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ABSTRACT
The large diffusion of shared-memory multi-core machines
has impacted the way Parallel Discrete Event Simulation
(PDES) engines are built. While they were originally con-
ceived as data-partitioned platforms, where each thread is
in charge of managing a subset of simulation objects, nowa-
days the trend is to shift towards share-everything settings.
In this scenario, any thread can (in principle) take care of
CPU-dispatching pending events bound to whichever sim-
ulation object, which helps to fully share the load across
the available CPU-cores. Hence, a fundamental aspect to
be tackled is to provide an efficient globally-shared pending
events’ set from which multiple worker threads can concur-
rently extract events to be processed, and into which they
can concurrently insert new produced events to be processed
in the future. To cope with this aspect, we present the de-
sign and implementation of a concurrent non-blocking pend-
ing events’ set data structure, which can be seen as a vari-
ant of a classical calendar queue. Early experimental data
collected with a synthetic stress test are reported, showing
excellent scalability of our proposal on a machine equipped
with 32 CPU-cores.

CCS Concepts
•Theory of computation → Data structures design
and analysis; Shared memory algorithms; •Computing
methodologies → Discrete-event simulation;

1. INTRODUCTION
Parallel Discrete Event Simulation (PDES) is a well known

method to speedup the execution of large/complex discrete
event models [9]. The core concept it relies on is the parti-
tioning of the model into different simulation objects, inter-
acting via cross-scheduling of events. Multiple threads take
care of concurrently executing events bound to the objects,
and the trajectories of the state updates of different objects
is driven by synchronization protocols (e.g. [6, 15]) aimed at
guaranteeing causal consistency among the processed events.

Most of the historical proposals along the path of devis-
ing/building efficient PDES platforms are based on the no-
tion of “assignment” of objects to threads. In particular,
each thread running within the PDES system is in charge
of handling the execution of a subset of the simulation ob-
jects, by also managing the corresponding pools of their
pending events in isolation (with respect to the execution
of other threads). In this scenario, load balancing has been
supported by periodically migrating objects (and their as-
sociated event pools) across threads according to different
policies [18, 5, 10, 3]. Still, the objects and their pools are
accessed in isolation by threads after any rebalance opera-
tion takes place.

However, the advent and large diffusion of shared-memory
multi-core machines led to a shift in the design of PDES
environments. In particular, the rising approach is to slide
towards a share-everything paradigm, where the binding be-
tween threads and objects has (as an extreme) a lifetime
equal to the processing of individual events. Examples of
PDES platforms adhering to this paradigm have been en-
visaged in, e.g., [21, 7, 13, 8]. With this organization, event
pools are no longer accessed by threads in isolation, rather
in a shared mode. This is done in order to assign the highest
priority pending events (i.e., those with lower timestamps)
destined to whichever simulation object to any thread that
has already finished processing its last assigned one. Mul-
tiple threads becoming free can therefore poll some shared
event pool to extract the lowest-timestamp event concur-
rently. Additionally, they can concurrently access the pool
to post newly-scheduled events resulting from the processing
activities at the involved objects.

Although the problem of optimizing the performance of
event-pool data structures has been long studied in the lit-
erature, most of the solutions are tailored for isolated (non-
concurrent) accesses. In fact, the issue of optimizing event
pools’ management in face of concurrent accesses in PDES
systems has only recently attracted attention by the re-
search community (see, e.g., [11]) even though concurrent
data structures for managing (ordered) sets have been pro-
posed [12, 22] long before.

In this paper we present a non-blocking (lock-free) con-
current pending events’ pool data structure, and its man-
agement logic, which also shows an amortized O(1) time
complexity. The latter feature is not provided by existing
proposals like non-blocking (skip)lists [12, 22], which pay a
linear (or at least logarithmic) cost for insertion operations.
Our proposal is suited for conventional hardware since its
only requirement from the underlying ISA (Instruction Set



Architecture) is the support for atomic Compare-and-Swap
(CAS) operations, which is commonly found in off-the-shelf
processors. As an example, such a support is offered by the
Compare-and-Exchange (CMPXCHG) machine instruction
in x86 processors.

We release our non-blocking pending events’ set as free
software1, and we report in this article a preliminary per-
formance study showing excellent scalability of our proposal
when tested on top of a 32-core HP ProLiant machine. The
tests have been carried out under synthetic workloads which,
as we will discuss, are anyhow representative of stress sce-
narios one may expect when employing a shared events’ pool
within PDES systems.

2. RELATED WORK
Optimized event set data structures have been the ob-

ject of several studies in the literature. One main thread
of research has been devoted to time-complexity optimiza-
tion to manage sequential insertions and extractions, namely
when a single thread manages the pool of events in isolation.
The seminal article in [4] presents the Calendar Queue, a
timestamp-ordered data structure based on multi-lists, each
one associated with a well-defined time bucket. It offers
amortized constant time insertion of events with generic
timestamps and constant time extraction of the event with
the minimum timestamp. The Ladder Queue [23] is a vari-
ant of the Calendar Queue which is more suited for contexts
with skewed distribution of the timestamps of the events to
be managed. Compared to the Calendar Queue, the Ladder
Queue entails a dynamic splitting of an individual bucket
in sub-intervals (hence sub-lists of records) if the number of
elements associated with it exceeds a given threshold. This
is not supported by the Calendar Queue, which instead re-
quires to resize the overall data structure, rather than a
single bucket. The LOCT Queue [19] is an additional vari-
ant which allows to reduce the actual overhead for constant
time insertion/extraction operations thanks to the introduc-
tion of a compact hierarchical bitmap indicating the status
of any bucket (empty or not). As hinted, none of these pro-
posals has been devised for concurrent accesses. Therefore,
their usage in scenarios with workload sharing (hence event-
pool sharing) across multiple threads would require global
locking to serialize the accesses. As also discussed in [11],
this would be detrimental to scalability.

A few studies, such as [2], have attempted to provide queu-
ing data structures enabling parallel accesses. These have
been based on the partitioning of the data structure and on
fine-grain locking approaches, only blocking a portion of the
data structure upon performing an operation. However, the
intrinsic scalability limitations of locking still make these
proposals unsuited for large levels of parallelism. In fact, as
shown in [20], they can reveal effective for parallel machines
with relatively small counts of CPU-cores.

Non-blocking management of sets has also been studied,
and there exist various proposals such as non-blocking linked
lists [12] or the skip-list [22]. However, these solutions do
not allow executing all the operations (either an insertion or
an extraction) in constant time. In particular, non-blocking
linked lists pay a linear cost for ordered insertions while
the skip-list pays logarithmic cost for this same operation.
Given that algorithms in the non-blocking class may suffer

1https://github.com/HPDCS/NBPQ

from abort/retries caused by concurrent conflicting accesses
to some portion of the data structure, aborting operations
that may entail non-constant time can be significantly ad-
verse to performance. We note that the likelihood of con-
flicts can be expected to increase for larger thread counts and
for frequent accesses to the shared pool. The latter aspect
highlights the risk for reduced effectiveness in PDES appli-
cations with finer grain events, where threads may spend
a significant portion of their lifetime in the management
of housekeeping tasks (like the management of the shared
pool).

To the best of our knowledge, the work in [11] is the
first to propose a non-blocking events’ set data structure
with constant time operations. This proposal is a variant
of the Ladder Queue, where the elements are always bound
to the correct bucket, but the bucket list is not ordered.
Constant time is achieved since the extraction from an un-
ordered bucket returns the first available element, which not
necessarily corresponds to the one with the minimum times-
tamp. In other words, this variant is based on a partial
ordering of elements, which allows to get rid of the costly
guarantee of returning the lowest-timestamp event upon ex-
tractions. In fact, this proposal has been devised for PDES
systems relying on speculative processing, where unordered
extractions leading to causal inconsistencies within the sim-
ulation model trajectory are recovered (in terms of their
effects on the simulation model trajectory) via proper roll-
back/recovery mechanisms. However, still for speculative
PDES, some recent results [7, 21] have shown the relevance
of delivering event records from the shared pool in correct
order, as a means to build synchronization schemes able to
exploit alternative forms of recoverability standing aside of
the traditional Time Warp protocol [15].

Last, the recent proposal in [13] explores the idea of man-
aging a shared pool concurrently by relying on Hardware
Transactional Memory (HTM) support, currently available
on few processors by major vendors. Insertions and ex-
tractions are run as HTM-based transactions, hence con-
currently in non-blocking mode. However, the level of scal-
ability of this approach is limited by the level of parallelism
in the underlying HTM-equipped machine, which still ap-
pears modest. Also, HTM-based transactions can abort for
several reasons, not only because of conflicting concurrent
accesses to a same portion of the data structure. As an ex-
ample, they can abort because of conflicting accesses to the
same cache line by multiple cores, which might be adverse
to PDES with (very) large data set.

Compared to literature results, our proposal is the unique
that jointly offers: i) non-blocking concurrent accesses, ii)
amortized constant time operations, iii) total order while
managing timestamped event records, and iv) independence
on specific hardware support.

3. THE NON-BLOCKING QUEUE

3.1 Basics
Given that we target amortized constant time for any op-

eration, our non-blocking priority queue (NBPQ) is based on
a multi-list data structure, inspired to the basic ideas under-
lying the Calendar Queue and its variants. Moreover, this
strategy allows confining concurrent potentially-conflicting
accesses to a same individual list, thus fully avoiding con-
flicts when concurrently accessing different lists. The time



Figure 1: The NBPQ data structure.

axis is subdivided into equal slots and each list, that we also
refer to as bucket, is associated with a particular time slot
[a, b). Each bucket keeps events with timestamp T ∈ [a, b).
The length of time slots is called bucket width and gener-
ally should change over time in order to control the average
number of items per bucket. Similar considerations can be
made for the number of buckets, which should be variable in
order to cover a well-suited interval of time, depending on
the locality of the events and its variation over time.

In our solution we explicitly focus on the second point
since changing the bucket width would mean changing the
strategy for referring buckets. In a fully non-blocking ap-
proach this should be done while still enabling lock-free ac-
cesses according to the old strategy up to the point in time
where the new one is finalized. This type of approach will
be the objective of future work we plan to carry out. In
any case, the reshuffle operation changing the bucket size in
our current version of the NBPQ can be executed as a crit-
ical section, which would lead to very reduced intrusiveness
along time if executed infrequently, with respect to normal
insertion/extraction operations on the queue (which are the
ones whose concurrency needs to be optimized). Also, the
selection of the new bucket size can be inherited, in terms
of policy, from already existing solutions, a few of which are
PDES-oriented such as [19]. Clearly, avoiding the resize of
the bucket at all leads to the scenario where the amortiz-
ing factor for the cost of the queue operations is not directly
controllable, and purely depends on the distribution of event
records across the different buckets. Performance implica-
tions by this scenario will be analyzed in Section 4.

A representation of our NBPQ data structure is provided
in Figure 1. The buckets are arranged in a dynamic array
table in order to allow accesses based on indices. The queue
uses the following variables: current stores the index of the
bucket which contains the minimum timestamp; init_size
is the initial number of buckets in the queue; bucket_width
is the width of a bucket, i.e., the length of the time interval
covered by each bucket.

Since each bucket covers a fixed interval of time, at start-
up the whole set of lists covers a time interval equal to
[0, bucket width · init size). In order to be able to keep
events with timestamp in the interval in [bucket width ·

Algorithm 1 NBPQ object.

NBPQueue {
pointer<Stack> future;
pointer<Stack> todo;
pointer<HarrisSet> table[32];
integer current;
integer dequeue_size;
integer init_size;
double bucket_width;

}
1: procedure NBPQueue(integer size, double width)
2: new ←NBPQueue()
3: new.todo←Stack(0)
4: new.future←Stack(size)
5: new.init size← size
6: new.dequeue size← size
7: new.bucket width← width
8: return new

Stack {
pointer<Node> top;
pointer<Node> replica;
integer enqueue_size;

}
1: procedure Stack(integer index)
2: new ←new Stack()
3: new.top ← null
4: new.enqueue_size ← index
5: return new

init size,+∞), we use two overflow stacks, pointed by fu-

ture and todo. A variable enqueue_size is used to represent
the left limit of the covered timestamps in [bucket width ·
init size,+∞). Also, a variable dequeue_size keeps the
right limit of the time interval covered by all buckets. todo

is initially set to null. At start-up, we have dequeue size =
enqueue size. The organization of our queue and its initial-
ization are shown in Algorithm 1.

Along its lifetime, our NBPQ works according to the fol-
lowing rules: (a) dequeue operations return an event with
timestamp in the interval [0, dequeue size·bucket_size);
(b) the stack pointed by future contains events with times-
tamps in the interval [enqueue size·bucket_size,+∞); (c)
enqueue tasks can only decrease current2, while dequeue
tasks can only increase current.

Upon enqueueing an event e with timestamp Te the index
is computed as ie =

⌊
Te

bucket width

⌋
. If ie < enqueue size,

the event is inserted into the corresponding ie-th bucket (in
sorted manner if the bucket is not empty), otherwise it is
pushed to future. Finally if ie ≤ current, to cope with
concurrent manipulations of current, the index of the cur-
rent minimum is updated.

On the other hand, the dequeue procedure checks that
the bucket at index current is not empty. In this case
the first node of the list is removed and then returned,
otherwise current is incremented by one and the check is
repeated until a non-empty bucket is found or the value
of current is equal to dequeue_size. If the last condi-
tion is true and future is empty, we can return null (the
queue keeps no events). Conversely, if the overflow struc-
ture has some items, it contains the new minimum. Thus
we have to move items from future into the array. The
first step consists in doubling the number of buckets in the

2Differently from a classical Calendar Queue, insertion of
events with timestamps smaller than the minimum one in
the queue are allowed, due to the concurrent nature of the
data structure.



Algorithm 2 Augmented Treiber’s Stack algorithm.

1: procedure tryPush(Node n)
2: tmp ← top
3: n.next← tmp
4: return ¬ISMARKED(tmp) ∧ CAS(&top, tmp, n)

5: procedure denyPush( )
6: repeat
7: tmp← top
8: until ISMARKED(tmp) ∨ CAS(&top, UNMARK(tmp), MARK(tmp))

queue3. At this point a new enqueue of an event e′, such that
ie′ ≤ 2 · enqueue size, could be served by a new allocated
bucket. To allow this without blocking, we store the current
future in a temporary storage todo and we exchange the
overflow structure with a new one, that covers timestamps in
[2 ·bucket width ·enqueue size,+∞). Clearly the new fu-

ture has an enqueue_size that is twice as the previous one.
Now new enqueues can be served coherently, while dequeues
have to move every event from todo into table. When todo

is empty, dequeue_size is doubled and dequeues can restart
from current = dequeue size. At this point we have re-
stored the initial condition dequeue size = enqueue size.

As a final note, although for space constraints we cannot
provide a formal proof, our solution is correct with respect
to the linearizability property [14].

3.2 The NBPQ Algorithm
Our NBPQ algorithm relies on a few baseline lock-free

data structures, namely Harris’ Sorted Linked List [12] and
Treiber’s Stack [24], to which we have added features suited
for our purposes, as we explain below.
Harris’ Sorted Linked List. In order to support events
with equal timestamps, we have slightly modified the search
routine of the non-blocking linked list by Harris in a way
similar in spirit to what is done in [17], so as to retrieve a
right node such that it has a key greater than or equal to
the search key. Anyhow, we have left the capability to in-
voke the original search by adding a parameter that allows
to switch between the two versions. In particular, given a
search key k, search(k, <) calls the original version which
returns a right node with key greater than or equal to k. On
the contrary, a right node with timestamp strictly greater
than k is obtained by using search(k, ≤).
Treiber’s Stack. A major change to the original data
structure algorithm has been put in place by adding the
new denyPush procedure, which prevents any enqueue from
succeeding. This is achieved by marking the top field as it
is done the for logical deletion in the Harris’ list. After
that denyPush completes, any push attempt fails to add
an event and only pops are allowed. Consequently, we have
defined a tryPush routine that tries to insert a node into
the stack with a CAS only if the top field is not marked and
it returns true if and only if the swap succeeds. This al-
lows us to ensure that pop and tryPush cannot alternate
each other after a completed denyPush. Finally, our stack

3As we shall discuss, the NPBQ exposes an API for the
notification of a newly-computed commit horizon T for the
simulation, so that the queue can simply shift the minimum
time it keeps to T , and recover memory for obsolete buck-
ets. This avoids that doubling operations eventually lead to
unbounded growth of the NBPQ data structure.

Algorithm 3 Non-blocking enqueue.

1: procedure enqueue(event e)
2: index←

⌊
newNode.t
bucket width

⌋
3: newNode← new node(e)
4: insert(newNode, index)
5: flushCurrent(index)

6: procedure insert(node newNode, integer index)
7: repeat
8: tmp← future
9: tmpSize← tmp.enqueue_size
10: if index ≥ tmpSize ∧ tmp.tryPush(newNode) then
11: return
12: until index < tmpSize
13: bucket← table[h1(index)][h2(index)]
14: repeat
15: 〈leftNode, rightNode〉 ← bucket.search(newNode.t,≤)
16: newNode.next ← rightNode
17: until CAS(&leftNode.next, rightNode, newNode)

18: procedure h1(integer index)
19: tmp← (ibsr(index) − ibsr(init_size) + 1)
20: return tmp & (-(index ≥ init_size))

21: procedure h2(integer index)
22: return index & (∼ ( (index ≥ init_size) << ibsr(index)))

23: procedure flushCurrent(integer n)
24: repeat
25: old← current
26: ind← old >> 32
27: if n > ind then
28: return
29: until CAS(&current, old, (n << 32) | ABAMark())

maintains the left limit of the time interval that it covers in
the enqueue_sizevariable. The complete stack algorithm,
along with our modifications, is shown in Algorithm 2.

3.2.1 Queue Operations
The enqueue operation (Algorithm 3) is split into two

phases. The first one consists in connecting the new node to
the structure. The insert routine first retrieves the future

stack and then checks enqueue_size in order to discover
where the node has to be connected. If it is lower than
or equal to the linear index i of the event to be inserted,
computed as i =

⌊
timestamp
bucket width

⌋
, then insert attempts to con-

nect the new item to the stack with a tryPush and returns
whether it succeeds, otherwise it restarts from the begin-
ning. The try-loop ends when either the tryPush succeeds
or the condition i < enqueue size is true. In this case
we compute the location of the i-th bucket and we insert
the node using the augmented search of the Harris’ Sorted
Linked List. This guarantees that events with same times-
tamps are managed in FIFO order4. At this point the in-
sertion phase is completed and the event is connected either
to future or to table. The second phase guarantees that
current points to, or precedes, the bucket containing the
minimum. This is done by the flushCurrent procedure
that tries to exchange the current variable with a CAS until
either it succeeds or i is strictly greater than the current
value of current.

4The expansion operation which shall be discussed later
might hamper the FIFO ordering. This ordering could be
anyhow preserved by resorting to a per-node counter which
is atomically incremented upon a push operation on the
Treiber’s stack.



Algorithm 4 Non-blocking dequeue.

1: procedure dequeue( )
2: while true do
3: oldCur ← current
4: index← oldCur >> 32
5: min← table[h1(index)][h2(index)]
6: 〈 , right〉 ← search(min.t,min,<)
7: newCur ← current
8: if newCur 6= oldCur ∧ (newCur >> 32) ≤ index then
9: continue
10: candidate← right
11: rNext← right.next
12: if cand 6= tail then
13: isNotMarked← ¬ISMARKED(rightNext)
14: casRes← CAS(&cand.next, rNext, MARK(rNext))
15: if isNotMarked ∧ casResult then
16: return cand.event
17: else
18: continue
19: index← index + 1
20: tmpSize← dequeue_size
21: if index = tmpSize then
22: tmpFut← future
23: eSize← tmpFut.enqueue_size
24: if tmpSize = eSize ∧ tmpFut.next= null then
25: return null
26: if ¬expandArray(tmpSize) then
27: continue
28: CAS(&current, oldCur, (index << 32) | ABAMark())

The dequeue operation (Algorithm 4) searches for the
minimum in the bucket corresponding to current. This is
done by resorting on the standard search offered by Harris’
List, invoked as search(bucket width · current, <). This
ensures that the left node is always the head of the list, while
the right node has the minimum key in the bucket. Once
the minimum is identified, dequeue restarts if current is
concurrently updated by another thread, otherwise it tries to
logically remove the right node by marking it with a CAS. If
it succeeds, dequeue completes and returns after searching
again for the minimum in the bucket in order to remove
marked nodes. However, the bucket might be empty and
the right node might be tail. Now four cases are possible:

1. current < dequeue size− 1;
2. current = dequeue size − 1, while future is empty

and its enqueue size is equal to dequeue size;
3. current = dequeue size − 1, while future is non-

empty and its enqueue size is equal to dequeue size;
4. current = dequeue size− 1 and future is such that

enqueue size 6= dequeue size.

Case 1 implies that the next time interval is covered by
table, thus the next bucket is the candidate to search for
the minimum. This is achieved by incrementing current

with a CAS and restarting the operation. Case 2 means that
we have passed all the buckets in table which cover the
interval [0, dequeue size · bucket width) and no items are
stored in the overflow data structure associated with the
time interval [dequeue size · bucket width,+∞), thus we
can safely return null to indicate that the queue is empty.
Case 3 occurs when current points to the last bucket in ta-

ble and, at the same time, future is non-empty. It means
that table can be expanded and every item in future can
be inserted into appropriate buckets. We thus invoke the
expandArray routine, that returns true if dequeue_size is
doubled at the ending of its invocation. If it returns false,
then we restart from the beginning, otherwise we are sure
that table covers the next time interval and we can in-

Algorithm 5 The expandArray routine.

1: procedure expandArray(oldSize)
2: tmpFut← future
3: if tmpFut.enqueue_size = oldSize then
4: newBlock ← new array[oldSize]
5: if ¬ CAS(&table[h1(oldSize)], null, newBlock) then
6: release newBlock
7: tmpTodo← todo
8: if tmpTodo.enqueue size < oldSize then
9: CAS(todo, tmpTodo, tmpFut)

10: CAS(future, tmpFut, new future(2 · oldSize))

11: tmpTodo← todo
12: tmpTodo.denyPush()
13: while UNMARK(todo.next) 6= null do
14: top← UNMARK(todo.next)
15: copy ← Copy(top)
16: while true do
17: if successful insertion of copy in table as invalid then
18: break
19: else if a replica n of top is found then
20: Release(copy)
21: copy ← n
22: break
23: CAS(&top.replica, null, copy)
24: if top.replica6= copy then
25: retry-loop to mark copy

26: retry-loop to validate top.replica
27: CAS(&todo.next, top, MARK(top.next))

28: CAS(&dequeue_size, oldSize, 2 · oldSize)
29: return oldSize < dequeue size

crement current with a CAS. Independently of the result
of this CAS, we restart from the beginning. Case 4 allows
to detect whether an expansion is already occurring, thus
expandArray is executed in order to help in the expansion
operation. Finally dequeue completes only if it succeeds to
mark a node or it meets the empty condition (case 2).

The expandArray operation (Algorithm 5) has two goals:
extending table and moving the elements from the overflow
structure to table. The first step takes place only if en-

queue_size associated with the current future is equal to
dequeue_size of the invoking queue. Before moving nodes,
we verify that the enqueue_size associated with future

is equal to the dequeue_size read when the operation is
started. This avoids that two expansions can occur simul-
taneously. The expansion of the array is performed by allo-
cating the new required block and connecting it to the first
level array with a single-shot CAS, because the old value is
null. Before the stack could be emptied, we have to com-
municate to all threads that an expansion phase is taking
place. This is done by making todo point to the current
future with a single-shot CAS. The exchange is performed
only if enqueue_size, stored in the stack currently pointed
by todo, is strictly lower than dequeue_size seen when de-
queue is invoked. This avoids that todo is reset to its initial
condition, while other threads are moving events. Now ta-

ble is capable of storing items in an increased interval of
time, but this information is not published yet. Thus we ex-
change future with a new stack such that its enqueue_size
is equal to 2 · dequeue size. Since the size of the array is
always increasing, it is guaranteed that exactly one CAS can
successfully update future, because new expansions cannot
occur until dequeue_size is updated. When the new stack
is installed, enqueue sees a wider table than dequeue.
After that this condition is met, the stack referred by todo

can be emptied with a sequence of consecutive pops, but we
have to invoke denyPush first. Preventing tryPush from
succeeding allows us to reach a stable condition in which the



stack is empty. In fact, we have ensured that a very slow
thread cannot push an event after the stack is detected as
empty. Finally, when this condition is verified, the current
dequeue_size is doubled with a single-shot CAS, restoring
the condition enqueue size = dequeue size.

During a pop operation, a thread-local copy c of the top
node of the stack is inserted into table, flagged as to be val-
idated. Then, the original copy’s replica field is atomically
updated with the address of c using a CAS. After that, the
unique copy corresponding to replica is validated, and the
original node can be removed from the stack. In this way
we avoid that a slow thread can copy into table an event
which had already been dequeued.

3.2.2 Garbage Collection
The problem of releasing memory buffers is non-trivial in

the context of non-blocking data structures. In particular,
since we rely on Harris’s non-blocking list, the extraction of
an event from the NBPQ initially entails marking it as no
longer valid. But the actual unlink from the list and the free
operation of the buffer need to be carried out subsequently.
However, at any time interval, it is not trivial to discover
whether a thread operating on event buffers is still keeping
a valid reference to the corresponding memory areas (e.g.
for list traversing).

To cope with this issue, we have adopted the following
strategy to realize a garbage collector which can be used to
safely reclaim event buffers. Whenever an event is extracted
from the queue, it is connected to a thread-private list, so
that a reference to its memory buffer is never lost. Con-
textually, we expose an ad-hoc Prune(bound) API which
accepts a timestamp value as its argument. It is therefore
the responsibility of the overlying software level to properly
invoke the Prune() function, whenever it determines that
a set of events up to a certain timestamp value are safe
to be deleted (since the threads within the simulation en-
gine are working on successive buckets). Prune() simply
scans the list of disconnected events free()’ing buffers as-
sociated with a timestamp T <

⌊
bound

bucket width

⌋
·bucket width.

This can be safely done without any synchronization, due
to the thread-separate nature of the recollection lists where
the event buffers are placed after extraction. Although this
way of reclaiming memory requires an explicit interaction
with the software exploiting the NBPQ, this is somehow
coherent with the nature of simulation systems relying on
pending event sets, e.g., because of periodical revaluation of
the commitment horizon of the whole simulation.

4. EXPERIMENTAL RESULTS
We tested our proposal using a multi-thread program in

which each thread repeatedly enqueues or dequeues an event
with a given probability PE and PD respectively, such that
PE + PD = 1. Each thread maintains a local variable lo-

cal_time representing the timestamp of the last dequeued
event. We tested with three different probability distribu-
tions of the timestamp increment (starting from local_time)
of newly-scheduled events—uniform, triangular and expo-
nential. Additionally, for each distribution we considered
different mean inter-arrival time values E[T ] ∈ {1, 10, 50}.
Table 1 provides the definition of these distributions. Rely-
ing on different distributions allowed us to assess our pro-
posal when considering different patterns of the binding be-
tween event timestamps and NBPQ buckets. Also, continu-

Probability Distribution Formula

Uniform (U) 2E[T ]·rand

Triangular (T )
3E[T ]

2
·
√
rand

Exponential (E) −E[T ] · ln(rand)

Table 1: Probability distributions used in evaluation
tests and their formula given the mean value E[T ].

ous access by the threads to the event pool leads our tests
to represent stress cases where the scalability (and perfor-
mance) of some overlying multi-thread PDES engine would
be essentially limited by the scalability while managing the
fully-shared event pool. In other words we make our tests in-
dependent of any strategy (e.g. conservative vs optimistic)
used to actually process the events and to keep causality
across the simulation objects. Further, we make our tests
not biased in terms of reduction of contention in the access
to the shared pool depending on the granularity of the event-
processing routine—the routine we run upon the extraction
of an event from the pool only entails the generation of other
events to be immediately injected in the pool.

All the tests have been run on a 32-core HP ProLiant
machine running Linux (kernel 2.6) equipped with 64 GB
of RAM. The number of threads running the test-bed pro-
gram has been varied from 1 to 32. Each test ends when
the total number of performed operations (which is inde-
pendent of the number of employed threads) reaches a given
threshold #OPS = 1280000. This guarantees that for every
thread count we worked with the highest concurrency degree
(no thread is ever switched off before the ending condition
is reached). Our NBPQ is initialized with a bucket_width

equal to 1 and init_size is set to 32768. The prune routine
(which garbage collects obsolete buckets) is invoked periodi-
cally every 5000 completed operations. We also run the same
experiments with a single ordered linked-list (LList) and a
traditional Calendar Queue (CalQueue), both protected via
a classical global spinlock to guarantee atomicity of concur-
rent manipulations. In these configurations, the invocation
of the memory allocator for acquiring new event buffers is
placed outside of the lock-based critical section, thus the
critical section only entails actual data structure manipu-
lations. CalQueue is set up with a maximum number of
buckets equal to 32768.

In each run we sampled the CPUtime parameter, that is
the sum of time spent by each thread both in user mode
and kernel mode. Since the employed machine was execut-
ing only our test-bed multi-thread program (and the operat-
ing system), CPUtime captures the fact that in a blocking
algorithm (say the tested global lock based approaches to
manage the event pool) a thread actively waits in order to
eventually acquire the spinlock. The throughput has been
then evaluated as #OPS

CPUtime
.

In a first test settings (test 1) we configured an equal prob-
ability for enqueue and dequeue operations, say PD =
PE = 0.5. Although the expected average size of the queue
is zero, it is not empty all the time, allowing us to cap-
ture the base cost of our algorithm and the resilience to
performance degradation potentially caused by inadequate
bucket width (or the gain in case of adequate sizing). In
Figure 2 we show the measured CPUtime values for all the
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Figure 2: CPU times for test 1.

tested configurations of timestamp increment distributions
and their mean values. LList and CalQueue both appear
not to be affected by the selected settings, which is due
to the fact that the queue contains no more than few ele-
ments at any time. Thus, the computation steps performed
by LList for managing the event records are a few, while
CalQueue is slightly more efficient thanks to its indexed ac-
cess that spreads events in multiple buckets, reducing the
number of items to be traversed per insertion. This leads
to advantages over LList for large thread counts, since the
global lock protected critical section lasts less time. How-
ever, the main advantages in performance (thanks to bet-
ter scalability) are achieved exactly with the employment
of non-blocking concurrent accesses as provided by NBPQ.
Overall, our algorithm performs better than the alternatives
because enqueue operations are both fast and non-blocking,
while the number of empty buckets is non-critical for de-
queue operations.

We note that detecting the queue emptiness is an opera-
tion somehow expensive in our solution, since it requires the
scan of the whole table. This explains why our algorithm
shows similar performance in all the tested configurations.
In order to verify this hypothesis, we have repeated the tests

with 32 threads and init_size equal to 2. This ensures that
the current index is close to table’s size most of the time,
thus detecting an empty queue requires fewer buckets to be
traversed. This allowed achieving a speed-up ranging from
1.3x to 1.6x. The improvement is not larger since, with this
settings, we moved contention from current to the Treiber’s
Stack pointed by future or todo. A solution to detect the
queue emptiness more efficiently could be to use a counter
updated with a fetch&add instruction, a strategy we plan
to explore as future work.

In a second test settings (test 2) we pre-populated the
event set and compared the steady state behavior of the
global lock-protected CalQueue with the one of NBPQ. As
discussed in [20], for the considered timestamp increment
distributions, the steady state access time is reached after
a number of operations that is five times the queue size.
Thus we imposed PD = 0.3 and PE = 0.7 for the 30%
initial part of execution of the test, achieving an expected
queue size of about 153600, and PD = PE = 0.5 for the
remaining 760000 operations. In Figure 3 we show how the
performance of CalQueue is still not relevantly affected by
the used timestamp increment distributions (images from
left to right) and their respective mean values (from top to
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Figure 3: CPU times for test 2.

E[T ]
BucketWidthNBPQ

BucketWidthCQ

1 ≈ 15000
10 ≈ 1200
50 ≈ 200

Table 2: Relative bucket size values.

bottom), due to its capability to resize the array and the
bucket width, a capability not yet offered (in non-blocking
fashion) by our proposal. In fact this leads to an access time
that is constant with respect to the queue size.

NBPQ shows degraded performance when running with
with E[T ] = 1 (Figure 3(a), 3(b) and 3(c)), since we did not
rely on bucket resize in this experiment, and a single bucket
becomes the container of half of the pending events, leading
to spending 99.9% of the execution time in the enqueue
operation. However, a ten times smaller bucket width (Fig-
ures 3(d), 3(e) and 3(f)) leads to an execution time that
is comparable with the one offered by CalQueue, while a
fifty times finer grain bucket makes our non-blocking algo-
rithm definitely outperform the rival in all the test cases

(Figures 3(g), 3(h) and 3(i)). These results prove that, even
if non-blocking scaling of the bucket size is not yet supported
by our approach, running the scaling within a critical sec-
tion would still lead to a big potential for higher scalability
of our solution, with respect to the global lock-protected
CalQueue. Also, the flat behavior of the response time of
NBPQ (even with suboptimal bucket size) is a clear indi-
cation of its potential for higher scalability (say at thread
counts much larger that 32) compared to CalQueue.

In Table 2 we show the average ratio between the bucket
width of our NBPQ proposal (BucketWidthNBPQ) and the
bucket width of CalQueue at steady state (BucketWidthCQ),
just depending on its dynamical resize. A value of this ratio
close to 1 means that the statically-selected bucket size used
in NBPQ is close to the well suited value dynamically recom-
puted by the CalQueue algorithm. When this ratio is about
1000:1, the performance of the two queueing data structures
under high contention (larger thread counts) is comparable.
This is an interesting result, still indicating that, in order to
achieve scalability with a non-blocking queue based on cal-
endars, it is not mandatory to guess an optimal width of the
bucket. In fact, we only need that buckets are short enough



 2500

 3000

 3500

 4000

 4500

 5000

 0  5  10  15  20  25  30  35

#
O

P
S

/C
P

U
 T

im
e

#Threads

./res/1280000-5000-0500000-0300000-10000000-U-32768-1000000-0

NBPQ

CalQueue

(a) U , E(T ) = 10

 2500

 3000

 3500

 4000

 4500

 5000

 0  5  10  15  20  25  30  35

#
O

P
S

/C
P

U
 T

im
e

#Threads

./res/1280000-5000-0500000-0300000-10000000-T-32768-1000000-0

NBPQ

CalQueue

(b) T , E(T ) = 10

 2500

 3000

 3500

 4000

 4500

 5000

 0  5  10  15  20  25  30  35

#
O

P
S

/C
P

U
 T

im
e

#Threads

./res/1280000-5000-0500000-0300000-10000000-E-32768-1000000-0

NBPQ

CalQueue

(c) E, E(T ) = 10

 0

 5000

 10000

 15000

 20000

 25000

 0  5  10  15  20  25  30  35

#
O

P
S

/C
P

U
 T

im
e

#Threads

./res/1280000-5000-0500000-0300000-50000000-U-32768-1000000-0

NBPQ

CalQueue

(d) U , E(T ) = 50

 0

 5000

 10000

 15000

 20000

 25000

 0  5  10  15  20  25  30  35

#
O

P
S

/C
P

U
 T

im
e

#Threads

./res/1280000-5000-0500000-0300000-50000000-T-32768-1000000-0

NBPQ

CalQueue

(e) T , E(T ) = 50

 0

 5000

 10000

 15000

 20000

 25000

 0  5  10  15  20  25  30  35

#
O

P
S

/C
P

U
 T

im
e

#Threads

./res/1280000-5000-0500000-0300000-50000000-E-32768-1000000-0

NBPQ

CalQueue

(f) E, E(T ) = 50

Figure 4: Thread throughput for test 2.

to guarantee fast enqueue operations. However, given that
we use non-blocking lists, these can be up to 1000 times
longer than the counterpart blocking alternatives.

Still reasoning about the ability of NBPQ to efficiently
handle longer lists in the buckets, let us assume to have p
threads in the system. When one thread is accessing the
global lock-protected CalQueue for a time interval k, the
other p− 1 threads could be waiting for the access the same
amount of time k. Thus the average access time of each
thread is O(p ·k). Ideally, in order to provide a non-blocking
priority queue as fast as the blocking CalQueue we can spend
up to O(p · k) time per operation, thus we could choose a
bucket p times wider than the optimal size. However, given
that our experiments have been run with up to 32 threads,
the ideal ratio among the buckets size in the two scenarios
(blocking vs non-blocking) is significantly lower than the one
we measured. The reason for this discrepancy stands in the
usage of spinlocks, which have been shown to make threads
in a critical section run slower by a factor that depends on
actual contention [1]. Hence, when we have p−1 threads that
are spinning, the thread holding the lock runs O(p) times
slower. It means that a thread completes an operation after
O(p2k) time. Thus to reach a comparable execution time
with p threads, our non-blocking algorithm can run up to
O(p2) times slower, which is achieved just when processing
many more elements in the enqueue operation.

In other words increasing the per-thread work for en-
queue operations is not a dramatic choice provided that
we can handle more enqueue operations at a time and
these are in buckets that do not contain the minimum. de-
queue operations are not significantly affected by the bucket
width, which only determines the length of the scan to find
the next non-empty bucket. Indeed, a dequeue from a
non-empty bucket consists in trying a CAS on the first un-
marked node, but in case of an unsuccessful exchange we

can restart from the beginning of the bucket. On the con-
trary, the search for a non-empty bucket takes advantage
from an increased width, because it allows dequeue oper-
ations to scan a lower number of buckets. Moreover, even
if NBPQ executes as fast as CalQueue, it still takes ad-
vantage from the absence of adverse effects caused by spin-
locking. In fact, as shown in Figures 4(a), 4(b) and 4(c),
the per-thread throughput is increased, still suggesting how
NBPQ could exploit more processors if available. On the
contrary, a bucket 200 times larger than the optimum makes
the throughput of each thread stable (see Figures 4(d), 4(e)
and 4(f)), showing that our algorithm is working at its max-
imum capability.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented NBPQ, a non-blocking

implementation of a priority queue for the pending event
set, explicitly targeting PDES systems organized accord-
ing to the multi-threaded paradigm and where the work-
load distribution among the threads is (fully) driven by the
share everything model. Our proposal allows multiple con-
current threads to perform enqueue/dequeue operations on
the pending event set without the need for using locking
primitives. From our experimental assessment, our proposal
looks promising under various execution (i.e., event genera-
tion/extraction) patterns and for different scaling levels.

Future work is planned along multiple directions. On the
one hand, as mentioned, we plan to devise a more efficient
way to detect the queue emptiness, by relying on the atomic
fetch&add primitive. On the other hand, we plan to exten-
sively test our implementation on real environments, such
as the PDES platforms in [7, 16, 21] oriented to workload
share across worker threads, and with real world applica-
tions. Finally, we plan to design a non-blocking technique
to allow the resize of the bucket width at runtime, thus en-



abling its dynamical adaptation to variations in the events’
timestamps generation pattern. This would lead to a prior-
ity queue that is scalable (an already achieved target) and
which is able to provide optimized performance in face of
different workloads.
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