restore cost. However, state restore

at time t requires the simulation object to be rolled back
to the latest state log with time less than or equal to t,
and then to fictitiously reprocess intermediate events up to
t in a silent mode (namely with no interactions with other
objects), which is also known to as coasting-forward. In
ECS this is no longer possible since a coasting-forward event
might be a rendez-vous generating event. Hence, in order for
this to be re-processed, the simulation object originally hit
by the rendez-vous also needs to rollback at the time of the
rendez-vous, so as to provide its state snapshot for correct
access by the object performing coasting-forward. It is easy
to show that this may lead the originally rolling-back object
to rollback further back along simulation time, according to
the domino-effect. An example is shown in Figure 6, where
in order to execute the coasting-forward involving event ex
at object x, we need to reconstruct the snapshot of object y
at time ts(ex), But this leads to the need for processing ey in
a coasting-forward, which in turn leads x to restore its state
to a time less than ts(ey). To avoid the need for executing
coasting-forwards leading to rollback interactions with other
objects (thus avoiding the domino-effect), our approach is
based on complementing the selected sparse state saving al-
gorithm by forcing the log of the state of a simulation object
right after the processing of a rendez-vous generating event.
This will lead to the scenario where no rendez-vous gener-
ating event will ever be included in the sequence of events
between to subsequent logs of the same simulation objects.
Hence no rendez-vous generating event will need to be re-
processed in any coasting-forward phase. On the other hand,
a rendez-vous generated event also needs to be excluded by
any coasting-forward, since for these events the rendez-vous
source object may have performed updates into the state of
the target object. To avoid a rendez-vous generated event
to be included in any coasting-forward phase, we can again
force a state log of the involved object right after the event
is processed.

4. EXPERIMENTAL STUDY

4.1 Test-bed Platform
We integrated ECS within the open source ROOT-Sim

package [10], particularly the symmetric multi-threaded ver-
sion presented in [27]. A few relevant modifications to this
simulation platform have anyhow been made for integration
purposes. Most relevantly, we have created stack-separation
across the different simulation objects, by locating the stack
of each object in the initial part of a stock of memory des-
tined for object usage. Also, execution resume in the dif-
ferent stacks, by also providing the correct processor and
stack image, has been supported via setjump and longjump
POSIX APIs. These have also been used as the support
for, e.g. squashing the stack image in case a rollback occurs
while the simulation object is in the block state (which even-
tually leads the object to resume execution with a different
context). As for the (temporary) binding of simulation ob-
jects to threads, we still relied on the already supported poli-
cies. Also, the simulation objects currently bound to a given
worker thread are still dispatched according to the Lowest-
Timestamp-First policy. However, simulation objects that
are in the block state are not considered in the dispatching
process (thus being again eligible for dispatching only after
exiting the block state). We have run experiments on a 32-
core HP ProLiant server equipped with 64GB of RAM and
running Debian 6 on top of the 2.6.32-5-amd64 Linux kernel

 0

 10

 20

 30

 40

 50

0.25 0.5 0.75

S
pe

ed
up

Channel Utilization Factor

No Ad-Hoc Memory Management Ad-Hoc Memory Management

Figure 7: Relative speed-up by the parallel run with-
out and with ad-hoc memory management vs the
sequential run.

(augmented with our patch to the schedule function). A
ROOT-Sim configuration with 32 symmetric worker threads
has been used in all the experiments, with GVT and fossil
collection taking place each one second.

4.2 Experimental Data
This section is divided in two parts. Initially we pro-

vide data for an evaluation of the overhead by the core
memory management support underlying ECS. To this aim
we use a simulation model of a Personal Communication
System (PCS) natively entailing disjointness of memory ac-
cesses by the different simulation objects. After, we present
data related to the assessment of the whole ECS architec-
ture, by also comparing the run-time behavior of models
coded in such a way to be run on top of ECS (hence coded
in sequential-style with no disjointness of memory accesses
across different objects) with respect to the counterpart ex-
clusively based on traditional PDES programming (only re-
lying on event-dependencies via message passing). In this
part of the study we rely on a model of NoSQL data-grid
systems developed within the framework presented in [5].

4.2.1 Overhead Assessment
We evaluated the overhead by the presented memory man-

agement architecture by relying on a PCS model with 1024
wireless cells covering a square region, each one managing up
to 1000 wireless channels. It models interference across dif-
ferent channels within a same cell, and power management
upon call setup/handoff in a high fidelity fashion. This same
model has been already used to assess the multi-threaded
version of ROOT-Sim where we have integrated ECS, and
its detailed description can be found in [26]. Two specific
aspects are relevant for this study: 1) each simulation ob-
ject models an individual cell, and the interactions between
objects exclusively take place via handoff events of mobile
devices across different cells (hence memory accesses by the
different simulation objects are intrinsically disjoint); 2) the
average granularity (CPU requirement) of the events is di-
rectly proportional to the wireless channel utilization factor,
since the more channels are busy, the more complex is the
calculation of interference and Signal-to-Interference Ratio
(SIR) while simulating power regulation.
We have run this model with three different settings for

the channel utilization factor, namely 25%, 50% and 75%
(that gave rise to average granularity of the simulation events

ranging from the order of 30 to 100 microseconds). Also, we
considered three different execution modes: a classical se-
quential execution (relying on a calendar queue scheduler),
a parallel execution where no ad-hoc memory management
facility is activated, and a parallel execution where we rely
on the innovative memory management architecture. Note
that the latter execution mode entails switching between
object-mode and platform-mode (with refill of the CR3 reg-
ister and implicit squash of the TLB) when changing the
actual mode. Hence, such a mode allows us to assess the
overhead for mode-switch operated by the support for ECS.
In Figure 7 we show the variation of the speedup (vs the
sequential run) we observed for simulating on the order of
1 million (committed) events in the different parallel execu-
tion modes (each sample is the average over 10 runs based
on different random-generation seeds). By the data we see
how the maximal loss in performance by the ad-hoc memory
management architecture entailing switch between platform
and object modes is on the order of 9% and is observed
for the case of finer grain simulation events (namely for the
case of 25% utilization factor). Such a performance penalty
almost disappears for coarser grain configurations.

Successively we modified the PCS model in order to gen-
erate fictitious rendez-vous events periodically. When one
fictitious rendez-vous event occurs, the executing object sim-
ply performs a dummy read operation into the state of an
adjacent cell. However, we do not really enable ECS syn-
chronization (in fact, no matter whether the dummy read
access is not processed in timestamp order on the hit ob-
ject), rather we only trap the access and open the stock
associated with the object hit by the read operation. This
way we are able to assess the overhead by ECS support
when also including the management of memory faults and
the activation of the ECS handler. For this experiment, we
considered the PCS configuration with wireless-channel uti-
lization factor set to 50%, and we varied the frequency of
occurrence of the fictitious rendez-vous events between 1%
and 10% of the total number of events processed. In Figure
8 we show the relative speedup achieved by the configura-
tion with ad-hoc memory management and fault handling
upon the occurrence of fictitious rendez-vous events vs the
configuration with no ad-hoc memory management. By the
data, we see how the ah-hoc architecture induces a speed-
down that increases vs the frequency of fictitious rendez-
vous events. Note that the speed-down is not only caused by
the overhead for handling the memory faults. It is also due
to the switch between platform and object modes, which is
mandatory in order to create the per-thread memory view
needed to trap the access to the state of other simulation
objects. However, the speed-down is quite limited for rela-
tively infrequent fictitious rendez-vous events, and becomes
non-negligible only when moving towards scenarios with rel-
atively frequent rendez-vous occurrences (say 10%).

On the other hand, the whole ad-hoc memory manage-
ment architecture has been thought and realized to provide,
transparently to the application code, a unique innovative
support for handling cross-state dependencies in presence of
concurrent objects. Hence the loss in performance in con-
texts where the model to be executed exhibits intrinsically
disjoint accesses across different object-states (such as for
the configurations in Figure 7) is the unavoidable price to
be paid for the achievement of a run-time environment of-
fering the above mentioned level of transparency.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10

S
pe

ed
up

Percentage of Fictitious Rendez-Vous

Figure 8: Relative speed-up by the ad-hoc mem-
ory management architecture vs the classical paral-
lel run.

4.2.2 Effectiveness Assessment
In this section we rely on NoSQL data-grid simulation

models provided by [5], based on distributed/replicated cache
serves, each keeping a subset of the whole set of keys in the
entire data-set. Particularly, we consider a model where
atomicity of the distributed transactions is ensured by run-
ning the 2-Phase-Commit (2PC) protocol across the nodes
keeping keys that belong to the write set of the commit-
ting transaction. In these models, the simulated coordina-
tor needs to schedule the arrival of a prepare request event to
the involved sites, which needs to carry information about
the write set. These sets may entail hundreds of data-item
keys, and are populated at the coordinator while simulating
the execution of the transaction. These sets are therefore
instantiated by the transaction-coordinator simulation ob-
ject within its local state. For this model we consider two
different implementations, one not relying on ECS, which
transmits the write set as the payload of the prepare request
event3, and another one based on ECS, where the write sets
are directly accessed via pointers by the involved simulated
nodes (hence the prepare request event only needs to carry
the pointer indicating where to find the information related
to the simulated 2PC phase). This model also entails a spe-
cial simulation object which is a global statistics collector.
For the case of non-reliance on ECS, the updates of the
state of this object take place by explicitly scheduling up-
date statistics events towards it. On the other hand, for the
case of ECS synchronization, we have that each simulated
node can directly access the state of the statistics collector
simulation object in order to perform updates.
We simulated a NoSQL data-grid system with 64 nodes

(with degree of replication 2 of each ⟨key, value⟩ pair in
the data-grid), with closed-system configuration in terms
of number of clients (and hence number of transactions)
running within the system. Particularly, we set the num-
ber of active concurrent clients continuously issuing trans-
actions to 64. This configuration resembles scenarios where
the 64 clients operate as front end servers (co-located with
the data-platform nodes) with respect to end-client applica-
tions. Also, we varied the amount of keys touched in write
mode by transactions between 10 and 100, which gives rise
to different dynamics/cost in terms of pack/unpack oper-
ations, message buffering and transmission for the case of

3For this configuration the programmer is in charge of ex-
plicitly coding the pack/unpack of the write set.

 0

 20

 40

 60

 80

 100

 120

 140

 160

10 100

O
ve

ra
ll

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Average Transaction Write Set Size

ECS
Traditional Parallel

Serial

Figure 9: Execution times for the data-grid models.

non-ECS based synchronization, thus allowing us to study
configurations with different performance tradeoffs.

In Figure 9 we report the execution time for simulating
a predetermined simulation time interval for the operativity
of the NoSQL data-grid system. By the data we see how
both ECS and the traditional message passing based par-
allel approach provide performance improvements over the
sequential run. More important, the performance delivered
by ECS is even slightly better that the one by the tradi-
tional parallel approach with disjoint accesses to the local
state of the simulation objects. Overall, transparency of
speculative parallelization with cross-state dependencies is
achieved by also delivering performance comparable to the
traditional parallel approach, which however does not mask
message passing to the programmer, at least in relation to
packing/unpacking of data to/from event payloads. Also,
the traditional approach does not support direct memory
writes into, e.g., the statistic collector object, thus requir-
ing more complex coding schemes, aimed at realizing the
updates via simulation events. On the contrary, with ECS
we support such a direct memory update operation, hence
offering to the programmer the possibility to code his model
more simply, according to sequential programming style.

5. CONCLUSIONS
In this article we have presented ECS (Event and Cross-

State), a new protocol for synchronizing the execution of
concurrent simulation objects forming a DES model. The
protocol allows breaking the classical limit of DES models,
to be run concurrently on top of PDES platforms, where
any object can access memory, and hence can touch the cur-
rent state of the simulation model, limited to its local state.
Rather, with ECS it is allowed to touch (in either read or
write mode) any valid memory location. This capability has
been achieved thanks to the design and implementation of
an innovative memory management architecture, suited for
Linux systems, which creates per-thread views of memory
protection (within a same process) and tracks memory ac-
cesses in an efficient manner. The whole proposal supports
cross-state access, joint to concurrency and speculative pro-
cessing, in an application transparent manner. Hence, the
programmer is allowed to rely on a sequential-style coding
approach, where any memory location is implicitly accessi-
ble while processing any simulation event.

6. REFERENCES

[1] F. Antonacci, A. Pellegrini, and F. Quaglia. Consistent
and efficient output-streams management in optimistic
simulation platforms. In Proceedings of the ACM
SIGSIM Conference on Principles of Advanced
Discrete Simulation, pages 315–326. ACM, 2013.

[2] D. Bruce. The treatment of state in optimistic
systems. SIGSIM Simul. Dig., 25(1):40–49, July 1995.

[3] K. M. Chandy and R. Sherman. Space-time and
simulation. Proceedings of the SCS Multiconference on
Distributed Simulation, pages 53–57, 1989.

[4] L.-l. Chen, Y.-s. Lu, Y.-P. Yao, S.-l. Peng, and L.-d.
Wu. A well-balanced Time Warp system on multi-core
environments. In Proceedings of the IEEE Workshop
on Principles of Advanced and Distributed Simulation,
pages 1–9. IEEE Computer Society, 2011.

[5] P. Di Sanzo, F. Antonacci, B. Ciciani, R. Palmieri,
A. Pellegrini, S. Peluso, F. Quaglia, D. Rughetti, and
R. Vitali. A framework for high performance
simulation of transactional data grid platforms. In
Proceedings of the 6th ICST Conference of Simulation
Tools and Techniques, SIMUTools, pages 63–72. ICST,
Mar. 2013.

[6] A. Fabbri and L. Donatiello. SQTW: a mechanism for
state-dependent parallel simulation. description and
experimental study. In Proceedings of the Workshop
on Parallel and Distributed Simulation, pages 82–89,
jun 1997.

[7] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, Oct. 1990.

[8] B. P. Gan, M. Low, J. Wei, X. Wang, S. Turner, and
W. Cai. Synchronization and management of shared
state in HLA-based distributed simulation. In
Proceedings of the Winter Simulation Conference,
pages 847–854, Dec. 2003.

[9] K. Ghosh and R. M. Fujimoto. Parallel discrete event
simulation using space-time memory. In Proceedings of
the International Conference on Parallel Processing,
pages 201–208. CRC Press, 1991.

[10] HPDCS Research Group. ROOT-Sim: The ROme
OpTimistic Simulator - v 1.0.
http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/,
Oct. 2012.

[11] D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev.
Optimization of parallel discrete event simulator for
multi-core systems. In Proceedings of the International
Parallel and Distributed Processing Symposium, pages
520–531. IEEE Computer Society, 2012.

[12] D. R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and System, 7(3):404–425,
July 1985.

[13] V. Jha and R. Bagrodia. Simultaneous events and
lookahead in simulation protocols. ACM Transactions
on Modeling and Computer Simulation, 10(3):241–267,
July 2000.

[14] J. I. Leivent and R. J. Watro. Mathematical
foundations of Time Warp systems. ACM
Transactions on Programming Languages and
Systems, 15(5):771–794, 1993.

[15] M. Y. H. Low, B. P. Gan, J. Wei, X. Wang, S. J.
Turner, and W. Cai. Shared state synchronization for

HLA-based distributed simulation. Simulation,
82(8):511–521, Aug. 2006.

[16] H. Mehl. A deterministic tie-breaking scheme for
sequential and distributed simulation. In Proceedings
of the Workshop on Parallel and Distributed
Simulation. ACM, 1992.

[17] H. Mehl and S. Hammes. How to integrate shared
variables in distributed simulation. SIGSIM
Simulation Digest, 25(2):14–41, Sept. 1995.

[18] D. M. Nicol and X. Liu. The dark side of risk (what
your mother never told you about time warp). In
Proceedings of the Workshop on Parallel and
Distributed Simulation, pages 188–195. IEEE
Computer Society, 1997.

[19] A. Pellegrini, R. Vitali, S. Peluso, and F. Quaglia.
Transparent and efficient shared-state management for
optimistic simulations on multi-core machines. In
Proceedings of the International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 134–141. IEEE
Computer Society, 2012.

[20] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR:
Logging only dirty chunks for efficient management of
dynamic memory based optimistic simulation objects.
In Proceedings of the Workshop on Principles of
Advanced and Distributed Simulation, pages 45–53.
IEEE Computer Society, 2009.

[21] B. R. Preiss, W. M. Loucks, and D. MacIntyre. Effects
of the checkpoint interval on time and space in Time
Warp. ACM Transactions on Modeling and Computer
Simulation, 4(3):223–253, July 1994.

[22] F. Quaglia. A cost model for selecting checkpoint
positions in Time Warp parallel simulation. IEEE
Transactions on Parallel and Distributed Systems,
12(4):346–362, Feb. 2001.

[23] R. Rönngren and R. Ayani. Adaptive checkpointing in
Time Warp. In Proceedings of the Workshop on
Parallel and Distributed Simulation, pages 110–117.
Society for Computer Simulation, July 1994.

[24] A. Santoro and F. Quaglia. Software supports for
event preemptive rollback in optimistic parallel
simulation on myrinet clusters. Journal of
Interconnection Networks, 6(4):435–457, 2005.

[25] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic
Memory Logger and Restorer library for optimistic
simulation objects with generic memory layout. In
Proceedings of the Workshop on Principles of
Advanced and Distributed Simulation, pages 163–172.
IEEE Computer Society, 2008.

[26] R. Vitali, A. Pellegrini, and F. Quaglia. A load sharing
architecture for optimistic simulations on multi-core
machines. In Proceedings of the 19th International
Conference on High Performance Computing, pages
1–10. IEEE Computer Society, Dec. 2012.

[27] R. Vitali, A. Pellegrini, and F. Quaglia. Towards
symmetric multi-threaded optimistic simulation
kernels. In Proceedings of the Workshop on Principles
of Advanced and Distributed Simulation, pages
211–220. IEEE Computer Society, Aug. 2012.

[28] D. West and K. Panesar. Automatic incremental state
saving. In Proceedings of the Workshop on Parallel
and Distributed Simulation, pages 78–85. IEEE
Computer Society, May 1996.

