
SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 1

NBBS: A Non-Blocking Buddy System for
Multi-core Machines

Romolo Marotta, Mauro Ianni, Alessandro Pellegrini and Francesco Quaglia

Abstract—Common implementations of core memory allocation components handle concurrent allocation/release requests by
synchronizing threads via spin-locks. This approach is not prone to scale, a problem that has been addressed in the literature by
introducing layered allocation services or replicating the core allocators—the bottom-most ones within the layered architecture. Both
these solutions tend to reduce the pressure of actual concurrent accesses to each individual core allocator. In this article, we explore
an alternative approach to scalability of memory allocation/release, which can be still combined with those literature proposals. We
present a fully non-blocking buddy system, where threads performing concurrent allocations/releases do not undergo any spin-lock
based synchronization. Our solution allows threads to proceed in parallel, and commit their allocations/releases unless a conflict is
materialized while handling the allocator metadata—memory fragmentation and coalescing are also carried out in a fully non-blocking
manner. Conflict detection relies in our solution on atomic Read-Modify-Write (RMW) machine instructions, guaranteed to execute
atomically by the processor firmware. We also provide a proof of the correctness of our non-blocking buddy system and show the
results of an experimental study that outlines the effectiveness of our solution.

Index Terms—Non-blocking algorithms, Shared-memory algorithms, Back-end memory allocation, Buddy system

F

1 INTRODUCTION

In standard libraries or Operating Systems (OSs), mem-
ory allocation is de-facto a shared-data management problem.
In fact, concurrent threads can issue allocation/release re-
quests to a same memory allocator. This requires thread-
coordination mechanisms in order to guarantee that the
state of the memory allocator is always maintained coherent.

Commonly, thread coordination has been implemented
as a spin-lock protected critical section, which can ham-
per scalability especially at larger thread counts. This is
a relevant issue, since the level of thread-concurrency is
increasingly exacerbated because of the modern-hardware
trend towards multi/many-core technologies.

Literature studies have tackled the reduction of the im-
pact of thread coordination (and the associated costs) on
performance via: (a) pre-reserving arenas, namely memory
segments, for each individual thread—this is what typically
happens in user-space allocators [1]—or (b) the usage of
intermediate allocation services, called cached allocators—as
for the case of OS-kernel allocation services based on quick-
lists [2] or SLAB [3]. Both these approaches try to keep low
the volume of concurrent accesses to the core allocator that
is in charge of ultimately delivering memory, either logical
or physical. In the approach in point (a), this is achieved
by resorting to the core allocator only when the thread’s
own pre-reserved arena, which is not accessed by other
threads, gets exhausted. In the approach in point (b), cached
allocation diminishes the pressure of concurrent accesses
to the core allocator—e.g. a kernel-level buddy system—

• R. Marotta and M. Ianni are with the University of Rome La Sapienza.
E-mail: {marotta,mianni}@diag.uniroma1.it

• A. Pellegrini is with Lockless S.r.l. E-mail: pellegrini@lockless.it
• F. Quaglia is with the University of Rome Tor Vergata. E-mail:

francesco.quaglia@uniroma2.it

Manuscript received XX; revised XX.

by having higher-level allocators destined to serve specific
memory requests, such as those associated with a given
size and/or memory alignment—this is the classical case of
kernel-level page-table or SLAB allocations. In such a case,
concurrent threads performing memory allocations undergo
a coordination phase only when they need to access the
same cached allocator instance or when this allocator is
exhausted and a new memory segment needs to be taken
from the core allocator.

Concurrent allocation/release operations have also been
handled by creating data separation on the core allocator
via multi-instance approaches, and redirecting the requests
towards different instances. This further increases the like-
lihood of saving the requests from actual conflicts that may
lead one or more of them to be delayed. For instance, this
approach is used in OS-kernel physical memory manage-
ment on large scale NUMA (Non-Uniform-Memory-Access)
machines, where multiple disjoint instances of the buddy
system are included, each one managing physical frames to
be allocated from—or released to—different NUMA nodes.
This has a crucial role to ensure that threads can easily
retrieve memory from the NUMA node they reside in.

Generally speaking, we can frame our contribution by
devising the notion of back-end and front-end allocators.
The former, which are those we have previously referred
to as core allocators, handle the lowest level of memory
management. The latter are built on top of the back-end
allocator with the goals of (i) reducing the access pressure
to it and (ii) satisfying more specific purposes.

In this article, we tackle the issue of scalability of back-
end memory allocation, which is an orthogonal approach
with respect to reducing the request pressure on the back-
end level by designing front-end allocators, e.g., adopting
(a), (b), or multiple-instance approaches. Specifically, we
present a non-blocking back-end memory allocator implement-



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 2

ing the buddy-system specification. We refer our solution to
as NBBS (Non-Blocking Buddy System).

In our solution, concurrent allocations/releases are not
coordinated via spin-locks. Rather, actual coordination, and
the guarantee of an always-coherent state of the buddy
system, are achieved by only relying on Read-Modify-Write
(RMW) instructions executed along the critical path of allo-
cation/release operations. These instructions are exploited
to detect whether concurrent requests have conflicted on the
same portion of the allocator metadata. This may lead a few
requests to be aborted and retried, as in the classical non-
blocking algorithmic paradigm devised in [4]. However, if
conflicts do not materialize, then our proposal fully saves
the latency that would be spent by lock-based approaches,
which temporarily block concurrent operations a-priori of
their execution.

Our non-blocking solution can be used in combination
with any already existing scheme aimed at diminishing the
pressure of concurrent accesses to the back-end allocator,
e.g., by introducing multiple instances or combining it
with front-end allocators. This is because our unique goal
is to provide a memory allocation system that optimizes
the management of concurrent accesses with respect to
lock-based approaches. On the other hand, having a more
efficient back-end allocator can allow to reduce the im-
pact of, e.g., pre-allocation on actual memory unavailability
in scenarios where there are skewed memory usages by
different threads—so that the pre-reserved memory for a
given thread cannot be used for serving a more memory-
demanding one.

Our buddy-system implementation has been released as
free software1, and we also provide a proof of its correct-
ness as well as experimental data demonstrating the actual
scalability of our proposal.

The remainder of this article is structured as follows. In
Section 2 we discuss related work. The non-blocking buddy
system and its correctness proof are presented in Section 3
and Section 4, respectively. Experimental data are provided
in Section 5.

2 RELATED WORK

The theoretical foundations of non-blocking concurrent al-
gorithms have been presented by the seminal work in [4].
This work has opened the path towards the design and
implementation of algorithms that can fit well the scalability
requirements imposed by modern (large-scale) multi-core
machines. Also, the avoidance of lock usage in such new
algorithmic class has indirectly offered the opportunity to
develop coordination algorithms that are more suited for
CPU-stealing contexts such as Cloud-based computing. In
these contexts, the de-schedule of a lock-holding thread
because of CPU-steals can lead to detrimental effects on
performance—and waste of energy—because of the stretch
of the spin-locking phase by other threads attempting to
access the same critical section. Along this direction, a lot of
effort has been spent in developing non-blocking versions
of classical data structures such as lists or queues [5], [6],
hash-tables [7], registers [8], [9] binary-search trees [10], [11]
and priority queues [12], [13].

1. https://github.com/HPDCS/NBBS

Compared to all these solutions, our proposal is or-
thogonal since we focus on a buddy-system data struc-
ture. Also, while many solutions in the memory allocation
context have been devised in order to reduce the negative
impact of concurrency and synchronization on memory
allocation/release by relying on pre-reserving or caching, no
one fully faces the problem of concurrent accesses to back-
end allocators, e.g., a common OS-level buddy system.

Hoard [14] has been a breakthrough in memory allocator
design. This solution is based on pre-reserving memory to
be delivered to specific threads (or CPU-cores), and resorts
to lock-based coordination across the threads whenever the
pre-reserved memory is fully used by a thread and the
global state of the memory allocator needs to be changed
in order to provide a new pre-reserved area. Similar ap-
proaches, where threads operate on pre-partitioned heaps
(hence on different memory-allocator instances), have been
later presented. The work in [15] provides non-blocking
capabilities of memory allocations ”with high probabil-
ity”, just depending on the pattern of memory alloca-
tions/releases and the overall memory usage. To this goal, it
exploits the concept of Restartable Critical Section, which is
an invasive approach to provide non-blocking progress by
interacting with the underlying operating system. Finally,
this proposal does not address the problem of avoiding
blocking allocations/releases in scenarios where a same
allocator instance can be concurrently accessed by multiple
threads. After that, several works were able to provide lock-
free adaptations of the original Hoard allocator. To the best
of our knowledge, the first one to achieve this goal is the
lock-free allocator described in [16]. Later, the authors of
NBMalloc [17] designed a new data structure, called flat-
set, to provide non-blocking management of pre-allocated
blocks within per-processor heaps, reducing the probability
of false sharing and external fragmentation. Similarly, SF-
Malloc [18] uses a non-blocking stack data structure to post
memory across different threads within the pre-reserving
scheme. Finally, the authors of LRMalloc [19] were able to
further improve the performance of their predecessors by
introducing an optimized per-thread cache.

The solution in [20] is suited for SIMD systems and
exploits worker threads operating in isolation (on different
data portions) in order to deliver memory to a pool of
requesting threads. The workers do not block each other
thanks to pre-partitioned accesses to the allocator data
structures—they actually operate on different allocators.
Hence this approach does not provide a mechanism to
perform non-blocking memory allocation/release on a same
shared instance of the allocator, which is the target of our
buddy system. On the other hand, this solution looks to be
a reasonably scalable approach for devices such as GPUs,
where multiple threads typically do the same kind of opera-
tions in parallel, such as requesting memory to the worker in
charge of managing the allocator, which ultimately delivers
a unique memory block, each portion of which is used by a
different requesting thread.

Our approach is de-facto orthogonal to any approach
that tries to improve the scalability of memory allocation
via pre-reserving, since we optimize the actual handling
of concurrent operations on the core allocator—a buddy
system in our case—on top of which pre-reserving can be



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 3

put in place. Furthermore, it allows to cope with scenarios
where pre-reserving or cached allocation could be not fully
adequate. In particular, cached allocators and multi-instance
approaches do not fully cope with skews in memory uti-
lization by different caches/instances. This is the case of
OS-kernel physical memory allocation, where requests can
be issued by active threads either for the execution of
specific system calls, or because of the materialization of
logical pages into physical memory upon user-space code
accesses to a previously mapped logical memory region—
like an mmap-ed page on Unix systems. In these scenarios,
the skew of memory requests towards a given instance
of allocation service—such as an allocator operating in a
given NUMA node selected on the basis of memory-policies
associated with the requesting threads—can give rise to a
peak of requests saturating cached allocation and requiring
coordinated concurrent accesses to the underlying buddy-
system instance.

A solution with goals similar to the ones pointed out by
our proposal can be found in [21]. Here the authors present
a concurrent non-blocking memory allocator relying on a
kind of conditional atomic dec instruction, which is not cur-
rently supported by conventional processors. Conversely,
our proposal only relies on machine instructions offered
by off-the-shelf CPUs. Moreover, as pointed to by the same
authors, the solution in [21] is not able to effectively detect
fragmentation, thus possibly leading to a large amount of
false negatives (allocation failures) due to fated-to-fail allo-
cation attempts that cannot be satisfied via contiguous and
correctly aligned memory. This problem is avoided in our
solution since memory allocations are guaranteed to attempt
the acquisition of memory chunks that are always compliant
with the request (for both size and memory alignment).

The work in [22] presentes an allocator which provides
wait-free constant-time allocations and releases. However,
this work has several limitations that cannot be fairly
compared with our proposal. In more detail, its memory
operations target fixed-sized blocks and an a-priori known
number of threads.

Finally, COA [23] provides a scheme to fragment and co-
alesce arbitrary-sized memory blocks in a lock-free manner.
Moreover, in order to provide no constraints to the block
sizes, it needs additional dynamic non-blocking data struc-
tures (i.e. a lock-free binary tree [11]), and, hence, it requires
dynamic allocation of items (nodes) and a memory recla-
mation scheme (e.g. epochs [24] or hazard pointers [25]).
Consequently, this work does not implement the buddy-
system specification and it is not best suited to be the lowest-
level allocator in the memory-management architecture.

3 NBBS
3.1 Basics: Buddy-System Specification
A buddy system divides a contiguous memory region into
partitions, namely memory blocks, by recursively splitting
it into halves. These partitions are always contiguous, thus
minimizing external fragmentation. In order to handle a
memory allocation request, it looks for a memory block
large enough to satisfy the request. Every memory block
is associated with an order, namely an integer ranging from
0 to a specified upper limit. The size of a block of order n

TABLE 1
Bitmasks used to manage the status bits of a node.

SYMBOL VALUE

OCC RIGHT 0x1

OCC LEFT 0x2

COAL RIGHT 0x4

COAL LEFT 0x8

OCC 0x10

BUSY (OCC | OCC LEFT | OCC RIGHT)

is proportional to 2n, so it is exactly twice the size of blocks
that are at one order lower.

The peculiarity of a buddy system is that memory allo-
cations can be satisfied by: (1) returning a block if already
available; (2) splitting higher-order free blocks into smaller
ones; (3) merging lower-order free blocks into a larger one.

3.2 NBBS Memory Layout
Our non-blocking buddy system keeps track of the state of
the memory segment used for serving allocations by the
means of a static complete binary tree. The tree has a prede-
fined maximum depth D. The root of the tree corresponds to
(and keeps track of the state of) the entire memory segment
used to serve allocations. Each child of a node represents a
portion (one half) of the parent’s chunk of memory, while
the leaves represent the state of the minimum allocable
memory chunks, called allocation units. All the nodes with
depth i belong to the i-th level of the tree2 and they are asso-
ciated with the order D− i within the buddy system specifi-
cation. In particular, according to the classical buddy-system
structure, if a node at level i has size s, the children of this
node, located at level i + 1, have size s/2, and the union
of the blocks of memory associated with the children forms
a larger block of memory that exactly corresponds to the
parent. The overall size of memory managed by the buddy
system is equal to total memory. Then, the memory size
managed by a node at level i is equal to total memory/2i,
and the allocation units (corresponding to the leaves of the
tree) have size equal to total memory/2D.

In our non-blocking buddy system, each node in the tree
embeds a bitmap with 5 bits. They are used to represent
the state of the node itself—thus of the corresponding
memory chunk—and of its sub-trees (if any) according to
the following semantic: i) occupied indicates whether an
allocation operation has targeted exactly that node, meaning
that an allocation request has been served by the memory
chunk corresponding to that node; ii) left occupied and
right occupied signal if the branches (left and right, re-
spectively) covered by the node are totally or partially oc-
cupied. This indicates that some allocation request has been
served by a node in these sub-trees; iii) left coalescent
and right coalescent indicate whether a memory release
operation is currently in place in any of the two sub-trees.
In other words, these two flags indicate whether the node
is currently in a transient state because of some memory
release running on a sub-tree. The bitmasks shown in Table 1
are used to extract and manipulate the status bits associated

2. Usually, the level of a node is defined to be equal to its depth plus
1. We prefer the convention adopted in [26], where the level counting
starts from 0. This allows us to maintain the concept of level and depth
aligned (no by 1 offset).



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 4

l
e
v
e
l
 
0

l
e
v
e
l
 
1

l
e
v
e
l
 
2

l
e
v
e
l
 
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 1. Array representation of the tree structure.

with the nodes of the tree. In order to correctly manipulate
the status bits while handling concurrent operations, our
solution relies on RMW instructions offered by conventional
architectures, like x86. In particular, our operations are
based on the Fetch&Add (FAD) and Compare&Swap (CAS)
RMW instructions. In this work, we use two variants of the
latter: one returns the success (or the failure) of the operation
(denoted as BCAS), while the second provides the value of
the memory location before its execution (VCAS).

Each memory allocation request of a given size s is
mapped to the lowest-order chunk capable of satisfying
it. Also, when a node is allocated, the sub-tree having the
node as its root is considered to be fully occupied—this
is exactly what the occupied flag takes care of signaling.
Nevertheless, we do not reflect node occupancy on its
descending nodes, which helps saving RMW instructions
for updating the corresponding status bits. This could create
the illusion that a node is allocable while being actually not,
due to a previous—or concurrent—memory request bound
to a larger size (i.e. to an ancestor node in the tree). This
scenario is anyhow correctly handled by our solution.

We represent the tree keeping track of the buddy-system
state with an array of 2D+1 − 1 elements, which we refer
to as tree[]. We place the root node at index 1 and exploit
the conventional rule that, given a node with index n, the
left child of this node is at index 2n and the right child is
at index 2n + 1. This representation fulfills the condition
that nodes belonging to the same level of the tree are placed
in a contiguous portion of the array, thus simplifying the
search for free chunks of a given size while performing
allocations. In fact, starting from the amount of requested
memory s it is possible to compute the target level—the one
containing nodes useful to serve the request based on its
size—as level = blog2(total memory/s)c upper bounded
by the value D. The nodes belonging to this level are those
with index n ∈ [2level, 2level+1 − 1]. A graphical repre-
sentation of this structure is shown in Figure 1. Denoting
with base address the start of the memory region (either
physical or logical) managed by the allocator, for each node
with index n, it is possible to compute the starting address
startingn, the size sizen of the corresponding memory
chunk and the level associated with the node, according to

Algorithm 1 Helping functions to manipulate bitmaps in
the non-blocking buddy system.

procedure CLEAN COAL(int val, int child)
return val & ¬(COAL LEFT >> mod2(child))

procedure MARK(int val, int child)
return val | (OCC LEFT >> mod2(child))

procedure UNMARK(int val, int child)
return val & ¬((OCC LEFT|COAL LEFT) >> mod2(child))

procedure IS COAL(int val, int child)
return val & (COAL LEFT >> mod2(child))

procedure IS OCC BUDDY(int val, int child)
return val & (OCC RIGHT << mod2(child))

procedure IS COAL BUDDY(int val, int child)
return val & (COAL RIGHT << mod2(child))

procedure IS FREE(val)
return ¬(val&BUSY)

the following rules:

leveln = blog2(n)c (1)

sizen =
total memory

2leveln
(2)

startingn = base address+(n−2leveln ) ∗ sizen (3)

Finally, we couple the tree[] array with another array, called
index[]. This array is used to keep track of the indices of
the nodes that have been used for serving memory requests,
which have not yet been released. Given the address, we can
easily retrieve the index of the node and use this information
during a release operation, whose API receives the base
address of the to-be-freed node as its unique parameter.

We describe our non-blocking buddy system by rely-
ing on a few additional notations. The deepest reachable
level in the tree-based organization is stored in a variable
denoted as depth. Moreover, we denote as min size the
variable keeping the size of the allocation units associated
with the leaves, while max size maintains the maximum
amount of memory allocable with a single request—clearly,
max size ≤ total memory. Nodes, whose corresponding
size is equal to max size, are all located at the same specific
level, denoted as base level, which might not be the same
one of the root—i.e. the maximum allocable size is smaller
than the whole available memory. Consequently, each mem-
ory allocation/release operation consists in traversing the
tree up to base level in order to correctly manipulate
the status bits of the traversed nodes. In fact, these need
to be (re)aligned to the new state of the buddy system,
depending on the type of operation being performed. In
particular, a memory release operation starts from the node
to be released, while a memory allocation operation starts
from whichever node at the target level—that depends on
the size of the memory allocation request.

Given a value val of the status bits of a given node and
the index child of the previous node traversed while moving
towards the root, which is a child of the given node, Al-
gorithm 1 shows the status-bits manipulation functions we
used. CLEAN COAL(val, child) clears the coalescing bit rela-
tive to the branch of the child. MARK(val, child) sets the oc-
cupancy bit of the branch of the child. UNMARK(val, child)
clears both the coalescing and the occupancy bits rela-
tive to the branch of the child. IS COAL(val, child) re-
turns true if the coalescing bit relative to the child is set.
IS OCC BUDDY(val, child) returns true if the occupancy
bit relative to the buddy associated with child is set.



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 5

Algorithm 2 Allocation - Part A
A1: procedure NBALLOC(size t size) return void *
A2: if size > max size then
A3: return NULL
A4: ts← release count
A5: level←min

(⌊
log2

( total memory
size

)⌋
, depth

)
A6: for i← 2(level−1) to 2level − 1 do
A7: if IS FREE(tree[i]) then
A8: failed at← TRYALLOC(i)
A9: if ¬failed at then

A10: index[
startingi−base address

min size
]← i

A11: return startingi
A12: else
A13: d← (1<<(leveli − levelfailed at))
A14: i← (failed at + 1) · d
A15: if ts 6= release count then
A16: goto A4
A17: return NULL

IS COAL BUDDY(val, child) returns true if the coalescing bit
relative to the buddy associated with child is set. In order
to capture whether a node is a right or left child, all these
functions use a two-modulus operation applied to its index.
Actually, we have implemented mod 2 operations in a
bitwise fashion by simply checking the value of the least
significant bit. Finally, we additionally use IS FREE(val) to
detect whether a node, whose status bits are embedded
in the val bitmap, is currently free. This condition is veri-
fied when the node itself has not been reserved for some
allocation operation (it is not occupied), and none of its
left and right sub-trees has nodes currently reserved for
allocations—none of them is partially or fully occupied.

Similarly to most common allocators, our non-blocking
buddy system exposes two API functions for either request-
ing a chunk of memory of (at least) a given size or for re-
leasing some previously allocated memory chunk identified
by its address. Both tree[] and index[] are initialized to
zero at start-up. Recall that index 0 does not correspond
to any node of the tree since the initial element of tree[]
is associated with index equal to 1. Setting the entries of
index[] to zero indicates that none of the memory chunks
(and none of the corresponding addresses) managed by the
buddy system at any level has been delivered for usage.

For the sake of simplicity, the allocation/release algo-
rithms discussed in the following sections assume a sequen-
tial consistent memory model in the underlying hardware.
A discussion about implementing such algorithms on more
relaxed memory models is conducted in Section 3.5.

3.3 Memory Allocation Algorithm
The non-blocking memory allocation operation is divided
in two algorithms, NBALLOC() and TRYALLOC(). The pseu-
docode of NBALLOC(), which represents the memory al-
location API actually exposed to the user, is reported in
Algorithm 2. NBALLOC() takes the size of the memory
allocation request as input and, if such amount of memory
is available, it returns the address of a memory chunk large
enough to fit the request. If the size exceeds the overall
memory allocable by a single invocation, the allocation fails.
Conversely, if it is smaller than the minimum amount man-
aged by the buddy system, it is rounded to the allocation
unit, namely the size associated with the leaves. In the
general case, i.e. the request size is legitimate, the target
level of nodes to be considered for allocation is obtained by

0→1 0 0 0 0

0 0 0 1 0→1
3

1
0 0 0 0 0

0 0 0 0→1 0

0 0 0 0 1

2

base_level

Requested
Level

Node status

Fig. 2. Visual representation of TRYALLOC operations.

Rule 1 (line A5). Once identified the right level, thus the
range of indices of nodes suitable for the allocation, these
nodes are scanned in order to search for a free one. Note
that, differently from what is shown in Algorithm 2, not
necessarily such a search has to start from the first node
at that level. For instance, starting from scattered points
will more likely lead concurrent allocations (bound to that
same level) to target different free nodes, if any. When a
free node is found (line A7), the allocation operation tries
to: i) acquire it by setting its status as occupied; ii) fragment
its ancestors by setting their status as left/right occupied.
The latter phase can complete when there is no need to
fragment nodes, i.e. we reach the base level, namely the
one containing nodes corresponding to the maximum size
allowed for memory requests. However, if some ancestor
is already fully occupied, we cannot fragment it. Thus, the
allocation attempt fails and we restart from the end of the
memory region that was detected as fully occupied. All this
steps are included within the TRYALLOC() procedure. This
returns zero upon success. Otherwise, it returns the index of
the node that makes the allocation fail. In the latter case, the
algorithm moves to the next candidate node by exploiting
the index returned by TRYALLOC() (lines A13-A14) to skip
the whole sub-tree relative to the node causing the failure.
If no node at that level is found to be free, the allocation
operation fails if no concurrent release has completed in the
meanwhile, indicating that the current state of the buddy
system is not compliant with the issued request. Otherwise,
if some release operation has been concurrently completed,
the algorithm starts again searching for a free node. This
can be easily detected by checking if a counter incremented
upon each release completion has been updated concur-
rently.

When the TRYALLOC() procedure succeeds at reserving
a node, the relative address with respect to base address
is computed, and the corresponding entry of the index[]
array is updated to store the index of the reserved node (line
A10). This allows us to retrieve the level of a node targeted
by a release operation in constant time. Then, the memory
address is returned, indicating a successful allocation.

The pseudo-code of TRYALLOC() is reported in Algo-
rithm 3 and a visual representation of its steps is shown in
Figure 2. It takes the index of a node (previously observed
as free) as input and tries to (i) occupy this node, and (ii)
propagate the information about the occupancy up to the
ancestor node belonging to base level. The former task
is carried out by relying on the CAS machine instruction
(see line T2 corresponding to step 1 in Figure 2), which
atomically tries to update all the occupancy bits in the status



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 6

Algorithm 3 Allocation - Part B
T1: procedure TRYALLOC(index n) return index
T2: if ¬ BCAS(&tree[n], 0, BUSY) then
T3: return n
T4: current← n
T5: while levelcurrent > base level do
T6: child← current
T7: current← current>>1
T8: do
T9: curr val← tree[current]

T10: if curr val & OCC then
T11: FREENODE(n, levelchild)
T12: return current
T13: new val← CLEAN COAL(curr val, child)
T14: new val← MARK(new val, child)
T15: while ¬ BCAS(&tree[current], curr val, new val)
T16: return 0

bitmap of that node and to check if the status bits are still
set to zero. If the CAS fails, it means that something has
concurrently changed on the state of the node, affecting the
ongoing operation. Therefore, the memory allocation oper-
ation needs to be aborted and retried on a different node
just as in the spirit of non-blocking coordination algorithms.
Conversely, if the CAS succeeds, the procedure continues by
traversing the nodes along the path from the one currently
occupied towards base level. This traversal is required to
update the left/right occupancy bits of ancestor nodes to
reflect that their sub-tree has become partially occupied. In
this way the corresponding memory chunk will figure out
as fragmented into lower-order chunks, preventing other
allocations from occupying an ancestor of the just allocated
node. For each node along the path towards base level,
the procedure tries to mark its state as left or right occupied,
depending on what branch we have traversed (e.g., steps 2
and 3 in Figure 2). These operations are still performed via
the CAS machine instruction (see line T15) with the pecu-
liarity that, if it fails, it can be retried. In fact, the update we
are trying to perform can be still coherent with respect to the
memory allocation we are carrying out and other concurrent
operations. For instance, a CAS on the node we are traversing
may fail since a concurrent operation updates the occupancy
bit associated with the other branch of the tree, or even the
same branch. The scenario where a failure of the CAS at line
T15 indicates that the operation needs to be aborted—hence
it is not compatible with any other concurrent operation—
only occurs when another operation updates the (fully)
occupied bit. In this case, another operation has reserved
exactly that node—and the corresponding memory chunk—
for a concurrent (or already-finalized) memory allocation.
Hence, we cannot fragment that chunk to reserve some
buffer at a lower-order. We also note that, while attempting
to set to 1 the left/right occupancy bit of a node along
the traversal, the corresponding left/right coalescing bit is
contextually set to 0. As we will clarify in the next section,
this is required to make conflicting releases aware that the
branch is involved in a new allocation and cannot be freed.

If the base level node is reached along the backward
traversal, the node originally targeted when starting TRYAL-
LOC() can be considered as correctly taken. Conversely, if
some node with the occupied bit equal to 1 is found along
the path, the current allocation fails and nodes “specula-
tively” updated along the backward traversal have to be
restored to their original value. This is done by invoking

the FREENODE() procedure in Algorithm 4, which is also
used to support non-blocking memory release operations
in our buddy system. As pointed out, in such a scenario the
TRYALLOC() procedure ends returning the index of the node
for which the allocation has failed.

3.4 Memory Release Algorithm

A memory release is composed of three phases. In the first
phase, the ancestors of the node to be released are marked
as coalescing in order to notify that a release operation is
in place along the corresponding path towards the root. In
the next phase, the node to be released is marked as free by
resetting all its occupancy bits. During the last phase, all the
nodes previously marked as coalescing are updated again
to notify that the sub-tree involving the just released node is
actually free—therefore it can serve again memory requests.
The first two steps are implemented by the FREENODE()
procedure (see Algorithm 4), while the last one is carried
out by the UNMARK() procedure (see Algorithm 5).

The FREENODE() procedure is not directly exposed to
the user. It is encapsulated in the NBFREE() procedure,
which is the actual memory release API in our non-blocking
buddy system. This procedure receives the memory address
corresponding to the chunk to be released, computes the
relative index of the corresponding node in constant time
by inspecting the index[] array, and triggers the execution
of FREENODE().

FREENODE() takes as input the index of the node to be
released and an upper bound, which identifies the upper level
to be reached along the backward traversal associated with
its execution. If the FREENODE() procedure is invoked by
NBFREE(), the upper bound is set to base level, making
it traverse the tree up to the level corresponding to the
maximum allocable size. In this case, we are releasing a
previously allocated node and hence the status bits need
to be reflected up to the maximum useful level of the
tree. Conversely, if the procedure is invoked by a failed
TRYALLOC() (see line T11), the upper bound is set to the
level of the last updated node during an aborted memory
allocation. As discussed before, this execution path is related
to the need for TRYALLOC() to restore the status of nodes
involved in the traversal towards the maximum level, which
was interrupted because it found an already occupied node.

While traversing all the nodes up to the upper bound,
FREENODE() atomically sets the coalescing bit of the correct
position (value 1), via the CAS machine instruction (see line
F13 in Algorithm 4). A visualization of this phase is shown
in Figure 3. If along this path a buddy is detected as frag-
mented by other allocations, the climb is stopped early, since
the corresponding sub-tree cannot be considered as free. In
fact, nodes at upper levels in the tree will be still fragmented
regardless the completion of the on-going release, because
there is some allocated node in the opposite branch—this is
the case shown in Figure 3, where the right sub-tree of the
node below the upper bound is already fragmented.

Once the first phase is concluded, FREENODE() can start
signaling that the involved node has been released. These
steps are sketched in Figure 4. In particular, the node to be
released can be updated by resetting its occupancy bits with
a simple write. This takes place by simply writing zero on all



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 7

1 0 0 0 0

0 0 0→1 1 1
2

0 0 0 0 0

0 0→1 0 1 0

0 0 0 0 1

to-be-released 
node

1

upper_bound
level

Node status

Fig. 3. First phase of the FREENODE (lines F6-F19 of Algorithm 4).

Algorithm 4 Memory Release
F1: procedure NBFREE(void *addr)
F2: n← index[ addr−base address

min size
]

F3: FREENODE(n,base level)
F4: FAD(&release count,1)
F5: procedure FREENODE(index n, index upper bound)
F6: current← n>>1
F7: child← n
F8: while levelchild > upper bound do
F9: or val← MARK(0,child)

F10: do
F11: curr val← tree[current]
F12: new val← curr val | or val
F13: old val← VCAS(&tree[current],curr val,new val)
F14: while old val 6= curr val
F15: if IS OCC BUDDY(old val, child) ∧
F16: ¬IS COAL BUDDY(old val, child) then
F17: break
F18: child← current
F19: current← current>>1
F20: tree[n]← 0
F21: if leveln 6= upper bound then
F22: UNMARK(n,upper bound)

1→0 0 0 0 0

0 0 1→0 1 1→0
3

2

1
0 0 0 0 0

0 1→0 0 1→0 0

0 0 0 0 1

to-be-released 
node

upper_bound
level

Node status

Fig. 4. Second (line F20 of Algorithm 4) and third (UNMARK given in
Algorithm 5) phase of the FREENODE (Algorithm 4).

the status bits (see line F20 in Algorithm 4, which matches
step 1 of Figure 4).

The last phase is responsible for propagating the node
release up to the upper bound and, possibly, merging
buddies. This is achieved by invoking UNMARK(), which
traverses the nodes from the one to be released towards
the upper bound, cleaning the left/right coalescing and
occupancy bits of the traversed nodes (see steps 2 and 3
in Figure 4). For each node met, the first step is to verify
whether the coalescing bit is still set (see lines U8 and
U12): if it is not, the procedure returns, finishing the release
operation. As hinted before, this scenario is possible if some
allocation/release in the same sub-tree of the target node has
already occupied/released that coalescing sub-tree. In fact,
allocations clean coalescing bits to deal with this scenario.

Conversely, if the coalescing bit is still set, the procedure
tries to clean both the coalescing and the occupancy bits
atomically (line U11). This operation is done via CAS in
a retry-cycle in order to manage the case in which the
coalescing bit has been reset by some concurrent operation

Algorithm 5 Unmark
U1: procedure UNMARK(index n, index upper bound)
U2: current← n
U3: do
U4: child← current
U5: current← current>>1
U6: do
U7: curr val← tree[current]
U8: if ¬IS COAL(curr val, child) then
U9: return

U10: new val← UNMARK(curr val, child)
U11: while ¬ BCAS(&tree[current],curr val, new val)
U12: while (levelcurrent > upper bound) ∧
U13: ¬IS OCC BUDDY(new val, child)

(the resource has already been reused/released). Then, the
procedure checks if the buddy occupancy bit is set at each
step and, in the positive case, it returns. In fact, similarly
to the first phase, if such buddy is occupied, we cannot
propagate the node release and merge buddies in the upper
levels of the tree, since the chunks associated with these
buddies are still fragmented.

Overall, beyond providing non-blocking capabilities
while allocating or releasing memory at a given level,
our buddy system allows fragmenting and merging
operations—which logically move nodes across different
levels within the allocation scheme—still in non-blocking
fashion. Usually, these operations have to be performed
explicitly, but in our approach they are carried out implicitly
while performing allocations and releases.

3.5 Implementation with Relaxed Memory Models
Most of the updates of the buddy-system metadata, con-
currently accessible by threads, are performed in our al-
gorithms with atomic RMW instructions, that are totally
ordered with all other memory accesses. However, there
are two write operations that need special care when de-
ploying the algorithms on machines implementing a relaxed
memory-consistency model (like machines with non-FIFO
store buffers). The first one is at line A10 of Algorithm 2,
where the procedure writes the index array. The cells of this
array are read during release operations for speeding up the
retrieval of the node to be freed. In this case adding a mem-
ory barrier is enough for ensuring that another processor
gets the correct value to be used in a subsequent memory
release. The second write is the one for signaling the release
of a node previously occupied by an allocation (see line F20
of Algorithm 4). Since the status of a node is read before
attempting to acquire it, processors might not detect that a
release has completed. Also in this case, a simple memory
barrier is enough to avoid this issue, but it is suboptimal.
In fact, we can exploit the full barrier already materialized
by the atomic instructions of the UNMARK procedure used
to merge buddies (line U11 of Algorithm 5) and use an
explicit memory barrier in the release if and only if the
climb towards the root stops at the very first step—in such
a scenario the UNMARK procedure does not execute any
RMW instruction.

3.6 Optimizations
3.6.1 Free-Slot Search
On the one hand, the allocation algorithm performs a log-
arithmic number of steps for updating the tree. On the



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 8

other hand, it performs a linear search to find a free slot
for executing the TRYALLOC. This is because the nodes’
state does not provide information about the amount of
free memory available in its sub-trees. Consequently, we
cannot exploit binary search for finding a free node, e.g.,
by descending from the root. For this reason, we have
devised an optimization inspired to the allocation of file
descriptors in the Linux kernel. In particular, for each thread
we maintain (using per-thread memory) a pointer to the
last freed node (by that same thread) for each level. So we
essentially cache some node reference on a per-thread basis.
Consequently, a thread first tries to allocate the node with
cached reference and then, if the allocation attempt fails,
it starts a linear search for a free slot. Finally, the cached
information is updated in a successful allocation by making
it point to the next node at the same level. Here, the idea is
that the next node is expected to be available when the next
allocation for the same size will occur.

Such an approach is known to provide constant-time
search in practice and, thus, it is embedded by default in
our non-blocking buddy-system implementation. As a last
note, introducing this ”software cache” is not equivalent to
applying pre-reserving by introducing per-thread heaps. In
fact, nodes with references stored in a cache of a thread are
still available for allocations made by other threads. On the
other hand, initially populating the caches of the different
threads with random references to nodes allows us to reduce
the likelihood of actual conflicts in the allocation.

3.6.2 4-Level Packaging
In our solution, a thread performing successful memory
allocations/releases executes (at worst) a number of RMW
instructions equal to the depth of the acquired/released
node with respect to the base level value within the
tree. However, reducing the number of RMW instructions
executed along the critical path of any thread in a non-
blocking algorithm is an important aspect in terms of further
performance improvements. To this goal, we packed the
state of a bunch of nodes, namely a node and some of its
descendants, in the same status bitmap by exploiting the
fact that the number of status bits required to represent the
state of each node is significantly smaller than the word
size—which is 64-bits on nowadays conventional machines.
With this organization a thread is able to update at one
time the state of multiple levels with a single RMW atomic
instruction. Additionally, the coherence with the original
specification is guaranteed by the fact that all state-update
operations are performed via CAS, which succeeds only if
the status bit-mask has not changed (in any of its bits)
in the meanwhile. We note that, beyond the possibility to
improve performance depending on the specific workload,
we also have the advantage of reducing the actual amount
of memory locations required for storing the non-blocking
buddy-system metadata. On the down side, a compact
representation of the tree increases the likelihood of conflicts
across concurrent threads.

In more detail, given a generic node in the tree, its
state can be derived by looking at the state of its children,
as shown in Figure 5. In fact, the partial occupancy of a
node—say its left/right occupancy—can be computed with
a logical OR operation on the (partial and full) occupancy

Fig. 5. Derivation of node state by children’ state.

bits of the children nodes. In the same way, the coalescing
bits can be derived from the ones of the children. Moreover,
when a node is actually set as occupied also its children can
be logically considered to reside in the same state. In fact,
they cannot be considered as freely available for allocation.
In the same way, occupying two buddies looks to be the
same as fully occupying the parent node. This means that,
similarly to partial occupancy, full occupancy of a node can
be computed with a logical AND operation on the occupied
bits of its children.

Such a reasoning can be recursively applied to all the
ancestors of a node, hence a sub-tree starting from a given
node can be represented by the nodes in underlying levels.
Then, considering a word size equal to w bits, and a status
bitmap of size s bits, we can pack in a single w-bit variable
the states of a bunch of nodes of depth equal to d, with
2d · s < w, thus representing the state of 2d+1 − 1 nodes of
the original tree. In our case, we are able to manage 4 levels,
namely 15 nodes with 8 nodes (40 bits) in the fourth level, in
a single 64-bit word, reducing the number of atomic RMW
operations by a factor of 4, and the memory footprint by
a factor of 15 with respect to the original implementation.
A representation of this transformation is shown in Figure
6 and its impact on performance will be evaluated and
discussed in Section 5.

Of course, this means that, when an operation is per-
formed on a node that is not a leaf of a bunch, its state
has to be decoupled from its descendant in the same bunch.
To practically implement the operation in this variant of our
data structure, each node in the tree[] array stores a pointer
to its bunch and its position inside it (computed the same
way as in the original solution). The algorithms for the 4-
level solution are pretty similar to those shown before, with
two main differences. First, the direct allocation/release of a
node has to check and then set the state of all the nodes in
the sub-tree in the deepest level of the bunch. In particular,
given a node n with depth dn, its level Dn and position bn
inside the bunch can be computed as:

Dn = dn mod 4

bn = n mod 2Dn + 2Dn

Then, the corresponding bunch-leaf nodes have position p
in the bunch equal to:

p ∈ [bn · 23−Dn , (bn + 1) · 23−Dn − 1]

Second, updates of the bunches up to the root have to be
executed with a step of 4 levels in order to update each time
the relative bunch-node.



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 9

8 9

15 14 13 12 11 10 9 8

4 5 6 7

2 3

1

40 bits

10 11 12 13 14 15

bunch:

Fig. 6. Array representation of a bunch.

4 PROGESS AND SAFETY PROPERTIES

4.1 Progress

In this section, we provide a proof that our buddy system
achieves lock freedom [27], thus guaranteeing that some allo-
cation/release invocation eventually completes. Informally,
it ensures that if a thread does not make progress (i.e. its
operation aborts and needs to be retried indefinitely) this
is due to the advancement (the progress) of other threads.
Our proof proceeds in two steps. First, we show that both
allocation and release operations are lock-free if the pro-
cedures they rely on are lock-free. Then, we prove that
threads executing those procedures, which are stuck in a
retry loop, conflict with other threads which are anyhow
making progress. Hence these procedures are lock-free.

Lemma 4.1. NBALLOC is lock-free if TRYALLOC is lock-free.

Proof. There are two nested loops in NBALLOC. The outer
loop repeats if the inner loop ends without returning and
the variable release count has been updated in the mean-
while. Suppose by contradiction that NBALLOC is not lock-
free because of an infinite repetition of the outer loop.
In this case, concurrent release operations have completed
atomically incrementing the release count variable (see
line F4), so they made progress. Therefore, the assumption
is contradicted.

Consider now the inner loop. It is a finite loop, unless
the number of different memory chunks associated with
different nodes in the tree that needs to be traversed at
the target level for the allocation is infinite. But this is
impossible since it would mean that the buddy system
would manage an infinite amount of memory. At each loop
iteration, local values are computed and two functions are
invoked: IS FREE, which executes a fixed number of steps,
and TRYALLOC. Therefore, being the inner loop of NBAL-
LOC finite, NBALLOC completes if TRYALLOC completes.
Hence, the claim follows.

Lemma 4.2. NBFREE is lock-free if FREENODE is lock-free.

Proof. NBFREE entails two non-iterative statements and the
invocation of FREENODE. Therefore, it completes, if FREEN-
ODE completes. Hence, the claim follows.

By the structure of TRYALLOC, FREENODE and UN-
MARK, we can see that they contain one occurrence of two
nested loops. These loops have a well-defined structure. The
outer loop performs a climb from a source to a destination,
while the inner loop is a retry cycle for updating node
metadata with a CAS. Also, even though FREENODE invokes
UNMARK, this does not happen in any cycle of FREENODE.
Therefore there is no nested retry cycle in the code structure.

Lemma 4.3. At least one instance of a retry cycle in TRYALLOC,
FREENODE or UNMARK is guaranteed to make progress at any
time under concurrent invocations of these functions.

Proof. Suppose by contradiction that no retry cycle makes
progress under concurrent invocations of these functions.
For this to occur, we need that all the concurrently executed
CAS instructions in TRYALLOC, FREENODE and UNMARK
fail. But this is impossible since the processor firmware
guarantees that at least one, among all the concurrent CAS
successfully terminates, even in the scenario where the
same memory location is targeted by the concurrent CAS
instances. Hence, the assumption is contradicted and the
claim follows.

Lemma 4.4. TRYALLOC, UNMARK, FREENODE are lock-free
functions.

Proof. These functions perform climbs and by Lemma 4.3
an individual step of the climb at some level L in the
tree (associated with a retry cycle) is guaranteed to make
progress in some of these functions under concurrent invo-
cations. Unless the number of climb steps to be performed
by these function invocations is infinite (i.e. it should span
an infinite number of levels), which is impossible given the
finite amount of managed memory, eventually some climb
terminates. Hence, these functions are lock-free.

Theorem 4.1. NBALLOC and NBFREE are lock-free functions.

Proof. The claim follows from Lemmas 4.1, 4.2 and 4.4

4.2 Safety

Safety is commonly intended as “nothing bad happens”
with a specific (concurrent) algorithm. For a buddy system,
safety properties can be expressed as: S1) A successful
allocation returns a memory chunk, whose size is coherent
with respect to the size of the allocation request. S2) A
release request releases exactly the memory area targeted
by the request (not a different one). S3) A successful alloca-
tion returns a memory chunk not already allocated (either
partially or fully). S4) If there is enough memory available,
an allocation request that executes in isolation succeeds.

S1 is needed to show that an allocation reserves the
right amount of memory. S2 defines the behavior of an
allocator in face of legal release requests. S3 is needed to
ensure that memory is correctly acquired in face of multiple
and concurrent requests. Finally, S4 is required to rule out
trivial allocators that always provide no memory at all upon
memory allocation requests.

We prove that S1-S4 hold, additionally showing that our
solution actually coalesces memory upon release operations.

Lemma 4.5. A successful NBALLOC returns contiguous mem-
ory addresses.

Proof. A successfully completed NBALLOC returns an ad-
dress startingi where i is the index of the node ni related
to the allocation within the tree. By definition, ni manages
sizei addresses (Rule 2 in Section 3.2) from (and including)
startingi (Rule 2). Hence, the claim follows.



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 10

Lemma 4.6. A NBALLOC allocating a chunk of memory at level
L (in the tree-like structure) returns a base address B aligned
with min size · 2depth−L.

Proof. Let B = startingi be the base address returned by
an allocation, i be the corresponding node within the tree
and L = leveli be the target level. Without loss of gen-
erality, we assume that base address = 0. Consequently,
B = (i − 2L) · total memory · 2−L by Rules 2 and 3.
By definition, we know that there are 2depth leaves within
the tree, whose size is equal to min size. It follows that
B = (i − 2L) · min size · 2depth · 2−L. Hence, the claim
follows.

Lemma 4.7. Each function execution, that has reached a node
n during a climb, has successfully updated the state of all the
traversed nodes up to n.

Proof. A function that reaches a node n at a level l during
a climb has performed a climb step from level l − 1. Each
climb step in TRYALLOC and UNMARK is a while loop for
updating the state of a node that completes via a success-
ful CAS. Similarly, the climb steps within FREENODE can
complete if the successful CAS is performed by either the
invoking thread A or by a concurrent thread B. Hence, the
claim follows.

Theorem 4.2. S1 is satisfied.

Proof. By line A5, NBALLOC selects for the allocation of an
s-byte request the deepest level L (within the tree) such that
s ≤ min size × 2base level−L. Then, it iteratively calls the
TRYALLOC function passing the index of a node at level
L. Hence (see line T2), it attempts to set the BUSY flag via
CAS exclusively on the node identified by the input index,
namely a node at level L. Therefore, no other node of the
tree at levels different from L will ever be set as fully oc-
cupied when an allocation request asking for s bytes is run.
Hence, no chunk larger than the smallest size useful to serve
the s-byte request is allocated and the claim follows.

Theorem 4.3. S2 is satisfied.

Proof. By the structure of NBFREE, FREENODE and UN-
MARK, we know that a release operation will only act on
nodes of the tree (or a subset of them, if an early-stop occurs
while climbing, see lines F15-F17 and lines U8-U9) that are
included in the path between the node to be released, which
we denote as x, and an ancestor standing at base level.
In fact, FREENODE and UNMARK perform climbs along this
path. The operations done on the nodes belonging to this
path are the following ones. The node to be released is
marked with 0 in its state, see line F20. The other nodes
in the path are initially marked as left/right coalescing, see
line F13, hence their status is not set to 0 by this operation.
Successively, their status is set to 0 via CAS, see line U11,
if they are found to be still coalescing. Also, this operation
is successful only if no other CAS carried out by concurrent
operations leads to a conflict. Hence, when the state of a
node different from x is set to zero during a release, this can
never happen for nodes that have status bits different from
COAL LEFT or COAL RIGHT set to 1 (by a concurrent or an

already executed CAS). Therefore, no partially or fully occu-
pied node different from x is ever released (marked with 0)
by the release operation. Hence, the claim follows.

Corollary 4.4. Release operations effectively coalesce memory.

Proof. This can be inferred by the proof of Theorem 4.3.
In fact, the left (right) coalescent and occupancy bits of an
ancestor node n of the just released node can be set to 0 if
the coalescing bit is still set during the UNMARK execution.
Consequently, if the opposite right (left) bits were already
set to 0, the whole state of p results equal to 0. It means that
a subsequent allocation can fully acquire p. Hence, the claim
follows.

Theorem 4.5. S3 is satisfied.

Proof. Without loss of generality, let us suppose that the
allocation has targeted a generic level L of the buddy sys-
tem, and a node x. From Lemmas 4.5 and 4.6 the allocated
memory chunk is contiguous and aligned with respect to
the target size, hence it fully stands in a specific sub-tree
of the buddy system, starting at level L. This sub-tree
handles chunks that are fully disjoint with respect to those
associated with other sub-trees starting at the same level
L. Let us suppose by contradiction that the allocated chunk
corresponding to node x is already allocated, either partially
or fully. In this case, by Lemma 4.7, a concurrent, or already
completed, allocation has already set the status of all the
nodes that stand on the tree on a sub-path included between
node x and the ancestor node at base level. Hence, the
CAS instructions at line T2 or line T15 must have failed while
attempting to allocate node x, since they also attempt to
update the state of the traversed nodes, and the allocation
by NBALLOC would have failed, which contradicts the
assumption. Hence, the claim follows.

Theorem 4.6. S4 is satisfied.

Proof. By hypothesis we know that there is enough memory
to satisfy the request. By Theorems 4.3-4.7, it follows that
some node at the target level has its state set to 0 and all of
its ancestors are either completely free or fragmented. Since
the thread executes in isolation by hypothesis, it finds the
free node during the scan of the tree (see lines A6-A14 of
Algorithm 2). Finally, it (eventually) updates the targeted
node and its ancestors according to the TRYALLOC protocol
(see Algorithm 3) with an atomic CAS that cannot fail be-
cause of the absence of concurrency imposed by hypothesis.
Hence, the claim follows.

Finally, let us consider a release operation issued with
illegal parameters. Line A10 of Algorithm 2 (NBALLOC rou-
tine) writes the index of the allocated node within an entry
in the index array associated with the lowest-addressed leaf
of the allocated chunk of memory. During a release phase,
the address A (regardless its alignment) issued as parameter
is used to compute the lowest address of the leaf L including
A (see line F2 of Algorithm 4). If A is not a base address of a
previously allocated memory chuck, the entry of the index
array corresponding to L should simply result in an invalid
index. To this aim, we would just need to reset the entry
within the above-mentioned array to 0—recall that such an
index does not correspond to any node within the tree—and



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 11

check it upon releases. However, such an update should be
performed with an atomic CAS paired with a tag to avoid
ABA problems.

5 EXPERIMENTAL RESULTS

5.1 Setup
For the assessment we used 4 different test scenarios, two
of which have been taken from the literature, while the
other two have been appositely devised for this study. The
first is the Linux Scalability test [28], where threads execute
a fixed-length burst of allocations followed by a burst of
releases. The second is called Thread Test [14]. It is based on
threads behaving as in Linux Scalability, but the burst length
is reduced proportionally with respect to the thread count.
The third test (which is one of the two we devised), will
be referred to as Cache Test. It makes each thread execute
an allocation immediately followed by a release operation.
Finally, the fourth test (still devised by us for this study),
which we call Constant Occupancy, is based on having
each thread initially allocating a pool of chunks of different
sizes, with larger amount of allocations bound to smaller
chunk sizes, and then performing deallocations/allocations
by randomly selecting the element to be deallocated—hence
the corresponding deallocation size—and using this same
size for the subsequent allocation. Compared to the others,
this test more prominently uses allocations/deallocations
involving chunks of different sizes and tends to keep con-
stant the factor of occupancy of the buddy system. All the
tests have been carried out on a 64-bit NUMA HP ProLiant
server with four 1.9GHz AMD Opteron 6168 processors and
128 GB of RAM. Each processor has 12 cores, for a total of
48 CPU-cores. The operating system is Linux, with kernel
version 5.4.0.

5.2 Comparison with the Linux-kernel Buddy System
We have compared the performance of our non-blocking
buddy system (NBBS) with the Linux buddy system (de-
noted as linux-bs), which is one of the most widely used
back-end memory allocators around the world. Also, the
Linux buddy system already embeds mechanisms that re-
duce the impact of synchronization on concurrent allo-
cation/release operations. In particular, it is based on a
multi-list data structure, and exploits per-list spin locks
for handling concurrency. Furthermore, for single page al-
locations, the Linux buddy-system API is internally redi-
rected to a cached allocator that delivers already allocated
memory (therefore memory already pre-reserved via the
actual buddy-system internal mechanisms). These cached
allocators are per-CPU lists, which further helps saving
conflicts when allocations/releases of single page buffers
occur. Overall, using the Linux buddy system as the com-
petitor helps us assessing our proposal comparing it with
an extremely well conceived allocator already oriented to
concurrency.

Linux handles multiple buddy-system instances asso-
ciated with the different NUMA nodes in the hardware
architecture—and the different memory zones in these
nodes, such as NORMAL or DMA/DMA32 zones. In our
tests, we compared the performance of an individual NOR-
MAL instance of the Linux buddy-system allocator with one

instance of our NBBS. We already hinted that replicating the
(core) memory allocator to reduce the impact of concurrency
on each single instance is a technique fully orthogonal to
the objectives of our proposal and can be still exploited in
combination with NBBS. Overall, in this study we focus on
single instance tests since they are useful to capture the ac-
tual benefits by our proposal, which can be then reflected on
a larger scale when replicating the (core) memory allocator.

In our tests, we have assessed both the original and the
4-level optimized versions of NBBS, which we denote as
1lvl-nbbs and 4lvl-nbbs respectively, both running with
the free-slot optimization discussed in Section 3.6.1.

We developed Linux loadable modules implementing
the logic for the tests related to Linux Scalability, Thread
Test, Cache Test and Constant Occupancy. NBBS has been
embedded in the loadable modules, so that both the com-
pared allocators fully operate at kernel level. This allows
fairness in the comparison. Overall, the tests have been
based on kernel level threads which interact with the Linux
buddy system via the get free pages and free pages
kernel-level functions, or equivalently with the API of
NBBS. The GFP flags used for the allocation API are
GFP KERNEL and GFP ATOMIC, that define if threads are
allowed or not to sleep while serving memory requests. The
GFP ATOMIC configuration is also called linux-bs-at. Our
target machine has 8 NUMA nodes, so the Linux kernel
handles 8 instances of a buddy allocator in parallel for man-
aging NORMAL zones. To test the performance of a single
allocator instance—for the reasons we explained before—
we set the memory-policy of the threads activated within
the Linux module so as to bind the allocations towards the
same buddy-system instance, namely, instance 1 which is
equipped with 16GB sized NORMAL zone (conversely, the
same zone in instance 0 maintains 12GB of memory). The
thread count has been varied from 1 to 48. Thanks to this, we
can stress the allocators with a higher level of concurrency
with respect to the one provided by an individual NUMA
node, which is equipped with 6 cores. On the other hand,
we are still able to evaluate their behavior with low/no con-
tention (as with conventional workload with multi-instance
configuration of the memory allocator). We have configured
the compared allocators to manage the same amount of
memory, and with the same granularity of minimum and
maximum chunk size—the minimal size is set to 4KB and
the maximal size is set to 4MB. Finally, we have ensured
that each benchmark is configured in a way that no-failed
allocations might occur during the experiments to assess
that performance metrics are comparable across different
allocators.

In Figures 7-10 we report data for all the tested scenarios.
Beyond scaling the number of threads to test with different
concurrency levels, for each scenario we also used a set of
different allocation/release sizes ranging from 4KB bytes to
256KB bytes. For the Constant Occupancy test these values
represent the minimum size among those managed, while
the maximum size is set to be 8 times larger.

Generally speaking, the data show a clear gain by
NBBS, which increases when increasing the thread count.
In other words, the Linux-kernel buddy system does not
scale regardless of the GFP flags used for the allocation
requests (linux-bs-at has a slightly worse performance),



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 12

4
0

4
1

4
2

4
3

4
4

4
5

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Cached Allocation - Size=4KB

1lvl-nbbs

4lvl-nbbs

linux-bs

linux-bs-at

4
0

4
1

4
2

4
3

4
4

4
5

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Cached Allocation - Size=32KB

1lvl-nbbs

4lvl-nbbs

linux-bs

linux-bs-at 4
0
4
1
4
2
4
3
4
4
4
5

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Cached Allocation - Size=256KB

1lvl-nbbs

4lvl-nbbs

linux-bs

linux-bs-at

Fig. 7. Execution times - Cache Test benchmark.

4
-2
4
-1
4
0
4
1
4
2
4
3

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Linux Scalability - Size=4KB

1lvl-nbbs
4lvl-nbbs

linux-bs
linux-bs-at

4
-2

4
-1
4
0

4
1

4
2

4
3

 0  6  12  18  24  30  36  42  48
S
e
c
o
n
d
s
 
(
s
)

#Threads

Linux Scalability - Size=32KB

1lvl-nbbs
4lvl-nbbs

linux-bs
linux-bs-at

4
-2

4
-1
4
0
4
1
4
2
4
3

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Linux Scalability - Size=256KB

1lvl-nbbs
4lvl-nbbs

linux-bs
linux-bs-at

Fig. 8. Execution times - Linux Scalability benchmark.

4
0

4
1

4
2

4
3

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Thread Test - Size=4KB

1lvl-nbbs

4lvl-nbbs

linux-bs

linux-bs-at

4
0

4
1

4
2

4
3

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Thread Test - Size=32KB

1lvl-nbbs

4lvl-nbbs

linux-bs

linux-bs-at

4
0

4
1

4
2

4
3

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Thread Test - Size=256KB

1lvl-nbbs

4lvl-nbbs

linux-bs

linux-bs-at

Fig. 9. Execution times - Thread Test benchmark.

4
0

4
1

4
2

4
3

4
4

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Constant Occupancy - Size=[4KB,64KB]

1lvl-nbbs
4lvl-nbbs

linux-bs
linux-bs-at

4
0

4
1

4
2

4
3

4
4

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Constant Occupancy - Size=[32KB,512KB]

1lvl-nbbs
4lvl-nbbs

linux-bs
linux-bs-at

4
0

4
1

4
2

4
3

4
4

 0  6  12  18  24  30  36  42  48

S
e
c
o
n
d
s
 
(
s
)

#Threads

Constant Occupancy - Size=[256KB,4MB]

1lvl-nbbs
4lvl-nbbs

linux-bs
linux-bs-at

Fig. 10. Execution times - Constant Occupancy benchmark (recall that 8, 128 and 1024 are minimum sizes for the allocations - the maximum
corresponding sizes are 128, 2048 and 16384 bytes as specified by the test structure).

while our solution provides an improved scalability and
conflict resiliency. Also, both the 1-level and 4-level orga-
nizations of our non-blocking buddy system have similar
performance. The motivations behind their similar behavior
are linked to the tradeoff between the number of atomic
RMW instructions and the probability of conflicts. Specifi-
cally, in scenarios where a single allocation is followed by a
single release, the lower level of fragmentation of the buddy
system allows for less conflicting operations when working
with RMW instructions at individual levels, as in the 1-level
organization. On the other hand, the 4-level optimization
still provides advantages in some of the configurations
with reduced thread counts, mostly thanks to the reduced
amount of steps required to update the buddy system.

The results for Cached Allocation (see Figure 7) show
that for sizes larger than 4KB, NBBS provides a speed up
with respect to linux-bs (or linux-bs-at) from 4x to 64x.
The 4-level optimization shows its benefits when running
with a single thread thanks to its reduced critical-path
cost. These advantages are clearly less relevant when con-

tention increases or the operations start from upper levels
of the tree (e.g., with allocations of 256KB). Conversely,
when the requests target the size of a single 4KB page,
linux-bs outperforms NBBS. However, this is expected for
two main reasons. On the one hand, as noted before, the
linux-bs adopts per-CPU lists3 for managing single-page
allocations, thus it is capable to satisfy 4KB requests via
pre-reserved/per-CPU memory, without any execution of
actual buddy-management operations. On the other hand,
linux-bs also resorts to lazy coalescing of nodes, namely the
merge of pages is not executed on-the-fly upon memory-
release operations. NBBS can be anyhow combined with
this kind of optimization, which is actually orthogonal
with respect to the target of our proposal. In any case, for
all the other allocation sizes the benefits by NBBS show
the real power of the non-blocking approach we devised,
which is capable of performing coalescing and splitting in
fully non-blocking fashion while performing regular alloca-

3. See https://elixir.bootlin.com/linux/v5.4/source/
mm/page_alloc.c#L3265



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 13

TABLE 2
Speedup provided by NBBS with respect to both front-end and back-end allocators.

1-level NBBS 4-level NBBS
libc sfmalloc lrmalloc linux-bs dsa-wf cmalloc libc sfmalloc lrmalloc linux-bs dsa-wf cmalloc

4KB

Cached Allocation 0.60 0.29 0.30 0.10 0.62 15.48 0.81 0.40 0.40 0.20 0.84 19.66
Costant Occupancy 0.90 0.80 33.07 7.36 0.85 10.12 0.88 0.78 32.72 7.26 0.83 9.99

Linux Scalability 7.52 5.81 1.11 0.59 7.95 4.04 8.63 6.68 1.33 0.69 9.10 4.60
Thread Test 2.64 3.36 0.80 1.36 2.59 10.04 2.24 3.37 0.93 1.20 2.19 7.79

32KB

Cached Allocation 0.68 0.33 56.72 21.83 0.70 17.01 0.87 0.41 67.59 26.84 0.88 20.46
Costant Occupancy 0.94 - 146.72 33.49 0.90 7.89 0.92 - 145.88 33.24 0.89 7.84

Linux Scalability 10.07 6.09 15.78 2.66 10.36 1.94 12.81 7.79 19.80 3.40 13.18 2.46
Thread Test 2.42 4.52 20.35 3.02 2.37 2.42 3.43 6.04 25.23 3.83 3.35 3.08

256KB

Cached Allocation 0.96 - 149.08 54.63 0.93 8.21 0.92 - 147.20 53.88 0.89 8.06
Costant Occupancy 0.94 - 146.72 33.49 0.90 7.89 0.92 - 145.88 33.24 0.89 7.84

Linux Scalability 12.72 - 16.76 5.74 12.84 1.88 11.17 - 14.61 5.10 11.28 1.66
Thread Test 2.54 - 19.63 6.00 2.65 2.32 2.50 - 27.57 8.38 2.59 3.1

Legend (0, 0.5] (0.5, 0.9] (0.9, 1.1) (1.1, 2.0] (2.0,+∞)

tions/releases, still in non-blocking manner.
A similar evidence emerges for the Linux Scalability

test (see Figure 8), which has a similar access pattern, but
uses bursts of allocations and releases. Also in this case,
the linux-bs gains from the adoption of per-CPU lists,
providing up to 4x performance improvements at maximum
thread count compared to NBBS. However, this trend is
reversed when using larger sizes for allocations, even with
a reduced level of concurrency, again thanks to the higher
effectiveness of the NBBS internal mechanisms compared to
linux-bs in face of concurrent accesses. With Thread Test
(see Figure 9), the differences between NBBS and linux-bs
with page-size allocations disappear, and NBBS still pro-
vides advantages (4x speed up) for large allocations and
with thread counts greater than or equal to 6.

As a central aspect, whenever the Linux buddy system
cannot rely on per-CPU lists—like when operating alloca-
tions/releases at different levels—its performance signifi-
cantly degrades. The Constant Occupancy test (see Figure
10) stresses this weakness by supplying requests spanning
multiple (four) levels and showing the maximum benefits
achieved by our NBBS, which provides a minimum of 4x
and up to 64x speed up.

5.3 Comparison with Other Allocators
We compared our solution with additional front-end and
back-end allocators. On the front-end side, we have con-
sidered the blocking libc allocator (included within the
glibc library) and two non-blocking (lock-free) allocators:
sfmalloc4 [29] and lrmalloc5 [19]. As additional back-end
allocators, we considered a wait-free dynamic-storage allo-
cator [21] (denoted as dsa-wf) and the lock-free cmalloc6

[23] (denoted as COA). Since there is no available imple-
mentation of dsa-wf, we implemented and made it publicly
available7.

Table 2 reports in each cell the speedup, averaged across
all thread counts, delivered by our solutions with respect
to the other allocators (punctual data are provided in the

4. Downloaded from https://github.com/jeffhammond/
sfmalloc on November 1 2020

5. Downloaded from https://github.com/ricleite/lrmalloc
on November 1 2020

6. Downloaded from https://github.com/ricleite/coa on
November 1 2020

7. https://github.com/HPDCS/dsa-wf

supplemental material). Light and dark green (red) cells
indicate at least 1.1x and 2x speedup (slowdown). A white
cell means that the speedup (slowdown) is bounded by 1.1x.
Since the sfmalloc allocator crashes if multiple requests
are concurrently issued targeting memory sizes larger than
one page, we denoted such cases with a ‘-’ symbol in
Table 2. Here, we can see that front-end allocators are a
better choice whenever their front-end optimizations (e.g.
per-thread caches) can be exploited. Otherwise, our NBBS
represents a preferable choice.

As the data show, most of the cells are dark green. In
fact, NBBS definitely outperforms the Linux-kernel buddy
system whenever coalescing/splitting of blocks is a highly
recurrent activity of the benchmark (i.e., linux-bs cannot
exploit its per-CPU caches). Such benefits are still evident
when comparing with dsa-wf. In fact, we provide at least
2x speed up in both Linux Scalability and Thread Test
and our average performance loss is limited by 38% (1.61x
slowdown) for the remaining benchmarks. Finally, NBBS
outperforms cmalloc. This is somehow expected because of
the general-purpose nature of the adversary, which resorts
to additional memory management (allocation and garbage
collection) for the dynamic data structures it is based on.

6 CONCLUSIONS

We have presented a non-blocking approach for memory
allocators based on the well-known buddy-system spec-
ification. To date, this is the first practical proposal of
a buddy system that jointly supports allocation, release,
and split/coalescing operations, all implemented in non-
blocking fashion. A proof of correctness of our buddy
system is also provided, in terms of liveness and safety of
the memory allocation/release operations it supports. More-
over, we have presented optimizations aimed at reducing
the number of executed RWM (Read-Modify-Write) atomic
instructions by a factor of 4, the memory overhead by a
factor of 15 and the impact of free slot search. Finally, we
have shown the effectiveness of our solution experimentally,
by comparing its performance to one of the most used
and optimized buddy-system implementations, namely the
Linux-kernel buddy system.

REFERENCES

[1] GNU.org. GNU C Library.



SUBMITTED TO IEEE TRANSACTIONS ON COMPUTERS 14

[2] M. Gorman, Understanding the Linux Virtual Memory Manager.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[3] J. Bonwick, “The slab allocator: An object-caching kernel memory
allocator,” in Proceedings of the USENIX Summer 1994 Technical
Conference on USENIX Summer 1994 Technical Conference - Volume
1, ser. USTC94. USA: USENIX Association, 1994, p. 6.

[4] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124–149, Jan. 1991.

[5] T. L. Harris, “A pragmatic implementation of non-blocking
linked-lists,” in Proceedings of the 15th International Conference
on Distributed Computing, ser. DISC ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 300–314.

[6] P. Ramalhete and A. Correia, “POSTER:* A wait-free queue
with wait-free memory reclamation*,” in Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Austin, TX, USA, February 4-8, 2017, 2017, pp.
453–454.

[7] C. Purcell and T. Harris, “Non-blocking hashtables with open
addressing,” in Distributed Computing, 19th International Conference,
DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings, 2005,
pp. 108–121.

[8] M. Ianni, A. Pellegrini, and F. Quaglia, “Anonymous readers
counting: A wait-free multi-word atomic register algorithm for
scalable data sharing on multi-core machines,” IEEE Transactions
on Parallel and Distributed Systems, vol. 30, no. 2, pp. 286–299, Feb
2019.

[9] A. Larsson, A. Gidenstam, P. H. Ha, M. Papatriantafilou, and P. Tsi-
gas, “Multiword atomic read/write registers on multiprocessor
systems,” Journal of Experimental Algorithmics, vol. 13, no. 1, p. 1.7,
2009.

[10] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun, “A practical
concurrent binary search tree,” SIGPLAN Not., vol. 45, no. 5, pp.
257–268, Jan. 2010.

[11] A. Natarajan and N. Mittal, “Fast concurrent lock-free binary
search trees,” in Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’14.
New York, NY, USA: ACM, 2014, pp. 317–328.

[12] J. Lindén and B. Jonsson, A Skiplist-Based Concurrent Priority Queue
with Minimal Memory Contention. Cham: Springer International
Publishing, 2013, pp. 206–220.

[13] R. Marotta, M. Ianni, A. Pellegrini, and F. Quaglia, “A conflict-
resilient lock-free calendar queue for scalable share-everything
pdes platforms,” in Proceedings of the 2017 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, ser. SIGSIM-PADS
’17. New York, NY, USA: ACM, 2017, pp. 15–26.

[14] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson, “Hoard: A scalable memory allocator for multithreaded
applications,” SIGPLAN Not., vol. 35, no. 11, pp. 117–128, Nov.
2000.

[15] D. Dice and A. Garthwaite, “Mostly lock-free malloc,” SIGPLAN
Not., vol. 38, no. 2 supplement, pp. 163–174, Jun. 2002.

[16] M. M. Michael, “Scalable lock-free dynamic memory allocation,”
in Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, ser. PLDI ’04.
New York, NY, USA: ACM, 2004, pp. 35–46.

[17] A. Gidenstam, M. Papatriantafilou, and P. Tsigas, “Nbmalloc:
Allocating memory in a lock-free manner,” Algorithmica, vol. 58,
no. 2, pp. 304–338, Oct 2010.

[18] S. Seo, J. Kim, and J. Lee, “Sfmalloc: A lock-free and mostly
synchronization-free dynamic memory allocator for manycores,”
in 2011 International Conference on Parallel Architectures and Compi-
lation Techniques, Oct 2011, pp. 253–263.

[19] R. Leite and R. Rocha, “Lrmalloc: A modern and competitive lock-
free dynamic memory allocator,” in High Performance Computing
for Computational Science – VECPAR 2018, H. Senger, O. Marques,
R. Garcia, T. Pinheiro de Brito, R. Iope, S. Stanzani, and V. Gil-
Costa, Eds. Cham: Springer International Publishing, 2019, pp.
230–243.

[20] I. Buck, C. I. Rodrigues, S. Jones, X. Huang, and W. mei Hwu,
“Xmalloc: A scalable lock-free dynamic memory allocator for
many-core machines,” 2010 IEEE 10th International Conference on
Computer and Information Technology (CIT), vol. 00, pp. 1134–1139,
2010.

[21] P. Stellwag, J. Krainz, and W. Schröder-Preikschat, “A wait-free
dynamic storage allocator by adopting the helping queue pattern,”
in Proceedings of the 9th IASTED International Conference, vol. 676,
no. 052, 2010, p. 79.

[22] G. E. Blelloch and Y. Wei, “Concurrent fixed-size allocation and
free in constant time,” 2020.

[23] R. Leite and R. Rocha, “A lock-free coalescing-capable mechanism
for memory management,” in Proceedings of the 2019 ACM
SIGPLAN International Symposium on Memory Management, ser.
ISMM 2019. New York, NY, USA: Association for Computing
Machinery, 2019, p. 7988.

[24] K. Fraser, “Practical lock-freedom,” Ph.D. dissertation, University
of Cambridge, 2004.

[25] M. M. Michael, “Hazard pointers: Safe memory reclamation for
lock-free objects,” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 6,
pp. 491–504, Jun. 2004.

[26] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd
Ed.): Fundamental Algorithms. USA: Addison Wesley Longman
Publishing Co., Inc., 1997.

[27] M. Herlihy and N. Shavit, “On the nature of progress,”
in Proceedings of the 15th International Conference on Principles
of Distributed Systems, ser. OPODIS’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 313–328.

[28] C. Lever and D. Boreham, “Malloc() performance in a
multithreaded linux environment,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’00.
Berkeley, CA, USA: USENIX Association, 2000, pp. 56–56.

[29] D. Lee, J. Kim, U. Kim, Y. I. Eom, H. K. Jun, and W. T. Kim, “A fast
lock-free user memory space allocator for embedded systems,” in
ICCSA Workshops. IEEE Computer Society, 2011, pp. 227–230.

Romolo Marotta received the PhD in Computer
Engineering at Sapienza, University of Rome in
Italy, in 2020 and is a member of the High Perfor-
mance and Dependable Computing Systems re-
search group at the same institution. He received
the Bachelor’s degree in Computer Engineering
in 2012 and the Master’s degree in 2016. His
research activities focus mainly on parallel and
concurrent computing, and parallel simulation.

Mauro Ianni has received the PhD in Computer
Engineering at Sapienza, University of Rome in
2019, and is a member of the High Performance
and Dependable Computing Systems research
group at the same institution. He achieved the
Bachelors degree in Computer Engineering in
2012 and the Masters degree in Distributed Sys-
tems and Computer Architectures in 2015. His
research activities focus on concurrent program-
ming and algorithms.

Alessandro Pellegrini received a B.S. degree
and a M.S. degree and a PhD in Computer
Engineering at Sapienza, University of Rome.
His main research area is on parallel and dis-
tributed architectures and applications, where he
has published more than 50 technical articles.
In 2015 he won the Sapienza prize for the best
PhD thesis of the year. He has worked as a
researcher at some national and international
research centers (CINI, CINFAI and IRIANC).

Francesco Quaglia received his MS in Elec-
tronic Engineering in 1995 and his PhD in Com-
puter Engineering in 1999, both from Sapienza
University of Rome, where he has worked as As-
sistant and Associate Professor from September
2000 till June 2017. Since then, he works as a
Full Professor at the University of Rome Tor Ver-
gata. His research interests include parallel and
distributed computing systems and applications,
operating systems, high performance computing
and cyber-security.


