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Abstract—The large diffusion of highly-parallel shared-
memory multi-core machines has led Parallel Discrete Event
Simulation (PDES) platforms to a shift towards a share-
everything model. This model is based on loose coupling between
simulation objects and threads, lasting (as an extreme) no more
than the lifetime of individual events. Concurrent threads can
therefore CPU-dispatch events destined to any object at any
point in time, thus fully sharing the workload of events to
be processed on a fine grain basis. This demands for efficient
mechanisms to share the overall pool of pending events by
enabling parallelism in insertion and extraction operations.
In this article we present a lock-free event pool which also
provides amortized O(1) time complexity for both insertions
and extractions. It can sustain highly concurrent accesses,
while not leading to noticeable performance degradation when
scaling up the thread count. Experimental results demonstrate
that our solution stands as a core facility capable of further
raising up the pragmatical impact of such an emerging share-
everything PDES paradigm.

I. INTRODUCTION

The historical design approach of Parallel Discrete Event

Simulation (PDES) platforms accounted for different threads

(or processes) in charge of taking care of the execution

of disjoint subsets of simulation objects. However, the ad-

vent and increasing diffusion of multi-processor/multi-core

machines has led to a shift towards a of share-everything

paradigm, where a thread can in principle take care of exe-

cuting any concurrent simulation object, at any point in time.

Examples of PDES platforms adhering (or approaching) to

this paradigm can be found in [1]–[4].

A relevant innovation by share-everything PDES is that

event pools are no longer accessed by threads in isolation,

rather in a (fully) shared mode. This is required to enable

threads not currently busy with some object to concurrently

extract from the shared event pool the higher-priority (i.e.

lower-timestamp) pending events, bound to whichever sim-

ulation object. This allows delivering computing power to

higher-priority pending simulation work along the whole

lifetime of the model’s execution. Still, threads can con-

currently access the pool to post newly scheduled events

resulting from processing activities at the involved objects.

As a consequence, the event-pool data structure has become

a performance-critical component along a new dimension,

which is represented by the level of concurrency of no-

longer isolated accesses.

In this article we present a lock-free concurrent event-pool

data structure tailored for share-everything PDES platforms,

which enables unleashed parallelism of enqueue/dequeue op-

erations. Unlike existing non-blocking data structures suited

for managing pools, such as non-blocking (skip)lists [5],

[6], which pay a linear (or at least logarithmic) cost for

insertion operations, our solution provides O(1) amortized

time complexity. Also, concurrent accesses’ non-blocking

synchronization is guaranteed in our proposal by relying

only on conventional facilities offered by the underlying ISA

(Instruction Set Architecture), such as the Compare-and-

Swap (CAS) machine instruction. This makes our solution

of wide applicability in a variety of off-the-shelf machines

by different vendors.

We released our non-blocking O(1) event pool as free

software1, and we have also integrated it with a last gener-

ation share-everything open source PDES system. Further,

we present a performance study showing the effectiveness

of our proposal in differentiated settings. We conducted our

experiments on a 32-core HP ProLiant machine, equipped

with 64 GB of RAM, which outline excellent scalability

of our lock-free O(1) event-pool data structure up to the

maximum count of physical processing elements in the

underlying machine.

The remainder of this article is structured as follows.

In Section II we discuss related work. The lock-free O(1)
event pool is presented in Section III. Section IV provides

experimental results.

II. RELATED WORK

Several data structures for event pools have been proposed

in the literature. The Calendar Queue [7] is a timestamp-

ordered data structure based on multi lists, each one asso-

ciated with a time bucket, offering amortized constant time

insertion of events with generic timestamps and constant

time extraction of the event with the minimum timestamp.

The Ladder Queue [8] is a variant of the Calendar Queue

which is more suited for skewed distributions of the times-

tamps of the events, thanks to the possibility of dynamically

splitting an individual bucket in sub-intervals (i.e. sublists

of records) if the number of elements associated with the

1Source code available at https://github.com/HPDCS/NBCQ.



bucket exceeds a given threshold. The LOCT Queue [9]

is an additional variant which allows reducing the actual

overhead for constant time insertion/extraction operations

thanks to the introduction of a compact hierarchical bitmap

indicating the status of any bucket (empty or not). None of

these proposals has been devised for concurrent accesses.

Therefore, their usage in scenarios with sharing among

multiple threads would require to rely on a global lock

for serializing the accesses, which would be detrimental to

scalability, as shown in [10].

The work in [11] provides an event-pool data structure

enabling parallel accesses via fine-grain locking of a sub-

portion of the data structure upon performing an operation.

However, the intrinsic scalability limitations of locking still

lead this proposal to be not suited for large levels of

parallelism, as also shown in [12].

As for non-blocking management of sets by concurrent

threads, various proposals exist (e.g., non-blocking linked

lists [5] or skip-lists [6]), which anyhow do not offer

constant-time operations. The non-blocking linked list pays

a linear cost for ordered insertions, while the skip-list

pays logarithmic cost for this same type of operation. The

proposal in [13] is based on non-blocking access to a multi-

bucket data structure, and provides amortized O(1) time

complexity for both insertion and extraction operations.

However, it does not provide a non-blocking scheme for

the dynamical resize of the bucket width. Hence, to achieve

adequate amortizing factors, all the threads would need

to (periodically) synchronize to change the bucked width

and redistribute events over the reshaped buckets. On the

other hand, avoiding at all the synchronized reshuffle of

the buckets might give rise to non-competitive amortizing

factors (say too many elements associated with a bucket).

These problems are completely avoided with our proposal

since we provide truly amortized O(1) time complexity joint

to non-blocking operations, including the reshuffle of the

bucket width.

Non-blocking operations in combination with constant

time complexity have been studied in [10], which presents

a variation of the Ladder Queue where the elements are

at any time bound to the correct bucket, but the bucket

list is not ordered. Constant time is achieved since the ex-

traction from an unordered bucket returns the first available

element, which does not necessarily corresponds to the one

with the minimum timestamp. This proposal is intrinsically

tailored for PDES systems relying on speculative processing,

where unordered extractions leading to causal inconsisten-

cies within the simulation model trajectory are reversed (in

terms of their effects on the simulation model trajectory) via

proper rollback mechanisms. However, still for speculative

PDES, a few recent results [1], [2] have shown the relevance

of fetching events from the shared pool in correct order, as

a means to build efficient synchronization schemes able to

exploit alternative forms of reversibility, which stand aside

of the traditional Time Warp protocol [14]. Correct order

of delivery is guaranteed in our proposal, since we always

deliver the highest priority event currently in the event pool,

which has been inserted by any operation that is linearized

prior to the extraction.

The recent proposal in [3] explores the idea of managing

concurrent accesses to a shared pool by relying on Hardware

Transactional Memory (HTM) support. Insertions and ex-

tractions are performed as HTM-based transactions, hence in

non-blocking mode. However, the level of scalability of this

approach is limited by the level of parallelism in the under-

lying HTM-equipped machine, which nowadays is relatively

small. Also, HTM-based transactions can abort for several

reasons, not necessarily related to of conflicting concurrent

accesses to a same portion of the data structure. As an

example, they can abort because of conflicting accesses to

the same cache line by multiple CPU-cores, which might be

adverse to PDES models with, e.g., very large event pools.

Overall, compared to literature results, our proposal is

the unique that jointly offers: i) non-blocking concurrent

accesses, ii) amortized O(1) operations via non-blocking

dynamic resize of the buckets’ width, iii) total order while

managing timestamped event records, and iv) independence

from specific hardware support.

III. THE LOCK-FREE O(1) EVENT POOL

Our lock-free event-pool data structure is inspired to the

Calendar Queue [7]. It is a non-blocking priority queue

whose schematization is shown in Figure 1. The logical

(simulation) time axis is partitioned into a sequence of slots,

called virtual buckets, which are then mapped to the entries

of a circular array—the calendar. Each virtual bucket is

therefore associated with a logical time span (the bucket

width) that determines what events should be placed into a

given virtual bucket.

Each bucket is the head element of a non-blocking linked

list realized as in [5], where one bit in the pointer to the

next node is used to indicate whether a node has been

logically deleted—it is still linked to the list, but it must

be considered as already extracted by some concurrent (or

already-finalized) operation. We rather exploit two bits of

the pointer to the next element to introduce 2 additional

per-node states, to indicate whether nodes have to be moved/

validated, as we shall discuss in the reminder of the paper.

This is to allow non-blocking dynamic reorganizations of

the calendar bucket size, which we enable in our solution

while still permitting regular operations to be concurrently

processed.

To ensure consistency of concurrent accesses to our

data structure, we rely on two different Read-Modify-Write

(RMW) instructions, namely Compare-and-Swap and Fetch-

and-Add. The former atomically updates a given memory

location if its current value is equal to an input value

provided to the instruction, otherwise the update fails. The
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Figure 1. Conceptual organization of the non-blocking event pool.

latter allows to atomically retrieve the content of a memory

location and increment its value. Given the possibility of

failures for the Compare-and-Swap instruction, we rely on

retry cycles to let an operation based on this machine

instruction to be executed again, until it succeeds. This is

typical of non-blocking algorithms.

As shown in Figure 1, our event pool relies on a pointer

to a metadata table, referred to as set table, which is

organized as follows. The buckets field points to the

circular array which keeps the heads of the non-blocking

linked lists. size tells how many elements are globally

present within the set. bw determines the current bucket

width, while length keeps the size of the circular array.

current is the “index” of the virtual bucket from which

the last element was extracted or a new minimum has

been inserted—the actual bucket can be simply computed

as current mod length. The new_table field is a

pointer used to setup a new version of the calendar. We will

refer to the creation of a new version as the resize operation.

Upon the execution of an enqueue or a dequeue oper-

ation, we first execute the READTABLE procedure, shown

in Algorithm 3. The goal of this procedure is to obtain a

reference to a valid set table, and to check whether some

resize operation of the calendar is currently taking place. If

a valid set table is found, enqueue and dequeue operations

can continue. Otherwise, their execution is deferred until the

current resize operation is completed. In the meanwhile, the

deferred thread participates to the ongoing resize operation.

The pseudocode for the ENQUEUE() operation is shown

in Algorithm 1. This operation takes an event e associated

with timestamp Te as a parameter. After having retrieved a

valid set table using Algorithm 3, the operation determines

what is the virtual bucket the event e being inserted belongs

to, computed as ⌊ Te

BW
⌋, where BW is the (current) bucket

width. Now, let B be the number of actual buckets of the

calendar. Then, the event e is placed into the i-th bucket,

where i = ⌊ Te

BW
⌋ mod B—according to the classical

Calendar Queue organization, multiple virtual buckets are

associated with the a same physical bucket entry.

Algorithm 1 Non-blocking ENQUEUE

1: procedure ENQUEUE(event e)
2: tmp← new node(e)
3: dig ← DIGEST()
4: repeat
5: h← READTABLE( )

6: nc←

⌊

n

h.bw

⌋

7: bucket← h.table[nc mod h.length]
8: 〈left, right〉 ← bucket.SEARCH(tmp.t, VAL| MOV)
9: tmp.next ← right

10: until CAS(&left.next, UNMARK(right), tmp)
11: repeat
12: old← h.current
13: until nc > old.value ∨ CAS(&h.current, old, 〈nc, dig〉)
14: Fetch&Add(&h.size, 1)

As already hinted, the i-th bucket is a non-blocking

linked list, for which we assume the availability of the

search procedure already defined in [5]. When executed,

this procedure returns a couple of nodes, called left and

right nodes. The SEARCH() operation tries to identify a

coherent snapshot of the list, despite concurrent accesses,

so that the left and the right nodes point to the nodes which

would “surround” the new node. To cope with events with

the same timestamp (not supported by the original proposal

in [5]) we associate each event record with both a timestamp

and a sequence number, which is always unique for all

concurrent events. Indeed, an event has its sequence number

set to zero, unless other concurrent events are present. In

this latter case, the left node for the ENQUEUE() operation

will point to the node associated with the highest sequence

number so far in the batch of concurrent events. The newly-

inserted node gets its sequence number augmented by one

unit, making it represent concurrent events’ insertion order—

our proposal therefore provides a total order of the elements

in the calendar. Monotonicity of sequence numbers is guar-

anteed under concurrency scenarios thanks to the insertions

using Compare-and-Swap instructions. As a final note, the

sequence number can be abstracted as being one component

of the timestamp, thus leading our data structure to always

manage records associated with different timestamp values.

We will implicitly assume such an abstraction in the remain-

ing part of the presentation.

Compare-and-Swap is also used to make concurrent exe-

cutions of enqueue/dequeue operations safe, independently

of event timestamps’ and sequence numbers’ management.

Therefore, we rely on a Compare-and-Swap instruction

to update the next pointer of the “future” previous node

atomically. This is reflected in line 10 of Algorithm 1. Upon

finalizing the ENQUEUE() operation, the size field of the

set table is atomically increased by using a Fetch-and-Add.

We exploit this field to resize the calendar, in case the

fetched value of size fires the triggering condition, as we

shall discuss.

The pseudocode of the DEQUEUE() operation is shown

in Algorithm 2. Initially, a valid current should be taken



Algorithm 2 Non-blocking DEQUEUE

1: procedure DEQUEUE( )
2: while true do
3: h← READTABLE()
4: oldCur ← h.current
5: cur ← oldCur.value
6: bucket← h.table[oldCur.value mod h.t_size]
7: 〈left, right〉 ← bucket.SEARCH(0, VAL | MOV)
8: rNext← right.next
9: newCur ← h.current

10: if (newCur 6= oldCur ∧ newCur.value ≤ cur) then
11: continue
12: else if ISMARKED(left.next,MOV) then
13: continue

14: else if ¬ISMARKED(rNext, VAL) then
15: continue
16: else if right = tail∧ h.t_size = 1 then

17: return null

18: else if right.ts < cur · h.bw then
19: CAS(&h.current, cur, 〈⌊right.ts/h.bw, DIGEST()〉⌋)
20: else if right.ts ≥ (cur + 1) · h.bw then

21: CAS(&h.current, cur, 〈cur + 1, DIGEST()〉 )
22: else if CAS(&right.next, rNext, MARK(rNext)) then
23: Fetch&Add(&h.size, -1)
24: return right.event

from the valid set table. Therefore, similarly to ENQUEUE(),

the DEQUEUE() operation relies on READTABLE(). We again

resort to the SEARCH() procedure defined in [5] to find

the first node which is valid, yet we specify a “wildcard”

timestamp set to zero as the priority for the search. In this

way, we are sure that the left node will point to the head of

the list, while the right node will point exactly to the node

with minimum timestamp in the list.

Nevertheless, we must ensure that the right node belongs

to the current virtual bucket, since the list associated with a

physical bucket entry can span multiple virtual buckets. To

this end, we check the timestamp of the node, and if it falls

in the simulation-time span covered by the current virtual

bucket, we can attempt to extract it. In the negative case,

the right node belongs to a different year of the calendar,

and we therefore switch to the correct bucket. This happens

as well in case the right node is the tail of the list, since

it only represents an overflow node required by the non-

blocking list management.

Our event pool is designed to be independent of the nature

(speculative vs conservative) of the share-everything PDES

platform it would be integrated with. Hence, differently

from the traditional Calendar Queue, we support insertions

associated with simulation time intervals in the past of

the current bucket. If current has been updated by

a concurrent ENQUEUE() operation, then DEQUEUE() is

retried in our design. This choice is dictated by correctness

motivations (linearizability) and helps as well to deliver

the highest priority (say lowest timestamp) event whose

concurrent insertion in the event pool has been already

materialized. This can be relevant for actual implementations

of share-everything PDES platform, as discussed in [1].

Also, all the Compare-and-Swap instructions that target

current should emulate Load-Link and Store-Conditional

instructions so as not to loose updates by concurrent oper-

ations. This is done in our implementation by relying on a

couple 〈thread id, counter〉 which is installed by a thread

as a field of current (represented as a digest) each time

a successful Compare-and-Swap instruction succeeds.

Similarly to [5], we handle DEQUEUE() operations by

trying to mark the right node as invalid, by setting one bit in

the next pointer. This logically downgrades the shared node

to a thread-private status, meaning that the thread running

the DEQUEUE() can safely manipulate its content. To ensure

consistency, this is atomically done by using a Compare-

and-Swap. While trying to extract the event with the highest

priority, the Compare-and-Swap might fail due to concurrent

operations, and the DEQUEUE() is simply retried. If none

of the above conditions forces the DEQUEUE() operation to

restart, the minimum timestamp element has been success-

fully identified and downgraded to thread-private status, thus

it can be safely returned for usage by the overlying PDES

engine.

The amortized O(1) time complexity of insertion and

deletion operations is obtained by ensuring that, on average,

the number of elements within each bucket is balanced,

similarly to the classical Calendar Queue. To this end, when

we detect that the number of elements in the buckets is

no longer balanced, we execute the resize operation. As

mentioned, this is triggered by the value of size upon a

queue operation, if the number of total events is over or

below a certain threshold. To carry on a resize operation,

we first “freeze” the current valid table. To this end, we

allocate a new set table, and we publish a pointer to it into

the new_table field of the old set table. Therefore, any

thread operating on it will know that a resize operation is

taking place, and will start to participate.

Before moving items from the old table to the new one,

we mark each entry of the bucket array and the first nodes

of the associated non-blocking lists as MOV (exploiting the

aforementioned 2-bit status information within the pointer to

the next node). This guarantees that dequeue operations are

restarted any time that a node marked as MOV is encountered.

This prevents dequeueing nodes while a resize operation

is being executed, and allows the threads executing such

dequeues to join the resize operation.

We then determine a new bucket width and a new length

of the bucket array according to the strategy proposed in [7].

In particular, we scan a certain amount of events, depending

on the total number of events placed in the queue, and

we compute the average timestamp separation. This is the

average distance, on the simulation time axis, between each

couple of events, and it can be used to determine the new

bucket width. The result is stored with a Compare-and-Swap

in the bw field of the new_table.

Clearly, we want to achieve non-blocking properties also

during the resize operation. Our strategy to reach this target



is based on flagging nodes to be migrated towards the

new installation of the calendar as MOV nodes. Each thread

that successfully flags as MOV a node to be migrated (via

Compare-and-Swap) or finds a node as already marked,

then allocates a new node instance to be linked to the

new installation, as a copy of the original node. Then it

enqueues it in the new installation by leaving it initially

marked as invalid (INV) to prevent its extraction. After,

the original node to be removed from the old calendar is

flagged with the address of the new node instance in the new

installation. At this point the node in the new installation

is moved from the invalid state to the valid one (VAL),

and the original copy is removed from the old installation.

All these operations are still based on Compare-and-Swap.

This migration logic is motivated by the fact that a thread

performing a migration operation of a node might be delayed

(e.g. because of a reschedule on CPU). This does not lead

to blocking scenarios in our implementation since any other

thread that is still running the migration can take care of

trying to migrate a same node originally targeted by the

delayed thread, and can take care of finally flagging the

nodes in the old and in the new versions of the calendar. In

fact, if a thread tries to move again a node flagged as MOV,

which has already been inserted in the new installation of the

calendar, the move will fail since the timestamp associated

with the node is already found to be in the new calendar

version, and the thread will simply take care of aligning the

flags of the two buffer instances (old and new). Clearly, the

number of nodes to be still migrated will eventually be equal

to zero, a condition that will be detected by simply finding

all buckets empty.

A. Garbage Collection

After that a node is marked as logically deleted by a

thread, we do not know whether other threads are using

the same buffer for, e.g., list traversal. In our approach, to

safely reclaim event buffers, each thread maintains a couple

of private lists of to-be-freed nodes, namely old and new

lists, and an array of T flags, where T is the number of

threads. Whenever a node is extracted from the queue or

a table is swapped with a new one, the corresponding

buffer is connected to the new list, and the thread updates

its entry in the arrays. In this way, we never lose a reference

to a memory buffer. If a thread reads every flag in its array

as set, it releases every pointer in the old list and swaps the

old and the new lists, also resetting the array of flags. This

check is done periodically in our implementation.

IV. EXPERIMENTAL RESULTS

We experimentally assessed our proposal in two different

scenarios. The first is a stand-alone evaluation of the non-

blocking O(1) event pool, which has been based on a

workload adhering the well known Hold Model [15]. In

the second scenario we tested the non-blocking O(1) event

Algorithm 3 Non-blocking READTABLE

1: procedure READTABLE( )
2: h← array

3: curSize← h.size
4: if h.new = null ∧ resize is NOT required then
5: return h
6: compute newSize
7: CAS(&h.new, null, new array(newSize))
8: newH ← h.new
9: if newH.bw≤ 0 then

10: for i← 0 to h.t_size−1 do
11: retry-loop to mark i-th head as MOV
12: retry-loop to mark first node of i-th bucket as MOV

13: MST ← compute bucket width
14: CAS(&newH .bw, −1.0, MST )

15: for i← 0 to h.length−1 do

16: while i-th bucket of h is non-empty do
17: get first right node of bucket i
18: if right 6= tail then
19: retry-loop to mark it as MOV
20: else
21: break

22: create a copy of the right node
23: while true do
24: search for right.ts in a virtual bucket vb of newH
25: if found node n with same key then

26: release copy
27: copy ← n
28: break
29: else if successful to insert copy as INV with a CAS then

30: break

31: if CAS(&right.replica, null, copy) then

32: Fetch&Add(&newH.size, 1)
33: else if right.replica6= copy then
34: try-loop to mark copy as DEL

35: retry-loop to ensure that newH.current.value ≤ vb
36: retry-loop to mark right.replica as VAL
37: retry-loop to mark right as DEL

38: CAS(&q.array, h, newH)
39: return newH

pool when integrated within an open source share-everything

PDES environment. This allowed us to assess its benefits

when employed within a real parallel simulation framework.

All the tests have be run on a 32-core HP ProLiant machine

running Linux (kernel 2.6) equipped with 64 GB of RAM.

The number of threads running the test-bed programs has

been varied from 1 to 32.

A. Experiments with the Hold Model

The Hold Model is devised to emulate and evaluate the

steady-state behavior of event pools. It is based on pre-

populating the event pool with a given (parametric) number

of events and on performing a sequence of dequeue/enqueue

operations. In our tests, each concurrent thread performs

either an enqueue or a dequeue with equal probability

set to 0.5 (Markov Hold Model). Each run ends when

the total number of performed operations (across all the

concurrent threads) reaches 106. This guarantees the highest

concurrency degree (depending on the selected number of

threads) along the whole lifetime of the run, since no thread

is ever switched off before the ending condition is reached.

We used four different priority increment distributions for
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Figure 2. Results with the Hold Model.

the generation of the timestamps of new events to be inserted

in the event pool, namely uniform, triangular, negative

triangular and exponential. Also, we generated (for each

considered distribution) 4 different tests, each one associated

with different amounts of events pre-filled in the event pool,

namely 25, 400, 4000, and 32,000. This allowed us to assess

our proposal in settings resembling either small models (say

with reduced number of activities to be performed, which

are already posted into the event pool) and larger ones.

The performance achieved by our non-blocking O(1) event

pool has been tested against the one achievable by relying

on a classical Calendar Queue, with concurrent accesses

synchronized by a spin-lock to make them consistent.

The results for all the tests we performed are shown in

Figure 2, where each reported sample results as the average

over 10 different runs of a same configuration. In particular,

we plot the wall-clock time for carrying out the target

number of event-pool operations while varying the number

of employed threads between 1 and 32. From the results,

we can draw two main conclusions. First, similarly to the

Calendar Queue, our non-blocking O(1) event pool is able to

deliver performance that (once fixed the number of threads)

is essentially independent of both the event timestamps’

distribution and the number of pre-filled events (the queue

size). This is an indication of excellent capability of dynamic

reorganization of the bucket width in our solution. Also, the

wall-clock time curves are essentially flat while scaling up

the number of concurrent threads, which indicates how our

proposal is resilient to performance degradation phenomena

caused by conflicting accesses when increasing the level

of concurrency in the event-pool operations. As somehow

expected, flatness of the wall-clock time is not achieved

by the spin-lock protected Calendar Queue, which leads to

performance degradation that is linear versus the number of

employed threads. Additionally, the absolute performance of

the spin-lock protected Calendar Queue becomes worse than

the one of our non-blocking O(1) event pool as soon as the

number of concurrent threads oversteps the value 8/12.

B. Experiments with a share-everything PDES platform

We have integrated our proposal with the share-everything

PDES engine standing at the core of the RAMSES spec-

ulative simulation framework [1]. In this engine, a meta-

data layer is used to keep track of what simulation object is

currently being run by any thread, and of the corresponding

event timestamp. Meta-data are updated by threads upon

extracting events from an underlying event pool, which is

fully shared by all the threads. These meta-data are used to

compute a reduction to assess what event is associated with

the current commit horizon of the simulation, which can be

therefore safely processed, with no need for reversibility of

the state updates it performs. This is achieved by the worker

thread by triggering a native version of the application

code, not including support for squashing the performed

computation. If the event is not safe (i.e. events in its

past could still affect it), then the worker thread runs a

modified version of the application code, that is transparently

instrumented (by an ad-hoc compile/link procedure) in order

to generate at run-time so called undo code blocks, which

are minimal blocks of machine instructions that can be used

to revert the updates performed by the event processing

phase. The simulation model lookahead is exploited at the

engine level in order to determine what other events—

beyond the one associated with the commit horizon of the

simulation—can be processed safely, since they will not

eventually be affected by causality errors. In this engine,

the fully-shared event pool only keeps so called schedule-

committed events, namely those that are generated by events

that will never be rolled back. Hence if a thread processes

an event speculatively, then the produced output events are

kept buffered outside the event pool up to the point in time

where the event becomes safe (thanks to the advancement

of the commit horizon). They are simply discarded—with

no inclusion at all in the shared event pool—if the original

event is eventually rolled back. Conflicting accesses by

multiple threads to the same simulation object, say because

of extraction from the event pool of two or more events

destined to the same object, are resolved via a read/write

spin-lock approach giving higher priority to lower timestamp

events. In the original implementation of this engine, the

shared event pool residing at the lowermost layer was a

Calendar Queue protected via a spin-lock.

As test-bed application we used PHOLD [16], configured

with 1024 simulation objects. Each object schedules two
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Figure 3. Results with PHOLD.

different types of events, regular and diffusion events. Both

types of events resemble classical PHOLD events, as their

processing leads to spending some CPU time, via a busy

loop emulating a given event granularity. The difference

among regular and diffusion events lies in that the former

class generates events, while the latter does not generate any

other event. Both types of events lead anyhow to perform

updates on the state of the target simulation object. In partic-

ular, the updates involve statistics related to the advancement

of the simulation, such as the number of events processes

(and of which type) and average values (as well as peaks) of

the simulation time advancement experienced by the objects

when processing new events. Such an event pattern leads

to the scenario where the average number of events (of any

type) hosted by the shared event pool does not change along

time, but we experience punctual fluctuations. The selection

of this event pattern is an explicit choice aimed at observing

how burst insertions of diffusion events in the event pool,

which are generated when processing regular events, lead

to run-time dynamics (possibly) affected by phase-intensive

accesses to the shared event-pool data structure. In our tests

we set the number of diffusion events generated by a regular

event, referred to as Fan-Out, to the values 1 and 50. The

latter settings leads to scenarios with higher intensity of the

burst of insertion operations of new events in the shared

pool upon committing some regular event. Also, it well

mimics PDES dynamics proper of epidemic models. As for

the timestamp increments when generating new events, we

selected an exponential distribution with mean set to one

simulation-time unit. As for the CPU requirements by the

events, we set it on the order of 60 microseconds, which

emulates low to medium granularity settings, which are

proper of a vast variety of discrete event models. Further,

we selected two different lookahead values, namely 10% and

0.1% of the average timestamp increment, so as to observe

run-time dynamics under different patterns in relation to safe

vs speculative processing.

In Figure 3 we report the speedup achieved when running

the shared-everything PDES engine with different number

of threads up to 32, compared to the case of execution

with a single thread. We still took the spin-lock protected

Calendar Queue as the baseline for performance comparison

in this study. By the data we observe how our non-blocking

O(1) event pool allows for close to linear speedup for

lookahead value set to 10% of the average event timestamp

increment, with coefficient 1 (ideal speedup) when running

up to 8 threads, and with coefficient at least 0.7 when

running with higher concurrency (i.e. up to 32 threads).

The curve referring to Fan-Out 50 stands quite close to

the one with Fan-Out 1, in fact the two speedup curves

differ by slightly more than 10% only when running with

32 threads. This is a clear indication that our non-blocking

event pool is able to efficiently handle scenarios with bursts

of (concurrent) operations—just depending on the pattern

according to which (sets of) new events are produced by

the application code when processing some event. This is

not guaranteed by the spin-lock protected Calendar Queue

that, beyond showing scalability problems when running

with more than 16 threads, also shows a clear decrease of

performance for the scenario with Fan-Out set to 50 and

thread count larger than 8. In fact, spin-lock based accesses

to the event pool are adverse in scenarios where more

intense bursts of enqueue operations occur, a phenomenon

that with Fan-Out set to 50 becomes evident as soon as the

concurrency level in the access to the pool is non-minimal.

Very similar considerations can be drawn for the experiments

with definitely reduced lookahead, set to 0.1% of the aver-

age event timestamp increment. Also, with such a reduced

lookahead value, more/longer synchronization phases across

threads take place at the level of the synchronization meta-

data management layer within the PDES engine (since

lower lookahead leads to reduced likelihood of processing

safe events, and to higher likelihood of delayed commit

for speculatively executed events). As a consequence, a

larger percentage of time is spent by the threads within

the synchronization layer managing causality meta-data,

which leads to a slightly reduced pressure in the access to

the shared event pool. This allows the spin-lock protected

Calendar Queue to achieve a bit higher speedup (compared

to lookahead set to 10%) when the Fan-Out parameter is

set to 1. For our non-blocking O(1) event pool, the reduced

pressure leads to achieve the same speedup with the two

different Fan-Out values (1 or 50) even when running with

32 threads (at this point the speedup is still 0.55 of the

ideal one). This indicates higher potential for performance

benefits by our solution, compared to the spin-lock protected

Calendar Queue, in scenarios where the pressure of event

pool accesses (slightly) diminishes.

V. CONCLUSION

In this article we have presented a lock-free event pool

offering O(1) amortized time complexity of concurrent

insertion/extraction operations. Our proposal is well suited

for emerging organizations of PDES platforms to be hosted

on top of shared memory multi-core machines, where con-

current threads are allowed to (fully) share the workload of



events to be processes on a very fine grain basis. Hence

a fully-shared event pool, guaranteeing high throughput

of concurrent operations joint with the delivery of higher

priority events upon extractions stands as a core building

block for the improvement of the performance delivered by

this kind of share-everything PDES platforms. We have also

reported experimental data demonstrating the efficiency of

our proposal.
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