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I. INTRODUCTION

Memory allocation is a shared-data management problem,
which requires thread-coordination to guarantee the coherence
of the state of the memory allocator. Typical approaches for
reducing the impact of thread coordination (and the associated
costs) on performance are based on: (a) pre-reserving arenas
(memory segments) for each individual thread—this is what
typically happens in user-space allocators [1], [2], [3]; (b)
the usage of intermediate allocation services, called cached
allocators—as for the case of OS-kernel allocation based
on quick-lists [4]; (c) creating data separation on the core
allocator via multi-instance approaches, and redirecting the
requests towards different instances. These approaches aim to
reduce the likelihood of inducing large volumes of concurrent
accesses to the core allocator that is in charge of ultimately
delivering memory to, e.g., some upper layer allocator.

In this short paper we tackle the issue of scalability of
core memory allocators, which is an orthogonal optimization
with respect to reducing the pressure to core allocators by
(a), (b), or (c). In particular, our contribution is the design of
a non-blocking (lock-free) allocator implementing the buddy-
system specification, where concurrent allocations/dellocations
are not coordinated via spin-locks, but by only relying on
individual Read-Modify-Write (RMW) instructions executed
along the critical path of allocation/deallocation operations.
These instructions are exploited to detect whether concurrent
requests have conflicted on the same portion of the allocator
metadata.

Our non-blocking solution can be used in combination with
any already existing scheme aimed at diminishing the pressure
of concurrent accesses to the core allocator, e.g. by introducing
multiple instances or combining it with upper level allocators.
This is because our unique goal is to provide a memory
allocation system that simply optimizes the management of
those concurrent accesses. On the other hand, having a more
efficient core allocator can allow to reduce the impact of, e.g.,
pre-allocation on actual memory unavailability in scenarios
where there are skewed memory usages by different threads—
so that the pre-reserved memory for a given thread cannot
be used for serving a more memory-demanding one—or by
different cached allocators.

Our buddy-system implementation has been released as free
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Fig. 1. Node’s status bits.

software1 and we also provide experimental data demonstrat-
ing the effectiveness of our proposal. The reader can refer to
[5] for details on the algorithmic solutions we used—including
their correctness proof—and additional performance data.

II. THE NON-BLOCKING BUDDY SYSTEM

Our non-blocking buddy system keeps track of the state
of the memory segment used for serving allocations by the
means of an implicit (i.e. packed into an array) static complete
binary tree, which is assumed to be already materialized in
memory. The root of the tree corresponds to (and keeps track
of the state of) the entire memory segment within which
allocations will take place. Each child of a node represents
a portion (a half) of the parent’s chunk of memory, while the
leaves represent the state of the minimum allocatable memory
chunks. In particular, according to the classical buddy-system
structure, if a node at level i has size s, the children of this
node, located at level i+1, have size s/2, and the union of the
blocks of memory associated with the children forms a larger
block of memory that exactly corresponds to the parent.

In our non-blocking buddy system, each node embeds a
bit-mask with 5 relevant bits, organized as in Figure 1, repre-
senting the state of the node itself—thus of the corresponding
memory chunk—and of its sub-trees (if any) according to
the following semantic: (i) occupied, this flag indicates
whether an allocation request has been served by the memory
chunk corresponding to that node; (ii) left occupied and
right occupied, these flags indicate if some allocation re-
quest has been served by a node in the sub-trees (left and right,
respectively) covered by the node; (iii) left coalescent

and right coalescent, these two flags indicate whether the
node is currently in a transient state because of memory-
release modifications running on the relative sub-trees.

In order to correctly manipulate the status bits while han-
dling concurrent operations, our solution relies on the atomic
Compare-and-Swap (CAS) instruction offered by conventional
architectures, like x86.

1https://github.com/HPDCS/NBBS
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Fig. 2. Memory allocations.
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Fig. 3. First phase of a deallocation.
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TABLE I
CLOCK CYCLES COMPARISON WITH THE LINUX BUDDY SYSTEM.

Thread Test Linux Scalability
Linux buddy system 225×107 2173×107

Non-blocking buddy system 64×107 343×107

a) Memory Allocation Algorithm: The allocation starts
by identifying the maximum level that allows to satisfy the
requested size, and thus the range of indexes of nodes suitable
for the allocation. Then, these nodes are scanned in order
to search for a free one. When a free node is found, the
allocation operation tries to (i) occupy this node by updating
the occupancy bits in the status bit-mask of that node and
checking if the status bits are still set to zero (step 1 in Figure
2), and (ii) propagate the information about the occupancy
up to the ancestor node belonging to the lowest level by
traversing the nodes along the path and updating their states.
This traversal is required to set left or right (depending on
what branch we are backward traversing) occupancy bits and,
if necessary, clean the relative coalescent bits of the ancestor
nodes so as to reflect that some sub-tree has become partially
occupied (e.g. steps 2 and 3 in Figure 2). If the lowest-level
node is reached and updated along the backward traversal, the
node originally targeted can be considered as correctly taken.
Conversely, if a node has the occupied bit (concurrently) set,
which makes the CAS instruction fail to update its state, the
allocation needs to be aborted and retried on a different node.
The same is true if the CAS instruction fails while backward
traversing and updating any node in the tree. In this case, the
algorithm moves to the next candidate node by skipping the
whole sub-tree relative to the node causing the failure.

b) Memory Deallocation Algorithm: A memory deallo-
cation operation is composed by three phases. In the first
phase, the ancestors of the node to be released are marked as
coalescent (by setting the appropriate coalescent bit as shown
in Figure 3), in order to notify that a free operation is in place
along the corresponding path of the tree. If along this path
a buddy is detected as occupied by other allocations and not
coalescent, the climb is early stopped, since the corresponding
sub-tree cannot be considered free—this is the case of Figure
3, where the right subtree of the node below the upper-bound is
already fragmented. In the next phase, the node to be released
is marked as free by simply writing zero on its status bits
(step 1 of Figure 4). During the last phase, all the nodes
previously marked as coalescent are updated again to notify
that the sub-tree involving the just released node is actually

free—therefore it can serve again memory requests. This is
achieved by cleaning the coalescent and the occupancy bits of
the traversed nodes (see steps 2 and 3 of Figure 4). The climb
towards the lowest level can be stopped earlier if a node with
the coalescent bit reset has been met because of concurrent
deallocation/allocation operations.

Beyond providing non-blocking capabilities while allocating
or releasing memory, our buddy system carries out memory
fragmenting and merging operations implicitly and still in a
non-blocking fashion.

III. EXPERIMENTAL RESULTS

We have compared our solution with the buddy system
from version 3.2 of the Linux kernel, which is based on a
multi-list data structure, and exploits spin-locks for handling
concurrency. For the assessment we used 2 benchmarks taken
from the literature, namely Linux scalability [6] and Thread
Test [7]. All the tests have been carried out on a 64-bit NUMA
HP ProLiant server equipped with four 2GHz AMD Opteron
6128 processors and 64 GB of RAM. Each processor has 8
cores, for a total of 32 CPU-cores. To test with the Linux
kernel-level allocator, we developed Linux external modules
that exploit the __get_free_pages and free_pages
kernel services. We have configured our allocator to manage
the same amount and granularity of memory as the Linux
buddy system. The data in Table I refer to tests executed
when targeting allocations/deallocations of 128KB chunks
with 32 threads. Here, we see that our non-blocking version
has performance gain of the order of 71% for Thread Test and
84% for Linux Scalability.
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