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Abstract—Checkpointing techniques for speculative parallel
simulation of discrete event models have been widely studied
in the literature. However, there has been a very marginal
attempt to exploit operating system page-protection services,
which have instead been largely exploited in the context of
checkpointing for fault tolerance. In this article, we discuss
how these services can effectively manage simulation mod-
els with large states and write-intensive events in zones of
the state layout. In particular, we present a solution where
the correlation of write operations on buddy pages in the
state layout can be exploited to achieve effective incremental
checkpointing support, which allows scaling down the costs of
operating system services. Our solution does not require any
instrumentation of the simulation application code and is us-
able on any Posix-compliant operating system. We also discuss
its integration within the USE (Ultimate-Share-Everything)
open-source speculative simulation package and report some
experimental data for its assessment.

1. Introduction

One of the core aspects that needs to be considered in
speculative (a.k.a. optimistic) simulation is how to support
the reconstruction of past states of the simulation objects.
These may need to be restored if speculation is detected to
have been carried out along a wrong event sequence, which
has been affected by timestamp ordering violations.

A historical way to address this problem has been using
checkpointing techniques, e.g. [1]. However, the solutions
proposed in the simulation area typically did not exploit
write-protection services, offered by common operating sys-
tems, to build incremental checkpointing schemes. Instead,
they have been primarily exploited in the area of fault tol-
erance, e.g. [2]. The primary motivation for the nonreliance
on page-based solutions has been the reduced granularity of
the state of simulation objects in several models. However,
for larger state ones, and relevant write activities of the
simulation events in zones of the object state, the lack of
solutions exploiting the write-protection support of pages
can lead to missing opportunities for effectiveness.

In this article, we investigate the possibility of exploiting
operating system write protection for building an incremen-
tal checkpointing solution suited for speculative simulation
on Posix systems, e.g. Linux. Our approach is based on

Figure 1. The buddy pages mechanism exploiting write-protection

introducing the notion of buddy pages in the memory seg-
ment used for hosting the state of a simulation object, as
shown in Fig. 1. Two pages, A and B, are buddies if they
are contiguous and aligned in the segment layout. If these
pages are both observed to be write accessed by the events
occurring at the object, then we group the two buddies
together to build a larger page C that is effectively managed
in terms of:

• actual checkpointing tasks, which can lead to saving
both pages even though their dirtiness has been
discovered via a single write-access interception on
just one of the pages;

• usage of the operating system write-protection
services—in particular the mprotect() system
call—to reopen the write access and to discard the
interceptions of future write accesses on the over-
all larger page C carried out while processing the
events.

In our approach, the page C generated by grouping the
smaller pages can then be grouped with a same-size page
D to further reduce the memory protection costs and the
costs for intercepting the write accesses, which are required
to determine what zones of the state of a simulation object
need to be incrementally checkpointed.

Optimizing the usage of operating system services—
namely, reducing the number of calls to mprotect() and
the number of SIGSEGV signals to be managed for the
write-access interception, thanks to the grouping of pages—
is fundamental in the speculative simulation area. This is
because out-of-timestamp ordering errors are endemic and
require checkpointing to be executed not too infrequently.
Our work exactly copes with this requirement, pointing to
the reduction of the actual memory/cost for incremental



checkpointing operations of simulation objects in scenarios
not fully covered by the literature—namely, large state sim-
ulation objects and intensive write-access activity in zones
within the state.

Our solution is usable on generic simulation platforms,
and we present its integration within the USE (Ultimate-
Share-Everything) simulation package [3]. Also, we report
experimental results showing how this technique is effective
with workloads where the large state size of the simulation
objects is coupled with event types whose write accesses to
the state—possibly carried out along a sequence of events—
target zones that have a size of the order of multiple pages.

The remainder of this article is structured as follows.
Related work is discussed in Section 2. The innovative
incremental checkpointing technique is presented in Sec-
tion 3. Experimental data are provided in Section 4. The
conclusions are discussed in Section 5.

2. Related Work

Checkpointing in speculative simulation has been deeply
studied. Several works have investigated how to exploit
infrequent (e.g. periodic) checkpoint techniques to optimize
the tradeoff between the cost of checkpointing and the cost
of restoring a state that was not checkpointed [1], [4], [5],
[6], [7], [8], [9]. Other authors have proposed the usage
of acceleration based on hardware support to execute the
memory copy operations required to pack the state of the
simulation object in the checkpoint buffer [10], [11]. All
these solutions target the case of non-incremental check-
pointing; hence they can be considered orthogonal to the
solution we provide in this article.

Regarding works targeting incremental checkpointing,
[12] and [13] propose techniques based on binary-level
instrumentation, while the work in [14] proposes the usage
of operator-overloading schemes in the context of object-
oriented programming. The objective of these works is to
support the fine-grain identification of the write accesses to
the state of the simulation object in order to save reduced
zones of the state layout. These solutions can be extremely
useful for scenarios of (very) reduced volumes of write
accesses to the object state. In contrast, in this article, we
investigate the opposite scenario of incremental checkpoint-
ing for the case of non-minimal size zones updated by the
execution of the events. Still for incremental checkpointing,
the solution in [15] provides support for identifying all
the memory updates through the reliance on Performance
Monitoring Units (PMUs) offered by modern processors.
Differently from this proposal, we can keep track of all
the memory writes targeting a specific page, or a group of
pages, via the interception of a single memory update—
after which the write protection is eliminated—rather than
the interception of all the occurring memory updates.

Other works have studied how to compare or mix incre-
mental and non-incremental checkpointing [16], [17], [18],
[19]. This has been done via the reliance on performance
models, that can indicate the convenience of one or another

technique in a specific phase of the execution of the simula-
tion. Our proposal is still orthogonal to these techniques and
could be exploited for building model variations to assess
the best-suited technique (our own or a different one) to be
used during any phase of the model execution.

Rollback and state reconstruction have also been sup-
ported using reverse computing techniques [20], [21], where
backward execution steps are used to rebuild the past state
image that is requested when a timestamp-order violation
is detected. In the proposal in [20], the backward steps are
executed via the implementation of reverse event handlers,
while in the proposal in [21], they are executed via the
runtime generation of machine instructions for the reversing
of memory updates. These techniques have one major target:
reducing the need for large memory (for saving state infor-
mation) while still enabling the possibility of restoring a past
state. However, as also discussed in [21], they need to be
integrated with checkpointing to avoid problems such as the
excessive number of backward steps for state reconstruction.
Therefore, our present proposal is still orthogonal and likely
combinable with these solutions.

Regarding the management of incremental checkpoint-
ing in speculative simulation via the exploitation of op-
erating system write-protection mechanisms, the work in
[22] provides an approach for the context of HLA (High-
Level Architecture) federations. In this work, the authors
present a solution where speculative execution is supported
transparently for the case of federate simulators designed
to exploit the HLA conservative (non-speculative) interface.
Differently from what we propose in this article, this solu-
tion has been mainly oriented to the compile-time/runtime
identification of the operating system pages that in the ad-
dress space are part of the federate state (rather than the Run-
Time-Infrastructure of HLA) and need to be write protected
for supporting incremental checkpointing. However, each
page is treated independently from the others regarding write
access interception and memory copy for checkpointing.
Differently, in this article, we address optimization aspects
related to the management of operating system services—
reduction of the number of SIGSEGV signals to be pro-
cessed and calls to mprotect() services—thanks to the
exploitation of the correlation of memory updates on differ-
ent buddy pages.

The reliance on operating system services for page write
protection has been largely exploited in the context of
checkpointing for fault tolerance (e.g. [2], [23]). However,
several of the proposed solutions leave the operating system
kernel with the task of opening the write permission to pages
(e.g. after a copy-on-write event). At the same time, most
of these solutions have the principal target of reducing the
intrusiveness for materializing the checkpoints (namely, the
page copies) on stable storage. In this article, we cope with a
different scenario since the checkpoints supporting rollback
for out-of-timestamp order event processing in speculative
simulation do not need to be transferred to stable storage—
in fact, the out-of-timestamp order processing of events does
not lead to main memory loss, as instead it occurs in the
case of faults. Furthermore, we exploit the memory access



profile, and the correlation of memory writes on different
buddy pages, to optimize the incremental checkpointing
operations. This is fundamental in speculative simulation be-
cause of the intrinsic need for (frequent) state restoration—
hence relatively frequent checkpoints—in the event of out-
of-timestamp order speculative event processing.

For scenarios where the frequency of checkpoints needs
to be higher, such as, for example, the reliance on check-
pointing for automatic error recovery in server-side appli-
cations, the work in [24] provides an approach in which
the hot pages of an address space are checkpointed prior
to their actual write access. Our proposal has some points
in common with this solution since we also rely on an-
ticipated page-level marking/checkpointing vs the actual
write. However, we also provide support for optimizing the
opening of memory write permissions based on the notion
of buddy pages. This is done by relying on the correlation
of the memory write accesses along sequences of simulation
events.

3. The Checkpointing Technique

3.1. Baseline Concepts

Any reliable incremental-checkpointing scheme needs to
keep track of write accesses to the simulation-object state
in order to build a log that can be used for restoring the
state during a rollback phase. Hopefully, the resulting log
should be smaller than taking a full snapshot, allowing us
to save clock cycles and memory when the log is generated.
At the same time, the incremental checkpoint can be taken
after a given number of event executions to still optimize
the tradeoff between the checkpointing cost and the state
restoration cost. When such a periodic approach is taken,
the interception of a memory write leads to simply marking
the zone that is being dirtied. Hence, when the incremental
checkpoint is taken, the marked zone is inserted in the
checkpoint since its new value was not present in some
already taken checkpoints.

Furthermore, a series of incremental checkpoints can
be alternated with infrequent full checkpoints, which helps
discarding obsolete logs preceding the last computed Global
Virtual Time (GVT) in a speculative simulation run. In
particular, an infrequent full log with a timestamp less than
(or equal to) the GVT value enables the discarding of all the
preceding incremental checkpoints—since the restoration of
some state will find all the requested parts to be restored by
backward traversing the incremental-checkpoint chain up to
that full checkpoint at worst. Figure 2 shows a scheme in
which incremental checkpoints are taken after the execution
of multiple events (say, A, B and C) while a full checkpoint
was taken before starting the incremental phase.

We align our solution to this type of operation of the
incremental checkpointing technique in order to still be able
to exploit literature results for what concerns both the cost
trade-off optimization (i.e. the selection of the number of
events after which the incremental checkpoint can be taken)

Figure 2. A reference scheme for incremental checkpointing in speculative
simulation systems.

and the possibility of effective memory recovery after a new
GVT calculation (thanks to the reliance on infrequent full
checkpoints). Furthermore, we also exploit DyMeLoR [25],
a library for the interception of calls to the dynamic memory
allocation API (e.g. the malloc() function), which allows
determining at any time what memory segments within an
area destined (pre-reserved) for the simulation object are
actually used by the object and need to be therefore included
in the infrequent full log. This is the case for the memory
segment shown in Figure 2.

As we have already discussed, in the literature the in-
terception of the memory update operations performed by
the events has been typically supported by instrumenting
the simulation model to replace each memory write access
with a sequence of instructions that mark the target zone
as dirty within some metadata table. However, considering
simulations with large states and characterized by a non-
minimal intensity of write activities by the events into
determined zones, this solution might not be fully adequate.
In particular: 1) it does not take into account the locality of
memory update operations; hence two (or multiple) mem-
ory updates on close memory zones need to be both (all)
intercepted by the instrumentation support; 2) it can incur
multiple interceptions of updates on the same target memory
location, which are essentially useless in the scenario where
the incremental checkpoint is taken periodically (after a
given number of events). In fact, we only need to know if
a memory zone has been dirtied at least once before taking
the incremental checkpoint.

The two points evidence how, for specific simulation
workloads, the instrumentation-based approach can intro-
duce an overhead during the event execution caused by
the interception of memory write instructions, which might
increase the average event granularity, hampering perfor-
mance or the energy footprint. Hence, the advantages that
can be achieved, e.g. in terms of reduction of the size
of checkpoints thanks to the incremental approach, might
require excessive costs in terms of CPU cycles.

We tackle this problem by introducing a tracing mech-
anism that leaves unaltered the simulation-model code—
we do not rely on any instrumentation technique. This is
achieved by exploiting operating system facilities that allow



protecting memory against write accesses and to un-protect
it when the write access interception has occurred on a
zone at least once. In particular, our solution targets Posix
operating systems, which expose the mprotect() system
call to specify which kind of accesses are allowed to touch
the memory belonging to a range of addresses, passed as
parameter. When a denied memory access—a write access
in our case—touches a protected memory region, the control
flow of the program executing the access is deviated due to
the delivery of the SIGSEGV signal.

We exploit such a mechanism to give control to a signal
handler as soon as the first write touches a protected seg-
ment. At this point, such a handler can update the metadata
table indicating what zone has been dirtied depending on the
current write access, and then it relinquishes control to the
original flow, which resumes from the offending instruction.
Clearly, the access rule needs to be updated in order to
enable the access to execute correctly upon its resume.

As is widely known, the operating system offers this
kind of support at the level of any individual page in the
address space. In particular, all updates on an individual
memory page can be traced by running the SIGSEGV
handler just once. Hence, reopening the write access to
the page after such an interception via SIGSEGV avoids
additional memory access tracing costs for memory updates
that work on the same page. These include updates that act
on the same target memory locations already updated by
some previous event on that same page.

However, using this baseline scheme relying on single-
page granularity, the two problems listed above in points 1)
and 2) still occur for memory updates on different pages.
This is because multiple handling of SIGSEGV is requested
(one for each individual page), which does not enable cap-
turing the correlation (and the locality) of memory updates
on close pages, just to reduce the costs for actually managing
such correlated accesses. Furthermore, it is important to note
that each single mprotect() call makes the underlying
operating system kernel rely on the IPI (Inter-Processor-
Interrupt) technology in order to signal to the different CPUs
that TLB data need to be flushed. Therefore, a reduction in
the volume of calls to mprotect()—compared to the calls
required to manage each individual page—can also lead to
greater scalability.

Our proposal tackles precisely this problem, and we
discuss in the following sections the decision model we use
in order to exploit this correlation to reduce the number of
instances of operating system services (SIGSEGV deliveries
and mprotect() calls) requested for the identification of
the dirtied memory zones after the execution of a set of
events, and the specific technique used for estimating the
costs we consider in the decision model.

3.2. The Decision Model

Considering a memory area M pre-reserved to host the
state of the simulation object, our decision model partitions
the memory area into groups (sets) of pages. In particular,
the partitioning scheme groups pages in M that are to be

considered as a unique zone to be fully reopened for write
access via the mprotect() system call when one write
operation on a single of these pages is issued by some event.
At the same time, all these pages belonging to the same
partition will be logged in the incremental checkpoint when
the checkpointing operation needs to be carried out.

Clearly, there is a plethora of possible interpolations
for building the partitions, also because mprotect() can
simultaneously manipulate multiple contiguous pages. At
the same time, we would like to choose the partitioning
that minimizes the overall costs, namely clock cycles for
running operating system services (e.g. the interception of
the SIGSEGV signal and the reopening if the write access
permission through mprotect()) and logging pages.

Assuming that costs can be accurately estimated, find-
ing the best partitioning scheme can be formulated as the
following optimization problem:

min
Z

∑
i∈Z

CP,i + CL,i (1)

where Z is a partitioning scheme of the memory area
M , CP,i and CL,i are the costs for protecting/unprotecting
and logging the partition i of the segment, including the cost
for tracing its access via the SIGSEGV handler.

A naive algorithm for solving this optimization problem
involves enumerating all possible partitioning schemes and
choosing the minimum-cost one. However, such an approach
requires exponential time. In fact, the total number of parti-
tioning schemes evaluated is equal to 2n−1, where n is the
number of memory pages within the area M . This can be
shown considering that: i) the number of points in which we
can split the memory area is equal to n− 1; ii) each point
provides two possible choices; namely, it can be considered
or not. Consequently, we can encode the choice of each
individual separation point as a bit within a string of n− 1
bits that can assume 2n−1 different values. For this reason,
we opted for considering a reduced set of partitions, namely
those that can be generated according to the buddy-system
scheme—in fact, our solution focuses on exploiting buddy
pages and their correlated accesses in write mode.

The buddy system imposes that i) partitions contain a
number of pages which is a power of two, and ii) the starting
address of each partition is aligned to its size within the
area M . These constraints make each partition composed of
two halves, called buddies, that are: aligned to their size,
contiguous to each other, and composed of two smaller
buddies with the same properties. Imposing that partitions
are generated according to the buddy-system specification
makes the number of partitions to be considered linear to the
number of elements in the set. In fact, we can consider the
n memory pages of the area M as the leaves of a complete
binary tree with 2n−1 nodes. Each non-leaf node of the tree
mentioned above represents a non-minimal partition that can
be protected/unprotected with an individual mprotect()
call. However, even though the number of admissible parti-
tions increases linearly with the number of pages within the
memory area, enumerating and evaluating all partitioning



Algorithm 1 The memory partitioning algorithm
1: procedure FINDOPTIMALSOLUTION( )
2: cost t tree[NUM_OF_PAGES ·2]
3: bit t optimal[NUM_OF_PAGES ·2]
4: int start ← NUM_OF_PAGES
5: int end ← 2 · start
6: for int i ← start to end− 1 do
7: tree[i] ← compute cost(i)
8: optimal[i] ← 1
9: while start ≥ 1 do

10: end← start
11: start← start/2
12: for int i ← start to end− 1 do
13: tree[i] ← compute cost(i)
14: cost t child sum ← tree[i/2] + tree[i/2 + 1]
15: if tree[i] < child sum then
16: optimal[i] ← 1
17: else
18: tree[i] ← child sum

schemes is still unfeasible. In fact, it can be shown that they
increase exponentially in the number of pages (we omit the
proof for the lack of space).

The main benefit of resorting to a buddy-system scheme
is that the new problem formulation has an optimal sub-
structure, namely, the optimal solution can be built from the
optimal solutions of subproblems. Intuitively, the optimal
solution is either protecting/unprotecting the whole segment
of memory m or it is the union of the optimal solutions
for the left and right halves of m, denoted as mL and mR,
respectively. In particular, we can easily show that:

C∗(m) = min (CP,m + CL,m, C∗(mL) + C∗(mR)) (2)

where C∗(i) is the cost of the optimal solution for a memory
segment i. The following theorem proves Equation 2.

Theorem 1. The optimization problem in Equation 1 with
partitions compliant with the specification of the buddy
system has the suboptimal structure shown in Equation 2.

Proof. We prove the statement by reduction to absurd. Let
us assume that an optimal solution with cost O∗ < C∗

exists. Such a solution cannot contain a single partition that
includes the entire segment m. In fact, such a case imposes
O∗ = CP,m + CL,m, contradicting the hypothesis.

The buddy system specification imposes no partition
within the optimal solution that crosses the middle of
the segment. Consequently, any partition of the optimal
solution belongs entirely either to the left half mL or
to the right half mR of the segment m. It follows that
O∗ = O∗L+O∗R, where O∗L and O∗R are the costs associated
to mL and mR. Furthermore, since O∗ is optimal, we
know O∗L + O∗R < C∗(mL) + C∗(mR), suggesting that
O∗L < C∗(mL) ∨ O∗R < C∗(mR). This contradicts the
hypothesis that both C∗(m,L) and C∗(m,R) are costs
associated with the optimal solutions for mL and mR.

Proving the presence of a suboptimal structure allows
us to build a simple algorithm to pinpoint the optimal
partitioning scheme. Initially, we map each page to a unique
partition. Then, we check each pair of buddy pages and,
if costs associated with a pair are higher than considering
an individual partition including both, the two buddies are

moved into an individual contiguous partition whose size is
twice a single page. If there is any couple of new larger
buddies, we check again if it is convenient to merge them,
repeating the process until no buddies of any size can be
merged. Since there are 2n − 1 admissible partitions and
each is considered once, the algorithm runs in linear time.

Algorithm 1 shows the pseudo-code of the proposed
approach. It relies on an array-based representation of a
static binary tree, where each node at index i has its left
and right child at index 2 · i and 2 · i+ 1, respectively. The
root is placed at index 1. First, the algorithm initializes each
leaf—corresponding to a memory page—by computing its
costs and by associating a partition to each individual page.
Then, it proceeds by scanning each level of the tree until
the root is reached. Whenever a partition has associated
costs lower than the sum of its two halves, it is marked
as a candidate for belonging to the optimal solution. The
partitioning scheme is finally computed by identifying all the
highest-level partitions marked as candidates to be included
in the optimal solution, which enables covering all the
memory pages in the area.

3.3. Estimating Costs

The algorithm presented in the previous section assumes
that the costs CP,i and CL,i for respectively protecting and
snapshotting a memory region i are known. This can be
achieved by running a micro-benchmark which evaluates the
cost of protecting and copying each different-sized partition.
However, such an approach allows us to roughly estimate
the synchronous costs of mprotect() invocations and the
costs of logging when a write access occurs to the protected
region. Clearly, the cost associated with logging a never-
written region is zero. Consequently, we redefine CL,i as
the expected cost for logging the region i, which can be
computed as CL,i = Pw(i) · CC(|i|), where Pw(i) is the
probability that at least one write access targets i, |i| is the
size of the memory region i, and CC(s) is the cost for
copying the content of a region whose size is s.

We keep track of Pw(i) for any admissible partition i as
the frequency of first-write accesses in a time window. In
particular, we store the number of first-write accesses Ni for
each partition i using a complete static binary tree. The root
of this tree keeps Nm of the whole segment m, its left and
right children keep NmL

and NmR
for the left and right

half of the segment, and so on until we reach the leaves,
which track Np for each memory page p. At this point,
Pw(i) can be computed as Ni/Nm when Nm > 0, that is,
as the ratio between the number of first-write occurrences
targeting the partition i and the total number of first-write
accesses targeting the whole memory segment. Clearly, if
Nm = 0, Pw(i) = 0 for any partition i.

Since we need to traverse the tree from a leaf to the
root at each first-write access, keeping updated the static
binary tree requires k log2 n time, where n is the number of
memory pages and k is the number of first-write accesses.

The estimation of costs is exploited in our solution to re-
determine the partitioning of the memory area periodically



by re-executing Algorithm 1. This also enables us to deal
with simulation models where the access patterns of the
events to the state layout change over time.

4. Experimental Evaluation

Test-bed Platform. Our solution is usable in generic specu-
lative simulation systems. In this section, we discuss how we
have integrated it into the USE (Ultimate-Share-Everything)
open-source simulation platform [3]. This package has been
designed to exploit shared-memory parallel machines, al-
lowing a very fine-grain sharing of the simulation workload
among the worker threads. At the same time, it adopts
frontier solutions for what concerns both the potential con-
flicts that worker threads might exhibit when managing the
simulation-engine data structures and the exploitation of
locality at the level of shared-memory hardware [26].

As mentioned, we used DyMeLoR [25] to integrate our
new incremental checkpointing support in USE. In particu-
lar, USE offers a standard programming model for the event
handler, which enables the handler to rely on dynamic mem-
ory allocation/deallocation, as typically offered by standard
libraries. Whenever a simulation object needs to allocate
memory for its state, it requests a chunk from a memory-
allocation service. DyMeLoR intercepts this request and
selects a non-busy chunk from a pre-allocated memory area
to satisfy the request. At the same time, the pre-allocated
storage for chunks of different sizes is embedded into differ-
ent portions (hence different pages) of the whole memory
area destined for the usage of the simulation object. It is
worth noting that the pages pre-reserved for hosting the
data chunks are only memory mapped. This means that if a
simulation object does not actually use them, they will not
take up space in RAM and will require no checkpointing
(i.e. memory copy) operation for storing them.

Through this architecture, we maximize the locality of
the memory chunks to be used when requesting memory of
a given size (which fits the size of these chunks). At the
same time, the locality of operations on chunks of different
sizes deals with different pages. This can be extremely
useful in scenarios where the simulation model may have
different memory access profiles (read vs write) on data
structures relying on the linkage of different-size chunks.
Our incremental checkpointing solution can operate in this
scenario by determining what pages—which host the chunks
that are accessed in write mode in a correlated manner—can
be grouped together when forming the partitions based on
the decision model presented in Section 3.2.

As for the underlying hardware, we exploited a machine
equipped with an Intel i7-12700K with 12 CPU cores (20
Hardware Threads) and 64GB of DDR5 RAM. The operat-
ing system is Ubuntu 22.04 (kernel version 5.19).

Test-bed Application. As we mentioned, the literature on
checkpointing in the speculative simulation area is ample.
At the same time, our proposal is not intended to surpass
existing solutions. Instead, we want to consider a specific
workload scenario that existing proposals have not covered.

This is the workload of models where the state of the
simulation object is large and the events can result as write-
intensive in zones of the state (hence in sets of pages).

Checking with models used for evaluating optimizations
in speculative engines for parallel simulation, we identified
PCS (Personal Communication System) as a good test-bed
for assessing our incremental checkpointing proposal. In this
model, each simulation object is in charge of simulating a
wireless coverage area (a cell), and each device currently
active in this area requires keeping entries in multiple lists
belonging to the state of the simulation object. In particular,
there is a list that includes basic information about an active
device, such as the identification of the channel used for
communicating. However, the model can be configured to
keep additional lists depending on the level of granularity
according to which the wireless communication needs to be
simulated. In particular, another list is used to manage the
power assigned to each device call, also depending on a
time-variable fading factor [27]. Furthermore, the state of
each simulation object keeps an area for storing statistical
data referring to different simulation time periods, which are
used for the production of output data by the simulation.
In our setup of the model, we used all its facilities, hence
having multiple linked lists within the state of each simu-
lation object. Also, the model has events requiring write-
intensive access to the state—in particular to the list of
power information records—to update it based on variations
of the fading that impacts each call.

We have run this model by considering cells equipped
with 1000 channels each, where the workload of calls leads
to a probability of busy channel of the order of 50%. The
overall size of the state of each simulation object resulting
from this configuration is of the order of 80KB (20 pages).
The total number of simulation objects has been set to 256,
leading to simulate a total count of wireless channels equal
to 256000.

Experimental Data. We report data comparing our pro-
posal with an incremental checkpointing solution where we
intercept memory-write accesses by the event handler to
the state of the simulation objects via a macro. This is
an ideal solution where instrumentation takes place at the
software-source level, and enables the compiler to generate
an executable with minimal number of machine instructions
required for the write-access tracing mechanism. Also, in
this solution, we rely on the incremental log of dirty chunks,
which is an alternative compared to the incremental log of
dirty (buddy) pages we exploit in our solution. In the plots,
we refer to the competitor as ISS-instrumentation while we
refer to our solution as ISS-buddy. For completeness, we
also report data gathered through a page-level protection
scheme with no actual partitioning of memory depending on
the access pattern to buddy pages. We refer to this solution
as ISS-page, and we note that it is useful in order to show the
effects of our optimization technique exploited in ISS-buddy,
which is based on the decision model we have presented in
Section 3.2. For fairness in the comparison, we executed
each run by using the same checkpoint interval for all the
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Figure 3. Simulation execution speed

techniques tested, exploiting infrequent full checkpoints in
all the cases. In particular, we set the USE runtime system
to take a full checkpoint each 10 checkpoint operations,
while all the others are incremental. Additionally, given
that the USE environment has been designed in order to
optimize the usage of the CPU in speculative simulation, in
particular by generating executions that highly likely suffer
from very minimal rollback, we have decided to set the
checkpoint interval to be used in all the tested techniques
to the value 80. This is a kind of limit value for enabling
memory recovery upon GVT calculation, which is well
suited for scenarios where the rollback frequency is very
minimal and the state size of the simulation objects is large,
as for the case of our test-bed application. All runs have
been executed on top of 20 CPUs (namely Hyper Threads)
of the underlying machine, and we have observed that the
model is executed with a rollback frequency less than 1%.

We report in Figure 3 the speed of the simulation execu-
tion when running with the three different solutions. In par-
ticular, we report the number of committed events per unit of
wall-clock-time. Each value is computed as the average over
10 different runs, each executed by relying on different seeds
for the pseudo-random generation. The results show how
ISS-buddy enables performance improvement compared to
ISS-instrumentation, in particular by enabling the simulation
run to commit 22% more events per wall-clock time unit.
Furthermore, it allows 12% improvement of the number of
committed events per wall-clock time unit when compared
with ISS-page. This is an indication of the effectiveness
of the partitioning scheme based on buddy pages for the
reduction of the impact of operating system services.

Finally, in Figure 4 we report data related to the size
of the incremental checkpoints for the three techniques,
comparing it with the size of the full checkpoint that is
infrequently exploited in all scenarios. As the plot shows,
the incremental checkpoint with minimal size is achieved
through ISS-incremental, which however shows the worst
performance as we discussed. At the same time, the in-
cremental checkpoint that is achieved through the ISS-
buddy technique is definitely lower than the size of the
full checkpoint. This indicates how ISS-buddy still sup-
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ports large memory usage reductions compared to the full
checkpointing technique. Also, this reduction is similar to
the reduction that would have been achieved by relying on
ISS-page, which, as discussed before, introduces a higher
cost than ISS-buddy in terms of CPU cycles requested for
supporting the incremental checkpointing technique.

5. Conclusions

In this article, we have investigated the usage of page-
based protection services offered by the operating system for
supporting incremental checkpointing in the context of spec-
ulative (optimistic) simulation. These services have been
widely used in the area of fault tolerance, where checkpoints
are required to be taken infrequently. In speculative simula-
tion rollbacks are endemic and require more frequent check-
points. In this scenario, we have shown how optimizing the
partitioning of the memory used to host the state of a simula-
tion object can give rise to an effective memory-protection
based incremental checkpointing technique. This solution
can effectively target models with large-state simulation
objects and with events that are write-intensive in specific
zones of the object state. We have presented a partitioning
scheme that combines buddy pages at different levels, and
have reported the results of an experimental assessment of its
advantages in terms of memory usage reduction, compared
to a classical full checkpointing technique, and reduced
number of CPU cycles, compared to a classical incremental
technique based on the instrumentation of memory accesses.
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[8] S. Sköld and R. Rönngren, “Event sensitive state saving in time
warp parallel discrete event simulations,” in Proceedings of the 28th
conference on Winter simulation, WSC 1996, Coronado, CA, USA,
December 8-11, 1996, J. M. Charnes, D. J. Morrice, D. T. Brunner,
and J. J. Swain, Eds. IEEE Computer Society, 1996, pp. 653–660.

[9] A. C. Palaniswamy and P. A. Wilsey, “Adaptive checkpoint intervals
in an optimistically synchronised parallel digital system simulator,”
in VLSI 93, Proceedings of the IFIP TC10/WG 10.5 International
Conference on Very Large Scale Integration, Grenoble, France, 7-10
September, 1993, ser. IFIP Transactions, K. Yanagawa and P. A. Ivey,
Eds., vol. A-42. North-Holland, 1993, pp. 353–362.

[10] F. Quaglia and A. Santoro, “Nonblocking checkpointing for optimistic
parallel simulation: Description and an implementation,” IEEE Trans.
Parallel Distributed Syst., vol. 14, no. 6, pp. 593–610, 2003.

[11] R. Fujimoto, J. Tsai, and G. Gopalakrishnan, “Design and evaluation
of the rollback chip: Special purpose hardware for time warp,” IEEE
Trans. Computers, vol. 41, no. 1, pp. 68–82, 1992.

[12] D. West and K. S. Panesar, “Automatic incremental state saving,”
in Proceedings of the Tenth Workshop on Parallel and Distributed
Simulation, PADS ’96, Philadelphia, PA, USA, May 22-24, 1996,
W. M. Loucks and B. R. Preiss, Eds. IEEE Computer Society,
1996, pp. 78–85.

[13] A. Pellegrini, R. Vitali, and F. Quaglia, “Di-DyMeLoR: Logging only
dirty chunks for efficient management of dynamic memory based
optimistic simulation objects,” in 23rd International Workshop on
Principles of Advanced and Distributed Simulation, PADS 2009, Lake
Placid, New York, USA, June 22-25, 2009. IEEE Computer Society,
2009, pp. 45–53.

[14] R. Rönngren, M. Liljenstam, R. Ayani, and J. Montagnat, “Trans-
parent incremental state saving in time warp parallel discrete event
simulation,” in Proceedings of the Tenth Workshop on Parallel and
Distributed Simulation, PADS ’96, Philadelphia, PA, USA, May 22-
24, 1996, W. M. Loucks and B. R. Preiss, Eds. IEEE Computer
Society, 1996, pp. 70–77.
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