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Abstract

A recent work has presented the design and implemen-
tation of a software library, named DyMeLoR, supporting
transparent log/restore facilities for optimistic simulation
objects with generic memory layout. This library offers the
possibility to allocate/deallocate memory chunks via stan-
dard API, and performs log/restore of the object state via
pack/unpack techniques, exploiting ad-hoc meta-data con-
cisely identifying the object state layout at each point in
simulation time. In this paper we complement such a li-
brary with a software architecture offering the following ad-
ditional advantages: (i) run-time identification of chunk up-
dates within the dynamic memory map, (ii) reduced check-
point latency and increased effectiveness in memory usage
thanks to log/restore facilities based on (periodic) snap-
shots of the whole simulation object state, taken via the
incremental copy of the modified (dirty) chunks only. Our
approach is based on software instrumentation techniques
(suited for LINUX and the ELF format), targeting memory
update references performed by the application level soft-
ware, and on a lightweight run-time monitoring mechanism
providing minimal overhead while tracking the exact mem-
ory addresses and the size of memory areas dirtied by the
execution of each event. Also, our design has been oriented
to portability across 32-bit and 64-bit Intel compliant ar-
chitectures, thus covering a wide spectrum of off-the-shelf
machines.

1 Introduction

A recent work [20] has presented a memory manage-
ment library named DyMeLoR, implemented in C technol-
ogy, which offers completely transparent log/restore facil-
ities while supporting, at the same time, a general pro-
gramming model where the state of a simulation object
can be scattered on dynamically allocated memory chunks.
In particular, DyMeLoR has been designed for integration
within traditional-style optimistic simulation kernels (see,
e.g., [3, 7]), and allows the application programmer to em-
ploy standard malloc services within event handler modules
(e.g. for changing the current layout of the object state).
In this work we complement DyMeLoR via a software ar-
chitecture which adds new capabilities within the memory
management subsystem, while maintaining the same trans-
parency level. Specifically, we present the design and im-
plementation of software modules that are able to track state

updates (with arbitrary granularity) occurring during event
processing. These modules also offer log/restore facilities
based on (periodic) snapshots of the whole state of the simu-
lation object, which are built by incrementally copying only
dirty chunks within the dynamic memory map associated
with the state layout. Hence the name Di-DyMeLoR (Dirty-
DyMeLoR) for the out-coming software.

On the side of state logging, the present proposal can
provide direct performance advantages over the original
software due to the reduced amount of memory copy op-
erations. In fact, a complete snapshot of the simulation ob-
ject state involves logging a subset of the chunks currently
belonging to the memory map (those that have been dirtied
since the last checkpoint was taken). It can also provide in-
direct advantages (e.g. via increased locality) thanks to the
reduction of the memory usage for storing the snapshots.

On the other hand, the new architecture involves run-
time monitoring activities to determine the exact addresses
that are referenced in memory update operations by the ap-
plication level software. To efficiently support this task,
we have designed and implemented a lightweight memory-
write tracking mechanism. It is based on transparent appli-
cation software instrumentation, and is tailored for LINUX
and standard ELF objects/executables on both 32-bits and
64-bits Intel compliant hardware architectures (namely IA-
32 and x86-64 architectures).

The remainder of this paper is structured as follows. In
Section 2 we provide an overview of DyMeLoR as the ba-
sis for the comprehension of the whole software system.
In Section 3 the innovative capabilities and the design of
the associated modules are presented. Related work is dis-
cussed in Section 4. Experimental data for the assessment
of the effectiveness of Di-DyMeLoR are presented in Sec-
tion 5.

2 Overview of DyMeLoR

From an architectural point of view, DyMeLoR can be
seen as a wrapper of ANSI-C malloc/free services,
which is transparently interposed between the application
level code and the traditional malloc library (a schematiza-
tion of this approach is shown in Figure 1.A). DyMeLoR
also offers an API for integration with the simulation ker-
nel, which consists of a set of services supporting memory
management operations specifically oriented to log/restore
activities proper of the optimistic synchronization scheme.
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For each simulation object hosted by the simula-
tion kernel, DyMeLoR maintains a meta-data table of
malloc area entries. Each entry keeps information
about a block of contiguous memory chunks (e.g. the mem-
ory location of the block), possibly allocated for serving
memory requests for that object, and different entries are
used for managing chunks of different sizes. As soon as
a malloc request occurs for a given chunk size, the cor-
responding block is allocated by DyMeLoR (via real mal-
loc services) so that a contiguous number of those chunks
is in practice pre-allocated for serving future requests with
that same size (if any). This allows exalting memory con-
tiguity for the state layout of each simulation object, which
can favor performance during both event processing and
log/restore operations. In addition, pre-allocation of con-
tiguous chunks allows DyMeLoR to use very concise meta-
data for the identification of the status of each chunk (busy
or free) within a block. In particular, a simple bitmap of
so called “status bits” is used for the identification of those
pre-allocated chunks that have also been delivered (and are
currently in use) to the application software. To further
optimize memory usage, a layout has been adopted where
the bitmap of status bits is placed at the head of the pre-
allocated block of chunks, and gets allocated only in case
of real allocation of the corresponding block (see Figure 1.B
for a schematization of the relation between the main data
structures describing the simulation object memory map).
Actually, the table of malloc area entries can be ex-
panded in case its entries have been saturated, and the sim-
ulation object goes on requesting more chunks during event
processing activities.

Log/restore operations are supported by DyMeLoR via
pack/unpack techniques. For a log operation, the cur-
rently in-use memory chunks are packed into a contigu-
ous log buffer (which is dynamically allocated via the
underlying malloc services), together with all the active
malloc area entries and the status bitmaps at the head of
active blocks. For a restore operation, these data structures
are extracted from the contiguous log buffer and put back in
place. To make deallocation operations recoverable, each
malloc area entry also keeps information about the log-
ical time (if any) at which the chunks inside a given block

were all released. A block with no chunks currently al-
located, and whose last chunk release occurred before the
Global-Virtual-Time (GVT), can be deallocated via a free
call towards the underlying malloc library. In such a case,
the corresponding malloc area entry is set to non-active.

Log operations exploit threshold-based optimizations,
and an ad-hoc chunk allocation algorithm within each
block, aimed at optimizing the trade-off between meta-data
management and memory copies of active chunks. In par-
ticular, each malloc area keeps a counter identifying the
percentage of in-use chunks within the corresponding mem-
ory block. When the occupancy exceeds a given thresh-
old, the memory block is entirely logged, without explic-
itly scanning the status bitmap in order to identify busy
chunks. Also, the chunk allocation logic within each mem-
ory block is similar to the LINUX algorithm for the selec-
tion of the next file descriptor to be assigned while opening
an I/O channel. This logic keeps block fragmentation low
and tends to have busy chunks clustered at the head of the
memory block. Therefore, in case the bitmap needs to be
scanned upon the log operation (i.e. when the block occu-
pancy is under the threshold), the latency of the operation
can benefit by the early stopping of the bitmap scan when-
ever all the in-use chunks are really found clustered at the
beginning of the memory block.

3 Di-DyMeLoR: Design and Implementation

As mentioned, Di-DyMeLoR is based on new software
modules able to track at run-time memory update references
performed by the application software. It also uses data
structures and modules which augment the capabilities of
the original DyMeLoR with the aim at tracking not only
the current memory map of the simulation object (and its
dynamic changes), but also the dirtying activities. This is
done to support log/restore operations via the incremental
approach.

In this section we first describe the techniques we have
used for a lightweight instrumentation of the application
level software, in order to support the memory update track-
ing process. Then we enter details of data structures’ and
modules’ integration.

3.1 The Software Instrumentation Tool

Software instrumentation has been realized via a soft-
ware Parser/Modifier (PM) specifically designed for analyz-
ing and rewriting ELF (Executable and Linkable Format)
objects generated by standard gcc compilers (versions 3
and 4) for IA-32 and x86-64 architectures. At the very base,
PM works by parsing the object generated after linking to-
gether all the application level modules (third party libraries
being excluded), and by identifying every memory-write in-
struction inside this object, namely mov instructions with
a memory location as the destination. The instrumentation
process is then supported by PM via the insertion of a call
instruction to an update tracker module, edited in as-
sembly language, which performs the identification of the
exact memory address and the size (amount of bytes) in-
volved in the memory update operation. Although this is a



typical way for tracking memory update references (e.g. in
the context of program debugging techniques [21]), the us-
age of this approach in optimistic simulation systems poses
(more) stringent performance issues. In particular, the mon-
itor should likely perform its job via very few machine in-
structions, in order not to significantly impact event execu-
tion latency.

To cope with such a performance target we have decided
not to employ run-time disassembling of the memory refer-
ence instruction, which could be onerous (compared to the
event execution latency of non-instrumented software) es-
pecially due to the complexity and variable format/length
of the Intel instruction set. Instead, we have adopted an or-
thogonal technique where a software table associated with
the update tracker is built and populated during the
compile-time instrumentation process. This table acts as a
cache of disassembling results for memory-write instruc-
tions.

In IA-32/x86-64 architectures, the address of each
memory-write operation depends on a set of up to
four parameters, namely base, index, scale and
displacement. The former two parameters correspond
to register values (hence the parameters identify the regis-
ters containing the values), while the latter two correspond
to specific values of fields inside the memory-writing in-
struction. The instruction opcode tells which of those pa-
rameters are relevant. Also, the opcode, together with its
prefixes, establish the real size of the memory area touched
by the write operation. Hence, to cache the results of the
disassemblig process, PM builds a table where each entry is
structured as follows:

struct update_tracker_entry {

unsigned long ret_addr;

unsigned int size;

char flags;

char base;

char index;

char scale;

long displacement;

};

The flags field is used to identify which of the afore-
mentioned four parameters are actually relevant and should
be considered by update tracker for computing the
exact address for the memory-write operation. Also, the
size field immediately indicates to update tracker

the (compile-time defined) size of the memory area to be
dirtied by the current memory-write instruction (1). Fi-
nally, the ret addr field indicates to update tracker

where control will be returned after its execution. This
field corresponds to the memory address of the write in-
struction which immediately follows the current instance
of the call to update tracker. It has been inserted
as a field of the update tracker entry data struc-

1The only exception is for movs and stos instructions, used for mov-
ing arbitrary size memory blocks. These instructions keep the information
for identifying the destination address and the current size of the memory
block being written into predefined registers, namely EDI and ECX, which
are directly accessible by update tracker.

ture for allowing the disassembling results’ table pro-
duced during the instrumentation process to be organized
as a fast search hash-with-buckets table. (Recall that ac-
cess to the update tracker entry associated with the
memory-write instruction occurs during the execution of the
update tracker. Hence, it is a performance critical op-
eration directly impacting the event execution cost for the
instrumented version of the application software.) In par-
ticular, upon its activation, update tracker checks in-
side its own stack frame the return address value, which
is used as the key for accessing the hash table maintain-
ing update tracker entry records, and is compared
to the ret addr field inside these records for selecting the
correct entry within the bucket. Once this is done, the mem-
ory address for the write operation and the size of the mem-
ory being dirtied are easily computed by the monitor via
a few machine instructions. Given that this computation
can unpredictably change the value of the EFLAGS reg-
ister on board of the CPU, this register value is saved by
update tracker upon its activation together with gen-
eral purpose ones, and is put back in place right before re-
turning control to the memory write instruction for which
the tracking process has been activated. Actually, PM can
be parameterized in order to optimize the trade-off between
the size of the hash-with-bucket table, and the access cost.
Specifically, the instrumentation process can check whether
the level of collision inside the hash table exceeds a pre-
specified value. In such a case, PM can resize the hash-with-
bucket table in order to reduce the actual bucket size. The
potential drawback is the increase of unused table entries,
while the benefit is the reduction of the update tracker

overhead when accessing the table (with O(1) time com-
plexity as the best case).

update tracker uses absolute addresses as keys for
the hash table. In fact, as mentioned above, this module
identifies the address of the memory-write operation at run-
time by accessing its own stack frame. In order for PM to
be able to build the table of update tracker entry

records via correct insertion of the absolute addresses of
memory-writing instructions inside the ret addr field,
we have exploited incremental linking facilities offered by
standard linkers (e.g. ld on UNIX systems). In particular,
the instrumentation process interacts with the linker for the
definition of the exact (absolute) position of the object asso-
ciated with application level software inside the executable
layout.

In the memory model offered by DyMeLoR, locations
associated with automatic variables (allocated inside the
stack) do not belong to the object memory map, since they
do not survive across different invocations of the event han-
dler. Hence, all those memory-write instructions that can
be detected at compile-time to access the stack (e.g. mov
instructions addressing memory via base pointer or stack
pointer displacement) are not actually instrumented by PM.
Anyway, in some cases write access into the stack cannot
be recognized at compile time. For this reason, after hav-
ing computed the address for the memory-write operation,



update tracker compares it with the current value of
the stack pointer. In case the access is an actual stack up-
date, update tracker simply returns. Otherwise, the
information about the identified memory address and the
size of the area being dirtied is passed to the memory map
manager whose structure is presented in the next section.

The insertion of the call to update tracker prior to
the execution of a memory-write instruction leads to a resize
of the sections associated with the object file, and to the
shift of instructions and other memory locations inside the
object layout. Hence, PM also has to rewrite the headers
associated with the ELF object, the relocation tables, and
the offsets used for the identification of memory addresses
referenced by the software, e.g. the destination addresses
for jmp instructions.

However, in IA-32/x86-64 processors not all destination
addresses for jmp instructions can be corrected at compile-
time by rewriting relocation tables. This is the case of so
called register jumps (also frequently referred to as indi-
rect branches), where the destination address is dynamically
identified via the content of CPU registers. To cope with
this issue, we have implemented a second run-time mon-
itoring mechanism for supporting on-the-fly correction of
destination addresses in register jumps. Like in the afore-
mentioned approach, this mechanism is based on the in-
sertion of a call instruction to a second assembly level
monitoring module, referred to as branch corrector,
prior to each register jump in the original software. This
monitoring module relies on a hash table similar to the pre-
viously described one, where each entry is associated with a
single register jump instruction, and keeps the information
regarding which are the registers whose values determine
the destination address for the jump operation. This table is
built and populated at compile-time during the instrumenta-
tion process (again to avoid costly run-time disassembling
techniques). By exploiting the information inside this ta-
ble, branch corrector evaluates the original destina-
tion address for the jump instruction (by reading the CPU
registers that specify the destination value). Then it corrects
this address on the basis of the amount of bytes by which
the original destination was shifted inside the instrumented
object layout. To provide a lightweight mechanism for ad-
dress correction, PM generates a third table at compile-time,
which is visible to branch corrector. Each entry in-
side this table identifies an interval of addresses for which
the instrumentation process gave rise to the same amount of
shift inside the final (instrumented) memory layout. Such an
offset is also maintained in the table entry. The table is or-
dered by interval extremes, and branch corrector per-
forms a logarithmic-cost binary search to retrieve the inter-
val containing the original destination for the register jump,
and the offset to be applied for the correction. Such a cor-
rection cannot however be applied by modifying the values
of the CPU registers involved in the jump instruction. This
would otherwise result in an application inconsistent pro-
cessor state. We have rather adopted a different approach
where the original register-jump instructions are substituted

at compile-time by PM with so called offset jumps (not re-
lying on CPU registers), where the destination address is
maintained inside one field of the instruction, and is ap-
propriately set by the on-the-fly correction mechanism. To
support the rewrite operation of the appropriate instruction
field at run-time, without impacting typical settings associ-
ated with memory protection, the offset-jump operation has
been moved inside a run-time re-writable ELF section (ad-
hoc created by exploiting compiler/linker facilities). Also, a
jump-label instruction has been inserted in place of the off-
set jump inside the original (non-rewritable) sections of the
application code, which passes control to the offset jump
right after the brach corrector module has re-written
the correct destination address (the offset) inside the ad-hoc
re-writable section.

3.2 Management of the Memory Map

The original data structures and modules manag-
ing the simulation object memory map have been ex-
tended/modified in Di-DyMeLoR in order to explicitly cope
with the possibility to build complete state logs by incre-
mentally logging only data that have been dirtied since
the last log operation. To guarantee recoverability of each
type of operation permitted on the memory map, namely
chunk allocation/deallocation and chunk update, we need
to deal with incremental log of both dirty data, namely dirty
chunks, and dirty meta-data, namely dirty malloc area

entries associated with the memory map.

To track dirty chunks, a second bitmap, of so called
dirty bits, has been associated with each block of pre-
allocated chunks destined to a specific simulation object.
This bitmap is placed inside the same contiguous mem-
ory segment pointed by the corresponding malloc area

and containing the original status bitmap and the chunks
destined for use by the overlying application in case of
malloc requests. In terms of real storage, the dirty bitmap
inherits the same features of the original status bitmap since
its allocation occurs only in case the corresponding chunks
gets really pre-allocated. Hence, the extra storage occu-
pancy for detecting chunks that have been dirtied since the
last log operation scales well with the size of application
destined storage. The bits inside the dirty bitmap are treated
as sticky flags vs the memory-write monitoring mechanism
described in the previous section. Hence, a memory-write
operation performed by the application software can only
result in a set operation of the dirty bit associated with the
chunk being dirtied.

To track dirty meta-data we have added the following
two integer fields inside the malloc area data structure:

• dirty area, which is used as a flag indicating
whether any type of operation (allocation, deallocation
or chunk dirtying) has occurred in the malloc area

since the last log.

• dirty chunks, which explicitly counts the current
number of in use chunks that have been dirtied in the
malloc area since the last log operation.



Once the memory map manager receives the address
and the size of the memory area being dirtied from the
memory tracker, it identifies all the chunks that will
be dirtied inside the memory map, and the associated
malloc area entry. Then the dirty bitmap and the
dirty chunks field are updated. Again in compliance
with DyMeLoR’s memory model, in case the address and
the memory area being dirtied refer to locations outside
the memory map of the currently executing simulation ob-
ject (e.g. they refer to global variables outside the heap,
for which recoverability is not provided), the memory map
manager simply returns control to the memory tracker

module. The dirty area field inside the malloc area

is anyway set to 1 each time a malloc/free call insisting
on that area is performed by the application software.

3.2.1 State Log Operations

Via the exploitation of the additional fields inside each
malloc area, and of the dirty bitmaps, logging activi-
ties performed by Di-DyMeLoR have been differentiated in
full and incremental logs. Both types of logs still result in
packing the information to be logged inside a contiguous
buffer allocated via the underlying malloc services. How-
ever, they pack different things (with consequently different
costs). A full-log operation coincides with the original log
supported by DyMeLoR. Hence, the active malloc area

entries are packed inside the log buffer together with the in
use chunks in the corresponding memory blocks, while the
dirty bitmaps are not logged. On the other hand, an incre-
mental log performs differentiated pack operations depend-
ing on the current value of data structures explicitly used for
tracking dirty data/meta-data. Specifically, for each active
malloc area entry we have the following cases:

A: dirty area is set and dirty chunks is zero. In
this case the malloc area is packed into the log
buffer together with the status bitmap indicating the
current allocation of chunks inside a given block. But
the dirty bitmap and the currently in-use chunks are
not logged.

B: dirty area is set and dirty chunks is greater
than zero. In this case the malloc area is packed
into the log buffer together with the status bitmap, the
dirty bitmap and the chunks that are currently in use,
which have been dirtied.

C: dirty area is not set. In this case, no information
associated with the area is logged at all.

Full and incremental logs both involve the re-set of all
the data structures tracking dirty data/meta-data. For incre-
mental logs, this occurs independently of the actual case
among the aforementioned ones.

We finally underline that incremental state log operations
no way require to be forced at each simulation event, but
can be taken periodically. In fact they are based on rec-
ognizing memory portions that have been dirtied since the

last log, independently of the amount of events actually per-
forming the dirtying operations. Hence, state reconstruction
at whichever simulation time can be supported via a mix of
state restore from the log (see next section), and classical
coasting forward.

3.2.2 State Restore Operations

Each log is stamped with the current simulation time, and
all the logs (full and incremental) are linked together as a
chain. When a restore operation needs to be executed at
simulation time T , the log chain is searched to determine
the more recent log with time less than or equal to T (logs
with time greater than T are simply discarded since they re-
fer to causally inconsistent memory maps). In case the log
found is a full one, then a restore operation is executed by
simply unpacking all the logged data and putting them back
in place. A different restore algorithm is executed in case
the log found is an incremental one. Specifically, the fol-
lowing steps are iterated by backward traversing the chain
of logs:

1. A malloc area found inside the log buffer, which
has not been restored, is put back in place inside the
meta-data table. The associated status bitmap is also
copied back from the log buffer (recall that indepen-
dently of the type of log and of the specific case for in-
cremental logging, a logged malloc area is always
associated with the corresponding status bitmap inside
the log buffer to guarantee recoverability of chunk al-
location/deallocation operations).

2. Each dirty chunk found inside the log and associated
with the malloc area, which has not yet been re-
stored in a previous iteration while backward travers-
ing the log, is copied back in its correct position inside
the corresponding memory block.

The iterative restore procedure stops when all the active
malloc area entries have been restored and all the in-use
chunks that have been dirtied are also restored. Although
in principles this could entail an indefinite number of iter-
ative backward steps along the log chain, in practice the
restore operation can be immediately finalized once we find
a full log while backward re-traversing the log chain. In
fact, all the in-use chunks that have not yet been restored
are immediately available inside the full log for copy-back
operations. Actually, to optimize the detection of already
restored chunks, which must therefore not be copied-back
again from the log, the iterative restore procedure has been
based on temporary bitmaps (each associated with an ac-
tive malloc area) on which a couple of fast bitwise OR-
XOR operations are executed each time a dirty bitmap (as-
sociated with that same malloc area) is extracted from
the incremental log.



3.2.3 Caching Write References for Latency Reduc-
tion while Managing the Memory Map

Our implementation is based on the avoidance of per-
chunk headers. This design choice is aimed at minimiz-
ing the amount of meta-data to be logged/restored (2).
Hence, when a chunk gets released, no header information
can be exploited for fast access to the malloc area in-
volved in the deallocation operation. To speed up deallo-
cation, via the avoidance of scan operations over all the
active malloc area entries, DyMeLoR originally pro-
vided a software-level direct-map caching subsystem, im-
plemented as a hash table, with cache line formed by the
tuple <chunk addr,m area index>.

The issue of identifying the correct malloc area

starting from the memory address associated with a chunk
becomes even more critical in Di-DyMeLoR. Specifi-
cally, the memory map manager needs to retrieve the
malloc area for updating the information about dirty
data/meta-data each time an instrumented memory-write
operation dirtying whichever chunk inside the memory map
occurs. Also, in Di-DyMeLoR we need to retrieve the cor-
rect malloc area starting from a memory address which
does not necessarily coincide with the chunk boundary ad-
dress (as instead occurs for free operations).

To cope with such an issue, the original cache has
been extended by having the cache line augmented
with the chunk-end-address and represented by the tuple
<chunk start addr, chunk end addr,m area index>.
The start address for a memory write operation intercepted
by update tracker is stripped of n less significant bits
by the memory map manager and is then used as the key for
accessing the hash table. The value of n is chosen with the
aim at making the whole range of addresses belonging to
each single chunk collide into a single cache line. Actually,
given that the size of the chunks delivered to the application
software can be different, n has been set as the mean value
between the number of bits needed to make the smallest and
the greatest chunks collide, biased to the smaller sizes.

3.3 Interaction with Third Party Libraries

With the original DyMeLoR, any memory write opera-
tion on allocated chunks was allowed to occur inside func-
tions in third party libraries, provided that these functions
did not allocate any further memory buffer (as is the case for
most functions inside the C standard library stdlib). This is
no longer automatically the case when using Di-DyMeLoR
and its incremental log/restore facilities. In fact, libraries
are not instrumented hence it would not be possible for
update tracker to catch memory changes made inside
those libraries.

We have explicitly addressed the case of update op-
erations performed by third party software, just focusing
on stdlib. Specifically, we have implemented inside Di-

2Flexibility in memory management via partitioning/aggregating free
memory buffers according to the so called “boundary tagging” scheme [2]
is anyway inherited by Di-DyMeLoR thanks to per-chunk headers used at
the level of the underlying malloc library.

DyMeLoR a set of function wrappers for all those func-
tions whose signature allows the overlying software to pass
a pointer for a memory write operation to be performed by
the library. Those wrappers simply throw back the call to
the underlying standard-library function, and then pass con-
trol to the memory map manager with explicit indication of
the address of the updated buffer, and the size of the updated
memory block. In case the size cannot be retrieved by the
library function signature (as for pointers to buffers used
for strings), the memory map manager is provided with a
special flag, which triggers the manager to update the dirty
bits for all the currently allocated contiguous chunks start-
ing from the pointed address. This is obviously a conser-
vative way of managing the memory map which can only
result in an increased log/restore overhead (due to the fact
that some chunks that have not been really dirtied by the li-
brary are actually considered as dirty ones). Correctness is
in no way touched given that the wrapped library functions
are all stateless, thus posing no issue on the side of memory
log/restore.

Anyway, we are currently working on techniques for ap-
plication transparent management, and integration with Di-
DyMeLoR, of all those library functions which explicitly
allocate memory and/or have an internal state.

4 Related Work
In the optimistic simulation context, several solutions

have been introduced for logging the whole state of a sim-
ulation object (at each event execution or after an interval
of executed events) [8, 11, 13, 14], or incrementally log-
ging modified state portions [15, 19, 22], or supporting a
mix of the two approaches [9, 18]. With these solutions
there is the need (i) to supply the necessary code to collect
snapshots of the objects’ state inside the application level
software, or (ii) to employ calls to functions within the API
of proper checkpointing libraries, or (iii) to statically iden-
tify (e.g. at compile-time) which portions of the address
space need to be considered part of the state. Consequently,
perfect transparency is not supported since the programmer
must necessarily be faced with issues related to state snap-
shots. Also, static identification of the memory locations
to be included inside the snapshot is non-compatible with
dynamic memory allocation/deallocation (e.g. via standard
libraries) at the simulation object level. This is the case
for the work in [22], which has some technical similarities
to our work on the side of automatic instrumentation, but
does not allow dynamic memory to be employed, thus not
supporting recoverability for each permitted operation (al-
location, deallocation and update). Compared to all those
approaches, our solution supports state management, based
on incremental log capabilities, without the need for spe-
cific log/restore modules within the application code, or for
explicit interfacing with log/restore libraries, and allows the
simulation object state to be scattered on dynamically allo-
cated memory chunks.

The issue of dynamic memory based states for optimistic
simulation objects has also been addressed by the opti-
mistic simulation frameworks in [3, 7]. However, ad-hoc



APIs are used to explicitly notify to the simulation kernel
that specific allocation/deallocation operations, and, more
in general, operations on data structures based on dynamic
memory (e.g. lists), need to be rollbackable. Hence, dif-
ferently from our approach, dynamic memory based lay-
outs via ANSI-C memory allocation/deallocation services
are not supported.

In terms of capabilities of the memory management sub-
system the closest works to our approach are probably the
ones in [16, 17], which present software layers for transpar-
ent log/restore in optimistic simulation based on the High-
Level-Architecture (HLA) interoperability standard. These
layers rely on Operating System memory protection mech-
anisms to detect memory updates and to incrementally log
dirty pages belonging to a dynamically changing federates’
memory layout. Compared to our proposal, the overhead
for tracking updates and incremental log operations is likely
higher (e.g. since it exhibits page size granularity) and af-
fordable only when comparable with the cost of interoper-
ability services supported by HLA middleware.

Some recent advances [5] have shown the viability and
effectiveness of optimistic state management via reverse
computation, where a reverse version of application level
simulation code is employed for backward computation
aimed at restoring the state of the simulation object. Any-
way, in general simulation contexts (e.g., possibly ex-
hibiting non-reversible execution paths), this approach still
needs to be complemented via optimized log/restore tech-
niques like the one we have presented in this work.

Our proposal is also related to a number of works in the
field of program execution tracing (see, e.g., [1, 4, 12, 23])
for debugging, vulnerability assessment and repeatability.
These approaches provide detailed analysis of changes in
the state of the program, and of the execution flow. How-
ever, this is achieved via performance intrusive techniques
relying on dynamic instrumentation and/or kernel level
services, unsuited in contexts (e.g. parallel simulation)
where performance cannot be sacrificed. Debugging sup-
ports showing basic operating mode comparable to our one
(namely, the employment of trap mechanisms based on code
insertion/replacement to detect memory write accesses) are
those addressing data watch points (see, e.g., [21]). How-
ever they have performance targets different from ours since
optimizations mostly cope with search techniques for veri-
fying whether a memory reference falls inside a region that
is currently subject to a watch point. In other words, aspects
related to the identification of areas that have been dirtied
and to incremental log/restore operations are not consid-
ered.

5 Experimental Data
We have integrated Di-DyMeLoRwithin the open source

ROme OpTimistic Simulator (ROOT-Sim) [6]. This is a
traditional-style (event-handler based) optimistic simula-
tion platform, which transparently supports all the mech-
anisms associated with parallelization (e.g. the mapping of
simulation objects on different kernel instances) and opti-
mistic processing. It relies on MPI for data exchange across
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Figure 2. Basic Statistics for the Testbed
Configuration.

different simulation kernel instances.

The hardware platform used in this experimental study
is a Quad-Core machine equipped with four 2.4-GHz/4MB-
cache 64-bits Intel processors and 4 GB of RAM memory,
running LINUX (kernel version 2.6.22). Each core hosts
one instance of the optimistic simulation kernel.

The test-bed application software is a parameterizable
cellular system simulator, explicitly modeling fading and



channel interference phenomena [10]. Each simulation ob-
ject instance models a single cell, by tracking, via dynami-
cally allocated data structures, channel allocation and power
management information for ongoing calls. Specifically,
upon the start of a call destined to a mobile device cur-
rently hosted by the cell, the simulation object allocates a
new call-setup record via a couple of dynamically allocated
data structures, and links it to a list of already active records.
Each record gets released when the corresponding call ends
or is handed-off towards a different cell. In the latter case,
a similar call-setup procedure is executed at the destina-
tion cell. Upon call-setup, power regulation is performed,
which involves scanning the aforementioned list of records
for computing the minimum transmission power allowing
the currently setup call to achieve the threshold-level SIR
value, according to GSM technology. Data structures keep-
ing track of fading coefficients are also updated while scan-
ning the list. We have simulated macro-cells, each one man-
aging up to 1000 wireless channels, using classical settings
such as exponential distribution of the call inter-arrival time,
and average call duration of 2 minutes. Also, the call inter-
arrival frequency to each cell has been varied in the interval
between 1 and 6.25 calls per simulation time unit, thus pro-
viding increasing values of the channel utilization factor (in
between 12% and 75%), and hence increasing values of the
expected length of the aforementioned list of in-use records.
This has a twofold effect: (1) The storage requirement for
the state of each simulation object varies in between 4KB
and 32KB (meta-data for the maintenance of the memory
map being excluded). (2) The event granularity grows from
finer to coarser values. These variations allow us to eval-
uate the effects of the innovative capabilities provided by
Di-DyMeLoR in differentiated configurations.

For instrumented and non-instrumented software we
comparatively report in Figure 2 the measured values for the
below parameters, with measures obtained for a small-sized
test-bed benchmark configuration formed by four simula-
tion objects (each one hosted by one instance of the simu-
lation kernel running on the Quad-Core machine): (A) The
average latency for the execution of a simulation event. (B)
The average latency for a log operation. (C) The average
latency for restoring the memory map to a logged state. (D)
The average size for a taken log.

As pointed out in Section 3.2.2, the latency of a state
restore operation in Di-DyMeLoR directly depends on the
interleaving between full logs and incremental logs along
the log chain. Hence, for the parameters in points (B), (C)
and (D), the plots refer to different interleaving steps be-
tween full and incremental logs, namely incremental logs
taken at each event and full logs taken every 20 and every
50 log operations, respectively.

By the results, we see that the overhead caused by the
memory update tracking mechanism on the event execution
latency is very limited. Also, CPU and memory require-
ments for each log operation in the instrumented case are
definitely lower than those observed for non-instrumented
software. The latter configuration actually provides a gain
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Figure 3. Event Rate vs the Checkpoint Period
for Three Different Channel Utilization Factor
Values (1024 Simulation Objects).

for state restore operations. Anyway, by the plots we see
that performance decrease in the state restore for the case of
instrumented software can be controlled (while maintaining
the advantages on the side of logging) via proper selection
of a non-oversized interleaving step between full and incre-
mental logs.

In order to assess the overall benefits provided by Di-
DyMeLoR, in Figure 3 we also report plots related to the
event rate (committed events per wall-clock time unit) while
varying the state log interval, also known as checkpoint pe-
riod. This time the curves refer to a much larger configura-
tion of the aforementioned benchmark, with 1024 macro-
cells evenly distributed on the four simulation kernel in-
stances hosted by the Quad-Core machine.

Concerning the checkpoint period, namely the indepen-



dent parameter, we recall that it directly affects the trade-
off between state log and coasting forward overheads, and
potentially affects the overall memory locality due to vari-
ations in the memory usage for checkpoints. For Di-
DyMeLoR, a state restore (occurring before coasting for-
ward, if any) additionally depends on the interleaving step
between full and incremental logs, which has been set to 20
in this study. Also, the plots are reported for three different
channel utilization factors (25%, 50% and 75%) in order to
observe the overall performance while varying the applica-
tion software CPU/memory requirements.

By the results we see that, as soon as the application
exhibits non-minimal memory requirements (namely when
the channel utilization factor is non-minimal, hence induc-
ing an increase in the simulation object state size), the incre-
mental approach provides significant performance advan-
tages. We note that these advantages come from a direct
reduction in the cost of state logs (this can be noted espe-
cially for small values of the checkpoint period) and from
increased locality (this can be noted especially for increased
values of the checkpoint period, where the event rate curve
for the incremental case does not stay flat, as instead occurs
for the non-incremental case). Concerning the latter point,
the frequency of GVT calculation and related memory re-
covery operations has been set in a way to never exceed
60/70% of RAM usage, so not to incur swapping phenom-
ena that would alter the reliability of the reported measures.
Hence, improved locality does not even include potential
(further) advantages from incremental logging thanks to the
avoidance of swap phenomena, which are more likely to oc-
cur with non-incremental logs in case of (excessively) lazy
settings for GVT operations.

6 Summary
In this paper we have presented a software architec-

ture complementing an existing open source layer support-
ing transparent log/restore operations for optimistic sim-
ulation objects with state layout based on standard dy-
namic memory allocation/deallocation services. The new
capabilities added through the presented architecture entail:
(i) Lightweight run-time monitoring mechanisms (based
on ad-hoc software instrumentation facilities) for tracking
memory update references inside the current memory map
associated with the state of each simulation object - (ii)
Optimized log/restore based on incremental copies of dirty
chunks inside the memory map. Some experimental results
have also been reported for an evaluation of the benefits
achievable through the provided approach. Planned future
work encompasses: (A) Supports for completely transpar-
ent state management, based on incremental logging, in the
context of application software integration with third party
libraries - (for which we have currently provided a par-
tial solution only in case of coping with stateless libraries,
and libraries not directly interacting with lower level mem-
ory allocation/deallocaton APIs) - (B) The design of (auto-
nomic) mechanisms for dynamic switching between incre-
mental and non-incremental operating modes, in order to
further improve the system run-time behavior by optimiz-

ing the trade-off between the cost of memory update track-
ing (to be paid in case the incremental mode is switched on)
and the cost of (full or incremental) log operations.
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