
Granular Time Warp Objects

Nazzareno Marziale, Francesco Nobilia, Alessandro Pellegrini and Francesco Quaglia
nazzareno.marziale@gmail.com, f.nobilia@gmail.com, pellegrini@dis.uniroma1.it, quaglia@dis.uniroma1.it

DIAG – Sapienza, University of Rome

ABSTRACT
A recent trend has shown the relevance of PDES paradigms
where simulation objects are no longer seen as fully dis-
joint entities only interacting via events’ scheduling. Partic-
ularly, mutual cross-state access (as a form of state sharing)
can represent an approach enabling the simplification of the
programmer’s job. In this article, we present a multi-core
oriented Time Warp platform supporting so called granu-
lar objects, where cross-state access is transparently enabled
jointly with the dynamic clustering (granulation) of objects
into groups depending on the volume of mutual state ac-
cesses along phases of the model execution. Each group
represents an island where activities are sequentially dis-
patched in timestamp order. Concurrency is still preserved
by enabling the optimistic execution of the different islands.
Granulated objects do not pay synchronization costs due
to mutual causal inconsistencies. Also, the underlying Time
Warp platform does not pay memory management (e.g. mem-
ory access tracing) overheads to determine that mutual ac-
cesses are taking place within a group. Overall, the platform
transparently (and dynamically) determines a well-suited
granulation of the overall model state, and a corresponding
level of concurrency, depending on the actual state access
pattern by the simulation code. As far as we know, this is
the first study where the problem of clustering Time Warp
simulation objects is addressed for the case of in-place cross-
object state accesses by the application code, and where
dynamic granulation of multiple objects in a larger one is
supported in a fully transparent manner. We integrated our
proposal in the open source ROOT-Sim platform.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete Event, Parallel

Keywords
PDES; Multi-thread; Linux; Kernel Support; Synchroniza-
tion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’16, May 15-18, 2016, Banff, AB, Canada

c© 2016 ACM. ISBN 978-1-4503-3742-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901390

1. INTRODUCTION
Historically, Parallel Discrete Event Simulation (PDES)

[9] has been based on a programming paradigm where (i)
the overall simulation model state is partitioned into disjoint
sub-states, each one associated with a so called simulation
object (or Logical Process—LP), (ii) the memory access op-
erations by the event-handling routine are confined within
the state of the LP targeted by the event, and (iii) interac-
tions across the LPs solely occur by the exchange of messages
carrying timestamped simulation events.

Although this paradigm fully fits loosely-coupled parallel
architectures, where LPs are executed concurrently on dis-
tributed memory systems, the sliding towards multi/many-
core off-the-shelf technology has renewed challenges and op-
portunities in the design of shared memory oriented PDES
environments (see, e.g., [6, 23, 24]).

This aspect also involves the development of innovative
programming paradigms, and their associated runtime sup-
port, where the application software is no longer limited to
perform per-event state access/update operations in data
separation across the LPs. Rather, state-wide in-place ac-
cess by event-handlers, exploiting shared memory in the un-
derlying multi-core machine, is nowadays considered as a
powerful means for improving programmability of complex
models and further increasing model execution speedup [16].
Just to provide a few examples, it can avoid the coding of
complex cross-LP event patterns in case some data embed-
ded within the state of a given LP need to be known while
processing an event occurring at some other LP. Also, for
(very) large models, where such data awareness would in-
volve large amounts of LPs, the possibility to directly ac-
cess the target data in-place while coding the event-handlers
for whatever LP would also lead to avoiding large message-
exchange overhead.

Following this research trend, in this article we present
the design of a multi-core oriented Time Warp PDES envi-
ronment supporting so called Granular LPs (GLPs). Our
proposal is based on enabling in-place access to the state of
whatever LP by the event-handlers, particularly by inher-
iting the basic mechanisms already offered by the support
presented in [16]. However, differently from such proposal,
we also enable the dynamic grouping of multiple LPs, thus
forming islands that are managed by the runtime PDES en-
vironment as if the modeler had specified them to represent
a same (larger) object within the whole simulation model.

Overall, while we support the same PDES programming
model as in [16], the granulation process leads to some ma-
jor differences in the runtime behavior of the underlying
Time Warp system. On the one hand, a GLP does not

pay any rollback-related synchronization cost due to mu-
tual causal inconsistencies of its member LPs, given that
all of them are always scheduled sequentially and accord-
ing to timestamp ordering of the events they receive as in-
put. On the other hand, once a GLP has been dynami-
cally formed, runtime tracing/identification of memory op-
erations by event-handlers, which indiscriminately access the
states of its members, does not need to be carried out, thus
avoiding the associated costs. This occurs because GLP
members do never execute concurrently, thus any event-
handler accessing the overall GLP state always observes a
consistent (although speculatively-generated) snapshot. Con-
trarily, the absence of granulation in [16] led this proposal
to rely on simulation-lifetime cross-state access tracing (via
an ad-hoc Linux memory management support). This is
exploited to apply an explicit LPs’ synchronization proto-
col enabling consistent snapshot access when multiple LPs’
states are touched by in-place memory operations by some
event-handler.

In our proposal, concurrency and the potential for exploit-
ing model parallelism are still preserved by keeping the dif-
ferent GLPs—or individual LPs not involved in the dynamic
granulation process—executing according to optimistic syn-
chronization. Also, a GLP is dynamically formed only in
case the runtime support determines that a group of LPs
exhibits (along a specific model execution phase) signifi-
cant cross-state dependencies, caused by repeated in-place
accesses to their states while processing individual events.
This might be the case of, e.g., an agent-based simulation
model where some LP represents an individual, and other
LPs represent a portion of the environment, and at a cer-
tain point multiple individuals start interacting repeatedly
with the same portion of the environment—a scenario just
coded via in-place access to the state of multiple LPs by
some event-handler. If this is no longer the case, the GLP
is un-grouped so as to slide along classical concurrent spec-
ulative execution of its members. The dynamic granulation
process is driven by a self-adapting policy, which is used to
determine how long a GLP should exist, given that it is ex-
pected to provide some revenue in terms of synchronization
efficiency. Our policy is based on a mixture of space-efficient
probabilistic data structures and machine learning.

As hinted, our proposal is specifically designed to reduce
both direct (e.g., due to speculation) and indirect (e.g., due
to memory access tracing) synchronization costs, as com-
pared to the original cross-state synchronization approach in
[16]. Further, it targets the reduction of the overhead when
LPs are tied/untied to a given GLP. To this end, a GLP has
multiple input/output queues, one for each LP belonging to
it. This poses algorithmic challenges, and requires, as it will
be shown, to redesign as well traditional operations char-
acterizing the execution of a Time Warp-based simulation,
such as the schedule, the rollback, and the coasting forward
phase (in case of checkpoint-based rollback).

The remainder of this article is structured as follows. An
overview of the cross-state synchronization approach is given
in Section 2, so as to summarize the results from [16] which
are exploited in the current proposal. In Section 3 we discuss
the innovative architectural organization of a Time Warp
system supporting the granulation process, and the algo-
rithms it uses. An assessment of validity and effectiveness
of our proposal is presented in Section 4. In Section 5 we
discuss related work.

2. CROSS-STATE SYNCHRONIZATION
RECAP

The proposal in [16] allows the event-handler of DES mod-
els developed in C technology to access (and alter) the state
of multiple LPs while processing any individual event. There-
fore it provides and enhanced support for model develop-
ment, which does not only rely on cross-LP scheduling of
events in order to code the dependencies across the differ-
ent model’s portions. Rather, in-place read/write operations
are enabled targeting any (dynamic) memory location that
represents a valid buffer included in the state of whichever
concurrent LP. This type of operation is referred in [16] to
as cross-state access.

Cross-state accesses must be supported in such a way to
ensure that the state snapshot observed by the event-handler
is consistent, although generated by a speculative execution.
Hence, the LPs whose states are actually accessed while pro-
cessing an individual event all need to figure as aligned (in
logical time) to the timestamp of the event. This is achieved
by encapsulating the cross-state access within an atomic ac-
tion that is, in its turn, based on an ad-hoc synchronization
protocol triggered on demand, if and only if a cross-state ac-
cess materializes. Such a materialization is detected in [16]
by relying on an advanced Linux oriented virtual memory
management architecture able to track at runtime the access
to the state of whichever LP.

The architecture delivers memory buffers (in reply to mal-
loc requests by the application code) via a non-anonymous
scheme, where the buffers destined to serve memory requests
by an LP are guaranteed to fall within a memory stock
formed by a 1GB-wide segment of contiguous virtual ad-
dresses just reserved for hosting the state of that LP. Hence,
with stock-based allocation, the virtual memory pages des-
tined to host memory buffers included in the state of an
LP correspond to contiguous pages whose virtual-to-physical
memory translation is associated with a single entry of the
second-level x86-64 page table, which is called PDP—Page
Directory Pointer.

A special device file (whose driver is loaded into the Linux
kernel via an external module) is used to communicate via
the SET_VM_RANGE ioctl command, implemented within the
module, what is the range of virtual addresses associated
with a given simulation object. Before CPU-dispatching
an event at some LP, the worker thread in charge of the
execution communicates to the kernel module what is the
LP which will be activated via another ioctl command
called SCHEDULE_ON_PGD. This command activates a kernel-
level logic implemented in the module which installs a sib-
ling page table on the CR3 (page-table pointer) register of the
CPU-core running the worker thread. The per-thread sib-
ling page table is constructed so that initially the thread has
access only to the pages destined to keep the dispatched LP
state—trying to access any other LP state while processing
the event generates a fault.

The fault is efficiently intercepted by the kernel module,
which gives control back to the worker thread (thus, out-
side of the execution context of the LP, thanks to ULT sup-
port). In this way, the execution of the current event—
hence of the associated LP—is interrupted, and it could
be eventually restarted without worrying about any house-
keeping operation which took place in the meanwhile1. In

1We recall that the LPs’ execution contexts—including their
stacks—are separated in this system.

addition to blocking the execution of the LP, the worker
thread sends a rendez-vous start control message towards
the LP whose state is the target of the intercepted memory
access (cross-state) operation. Such control messages carry
system-events that are silently (with respect to LPs’ activ-
ities) exchanged by worker threads. System-events do not
cause the actual dispatching of the target LPs for state up-
dates, although they are incorporated into the LPs’ event
lists as place-marks. Independently of whether the rendez-
vous start event is located in the past or future of the target
LP logical time, this LP will eventually re-align its logical
time to the rendez-vous timestamp either via a rollback op-
eration, if the rendez-vous start event was a straggler, or by
executing events until the rendez-vous is reached.

When an LP reaches a rendez-vous start event in logical
time, it is temporarily blocked, and the Time Warp plat-
form sends back to the LP originating the cross-state access
a rendez-vous ack control message, which puts this LP back
to the ready state. In this way, the event that was tem-
porarily blocked due to cross-state access interception could
be restarted from the machine instruction which caused the
fault. Nevertheless, this time, when the SCHEDULE_ON_PGD
command is executed before reactivating the LP, the kernel
module will be instructed to open the access to the memory
stocks of both the LPs involved in the cross-state access,
thus allowing in-place memory access by the event-handler
to both their states. This scenario could be repeated more
than once per each event, thus synchronizing multiple LPs
and opening the access to all their states. When the exe-
cution of an event that caused a cross-state synchronization
is completed, the worker thread sends to all the LPs that
were involved in the synchronization a rendez-vous unblock
control message, which brings all them back into the ready
state, for normal processing.

By the above description, the materialization of a cross-
state access leads to a non-persistent relation between two
or more LPs. In fact, given that cross-state synchroniza-
tion is operated on a per-event basis, after the finalization
of the event that led to cross-state accesses, the involved
LPs start again executing alone along their own simulation
trajectories. However, in general contexts, a cross-state ac-
cess by the application code could be the evidence that two
(or more) LPs are actually starting to execute in a syner-
gistic way, in terms of overall simulation model execution
trajectory. In this scenario, the cross-state synchronization
protocol as introduced in [16] might require the exchange of
a large number of control messages—which in turn might
produce a large amount of rollbacks as well. Our innovative
LPs’ granulation process aims at avoiding adverse runtime
synchronization dynamics associated with such a synergic
execution of the LPs, while still supporting the flexible pro-
gramming model offering the possibility to perform in-place
accesses to whatever state information by the event-handler.

3. GRANULAR LOGICAL PROCESSES

3.1 The Grouping Algorithm
Our support for instantiating and managing GLPs inher-

its the memory management architecture presented in [16].
However, the materialization of cross-state accesses by the
application software, beyond being used for synchronizing
the involved LPs, is also used to determine a relation across
them, which will drive the formation (or fading) of GLPs.

As hinted, we consider the fact that two LPs are involved
in a cross-state synchronization as a possible materializa-
tion of a synergistic execution phase. To keep track of this,
we rely on a matrix LpDependencies, the size of which is
numLPs × numLPs. Every time that a cross-state access
involving LPi and LPj is detected at runtime according
to the technique described in Section 2, we increment the
value of the two matrix elements LpDependencies[i, j] and
LpDependencies[j, i]. LpDependencies represents therefore
a matrix of cross-state dependency counters, where every el-
ement (i, j) tells how many cross-state dependencies involv-
ing LPi and LPj have been detected along some execution
phase2.

The LpDependencies matrix can be mapped to an inci-
dence matrix of a directed multigraph G = (V,E) where the
set of vertices V keeps the identifiers of all the LPs currently
running in the system, and the set of edges E is defined as
E = {{i, j} : i, j ∈ V ∧ LpDependencies[i, j] > 0}. Never-
theless, before converting it to an actual incidence matrix,
we apply some filtering aimed at reducing the possibility of
capturing spurious cross-state relations (depending on the
events’ logic). This is because the GLP concept targets the
runtime optimization achievable in scenarios where actual
synergistic execution due to cross-state accesses is statisti-
cally significant. Hence, cross-state relations which are de-
tected only seldom should not be taken into account for
driving the dynamic formation of GLPs. Overall, we use a
threshold τdep to filter out all the spurious cross-state de-
pendencies, thus building a so called cross-state dependency
multigraph G = {{i, j} : i, j ∈ V ∧ LpDependencies[i, j] ≥
τdep} and deriving its incidence matrix which we refer to
as IMG. If no edge exists in G between two LPs, say LPi

and LPj , then we set the value of the IMG element (i, j) to
the special value ⊥. These data structures are exploited to
determine the formation of GLPs according to the following
scheme.

Periodically (say after n cycles of GVT computation) IMG
is accessed to determine what is the highest value of cross-
state access counts for each LPk thus determining the index:

MaxDepk = max
i∈[0,numLPs−1],i 6=k

{IMG[k, i]}

where the element ⊥ is assumed to be the lowest value in
the domain where the maximum is searched. These indices
are used to build a so called LpGranulation vector, which is
a vector of tuples each one structured as 〈MaxDepk, group〉
∀k ∈ [0, numLPs − 1]. Initially, the value group for all the
elements of the vector is set to the special value ⊥. This
configuration tells that LPk, associated with the k-th row
of the LpGranulation vector, has its highest dependency
counter set to MaxDepk and belongs to the special group
⊥, meaning that LPk still belongs to no group.

This construction transforms the multigraph G into an-
other oriented multigraph Ḡ such that the set V̄ ≡ V , but if
{i, j} ∈ V̄ , then {i, k} 6∈ V̄ ∀k 6= j. This means that every
node i ∈ V̄ has at most one edge connecting it to another
node j ∈ V̄ , with i 6= j, and by construction j = MaxDepi.

2This matrix is a logical construction, while the actual coun-
ters have been embedded in our implementation within LP
control blocks, which keep recoverable information. Conse-
quently, updates if the matrix entries associated with rolled
back computation are discarded.

A graph visiting algorithm on Ḡ is then used to determine
the formation of GLPs as groups of LPs3. We iterate over
all indices k ∈ [0, numLPs − 1], and for each value k we
execute the recursive function Regroup(LpGranulation, k,
⊥) shown in Algorithm 1. The goal of this recursive function
is to determine whether the selected LP already belongs to
a group. In the negative case, if the passed value for the
group ID is not ⊥, then the target LP is aggregated into
the passed group (line 6), otherwise a new group is created,
which is associated with the ID of the passed LP (line 8).
In the positive case, no action is taken for the current LP,
and the group the LP belongs to is returned (line 3). Both
cases (namely, lines 6 and 8), are associated with tentative
groups, which could be later confirmed or discarded. If the
LP was associated with a tentative group, a recursive call is
issued to Regroup() (line 11), selecting as the target LP the
MaxDep one of the current LP, and passing the ID of the
group which the current LP belongs to. The group ID of the
current LP is then updated with the return value of this call,
which is done so as to backwards propagate the creation of
new groups or the agglomeration to existing ones (line 13).
Line 11 can either confirm a tentative group for a given LP,
or supersede it with a different one.

Algorithm 1 GLP Construction

1: procedure Regroup(LpGranulation GLP, int LPid, int group)
2: if GLP[LPid].group 6=⊥ then
3: return GLP[LPid].group
4: end if
5: if group 6=⊥ then
6: GLP[LPid].group ← group
7: else
8: GLP[LPid].group ← LPid
9: end if

10: if GLP[LPid].MaxDep 6=⊥ then
11: GLP[LPid].group = Regroup(GLP, GLP[LPid].MaxDep,

GLP[LPid].group)
12: end if
13: return GLP[LPid].group

14: end procedure

We show in Figure 1 an example execution of Algorithm 1
for a scenario with 8 LPs. In the example, LP0 exhibits
a large number of cross-state dependencies involving LP3,
LP1 shows no cross-state dependency, LP2 is dependent on
LP6, LP3 has no dependencies, LP4 depends on LP1, LP5

depends on LP6, LP6 depends on LP4.
Algorithm 1 is first invoked on LP0, which belongs to no

group (i.e., the group field of row 0 of LpGranulation is set
to ⊥), and therefore a new group with ID set to 0 is created
(line 8). Then, since MaxDep0 = 3, line 11 is executed as
Regroup(LpGranulation, 3, 0). Therefore, for LP3, the
group is set to 0 (line 5), and the value 0 is returned again
at line 13, confirming the tentative group. Thus, LP0 and
LP3 now both belong to group 0, say to a same GLP. The
execution then selects LP1 which does not belong to any
group: a new group with ID set to 1 is created. Then,
LP2 is selected, which is the most interesting execution case
of this example. First, this LP is set to tentative group 2
(line 8), and then the graph visiting selects LP6. Since LP6

belongs to no group, the new tentative group with ID 6 is
created, and the visiting goes to LP4, leading to the creation
of a new tentative group with ID 4. When the visit reaches
LP1, line 3 is executed, as LP1 already belongs to group

3From now on we will use the terms GLP and group, or
GLP ID and group ID, interchangeably.

edge in the dependency multigraph

0 3

7

2 6

41

50

1

1

1 1

return path and value of REGROUP calls

Figure 1: Regroup execution with 8 LPs.

1. Therefore, all tentative groups for LPs 4, 6, and 2 are
backwards superseded by group 1 (as per lines 11 and 13).
The actual execution for LPs 3 to 7 can be trivially deduced
from the already analyzed execution steps. It is interesting
to note that LP7 belongs to a group formed by a single LP.

Once the graph visiting algorithm is completed, every LP
belongs to a group. We note that in the scenario where no
dependencies at all were detected (namely, all the elements
in LpDependencies are found to be set to a value smaller
than the threshold value τdep), Algorithm 1 creates numLPs
groups, each one keeping a single LP. In this case, our GLP
scheme boils down to a traditional Time Warp execution, al-
though augmented with cross-state synchronization support
according to [16].

Given that groups are defined after an observation pe-
riod where the materialization of cross-state dependencies
has been tracked, a scenario where such cross-state depen-
dencies, although playing a role in the construction of the G
graph, were spanned over no longer actual execution phases
could arise. In other words, the locality of the dependencies
might vary over time according to a non-uniform distribu-
tion leading to the identification of synergistic executions no
longer in place at a given point in time.

In order to capture this scenario, we have coupled the
LpDependencies matrix with a matrix keeping timestamps
values, called T imeDependencies4, which records at the
element (i, j) the latest wall-clock time at which the cor-
responding counter in LpDependencies was incremented.
Thus, we resort to an additional threshold called τfreshness

which is used when building the incidence matrix for the de-
pendency multigraph G. In particular, if a given counter ele-
ment (i, j) is higher than τdep, then an edge (i, j) is added to
E if, and only if, CurrentT ime−T imeDependencies[i, j] <
τfreshness. In this way, stale interactions are filtered out.

By the algorithm structure, we guarantee that if a GLP
is formed, then it contains sets of LPs whose cross-state
dependencies have been (recently) observed to be more in-
tense than the ones observed for LPs that belong to different
groups.

Clearly, GLPs as defined by the presented algorithm are
abstractions, and need to be finally managed by the run-
time system according to specific rules which we discuss in
the next section. The discussion and the proposed GLPs’
management approach will also cope with scenarios of under-
parallelism, where less GLPs than worked threads would be
generated (as a corner case) by blindly running the presented

4This second matrix is still managed so as to make its entries
recoverable in rollback phases.

grouping algorithm without taking into account the available
level of parallelism in the underlying PDES platform.

3.2 Management of GLPs
After the graph visiting algorithm is completed, we con-

sider the groups as determined, but not yet active—we say
that the groups are not revealed yet. Revealing a group re-
quires some more actions to be taken since the execution of
the LPs is asynchronous, just like prescribed by the Time
Warp algorithm. Hence we need to put the LPs forming a
determined GLP on phase. This task is carried out accord-
ing to the following scheme.

Once a GLP, say G, is determined, the input queues of
all the LPs belonging to it are examined. We recall that
every LP is associated with a last (speculatively) processed
event5, referred to as bound event, which is the last cor-
rectly executed event in the speculative portion of the sim-
ulation trajectory of that LP. For each LPk ∈ G, the event
ek, associated with timestamp Tek which is the event next
to LPk’s bound is selected6. From this pool of events, we
determine the group revelation bound as the event ê such
that Tê = maxk∈G{ek}. Once this event—which is the next
event farthest in the simulation time future—is executed at
the corresponding LP, we consider the group as revealed.

Nevertheless, once a GLP is determined, some preliminary
steps are immediately taken by the worker threads in order
to CPU-schedule the events occurring at the GLP mem-
bers. In other words, every operation carried out by worker
threads somehow considers groups of LPs, rather than indi-
vidual LPs. This is achieved by letting each worker thread
receive a temporary binding of a set of LP groups, depending
on the total workload of the LPs in the groups, according to
the load-sharing scheme proposed in [22], which we inherit
in our Time Warp implementation supporting GLPs.

Assuming, as commonly done in literature, that the CPU-
scheduling operation by the worker thread works according
to the Smallest-Timestamp-First (STF) policy, all the LPs in
any GLP are guaranteed to execute their events in a times-
tamp ordered fashion (since they are all bound to a single
worker thread). We can therefore augment the notion of a
group G by introducing the group bound, which is the last
processed event by any LPk belonging to G. The group
bound advances whenever any LP executes an event, and
goes back whenever a straggler event is received and a roll-
back operation is required involving elements in G. When a
group is determined (but not yet revealed) we set the group
bound to the oldest LP bound in the group. When an event
is executed at a certain LP of a group, both the LP bound
and the group bound advance to the next event.

As mentioned before, a group is revealed whenever ê is
executed. With the notion of group bound, this means that
a group is revealed when the group bound corresponds to
ê. At this point the members of the group do no more exe-
cute as individual entities, rather as a single entity, say the
GLP they form. Referring to the cross-state access model
described in Section 2, from a technical point of view this
means that upon the schedule operation of any LP in the
GLP, the SCHEDULE_ON_PGD command receives as input the
IDs of all the LPs belonging to the corresponding group,

5This might correspond to the INIT event of the simulation
in case no model specific event was ever scheduled for that
LP.
6If LPk has no event next to the bound, we consider its
bound.

ST

ST

LP0

LP1

Group Bound Group Revelation Bound

LP bound

Speculatively executed event

Event in the future

LP bound

G

G

G Group Activation control message

Cross-State EventC

C

Towards LP2

untracked

dependency

Figure 2: Revelation of a group: need for synchro-
nization.

so that the states of all of them can be accessed without
the need for tracing memory accesses and synchronizing
the execution (given that the snapshot associated with the
union of these states has a logical time compliant with the
timestamp of the CPU-scheduled event destined to some
GLP member—although the snapshot is generated specu-
latively). In case of contemporary events within a GLP,
any tie-breaking function (see, e.g., [13]) could be applied at
GLP level.

A particular case might arise, related to the revelation
of a group. Consider the scenario depicted in Figure 2. A
group is composed of two LPs, namely LP0 and LP1, whose
next events are at times T0 > T1. Therefore, ê is selected as
the next event of LP0 at time T0. Since the group is deter-
mined but not revealed yet, the STF-based scheduler selects
LP1 for execution. The next event generates a cross-state
dependency, which is still tracked (we recall that, until a
group is not revealed, the forward execution phase is similar
to the traditional Time Warp with cross-state synchroniza-
tion). This cross-state dependency is materialized towards
some LP which is outside the group, say LP2, and there is
no limit in the amount of wall-clock time to wait for LP2 to
send a rendez-vous ack control message. In the meanwhile
the speculative execution continues, and LP0 is selected for
event processing (we recall that the LP blocked for synchro-
nization is temporarily skipped by the STF-based scheduling
policy, as described in [16]). LP0 executes ê, thus the group
is revealed and the execution starts according to the GLP
logic: any LP has access to all the states of the LPs belong-
ing to the group. LP1 is still blocked waiting for the rendez-
vous ack control message. While processing its next event,
LP0 generates an untracked dependency, namely it accesses
LP1’s state with no detection by the cross-state access track-
ing system. While this is the goal of the GLP abstraction,
this execution is incorrect since LP1 has not completed the
execution of its event (it’s blocked waiting for a rendez-vous
ack control message), and therefore the memory access by
LP0 does not see a consistent state.

To overcome this issue, we augment the logic associated
with the determination of the group revelation bound. In
particular, after having selected ê, a group-activation control
message is sent towards all the LPs in the group. Addition-
ally, each group is associated with a group state, part of the
group control block7. This group state is associated with a

7The group control block is a per-group data structure which
keeps all the control information related to it—we will fill

Ready

Wait for

Group

Wait for

Synch

Ready for

Synch

Wait for

Unblock

Rollback

Silent

Execution

target event reached

causality violation

ECS

G
ro

u
p
 c

re
a
te

d

G
ro

u
p
 r

e
v
e
a
le

d
S

T
A

R
T

 e
x
e
c
u
te

d U
N

B
L
O

C
K

ECS

ACK

Figure 3: State machine for groups.

state machine which, as we will see later, determines the
execution cycle of a group. Once a group is determined, it
starts in the wait-for-group state. We note as well that the
corner case where all LPs in a determined group have no
event next to the bound leads to selectling as the group-
revelation bound the timestamp associated with the bound
event farthest in the simulation time. This wait-for-group
state is associated with an activation-bound counter, again
placed in the group control block and initially set to the
number of LPs in the group. Whenever some LP belonging
to the group reaches the group-activation control message,
the simulation kernel moves it to the block state (so that no
other event is processed by it until the group is revealed),
and the activation-bound counter is decreased. Thus, if this
counter reaches zero, it means that all the LPs in the GLP
are synchronized to the revelation bound. At this point,
the worker thread sets the group and all its LPs as ready.
From now on, the scheduler will rely on the group state to
drive the activities of the group, hence of the GLP. In par-
ticular, whenever a cross-state dependency is materialized
towards some LP belonging to a different group, the whole
GLP goes into the wait-for-synch state. Similarly, all the
other states characterizing the original cross-state synchro-
nization protocol in [16] are mapped to the GLP state. The
state machine for a group is shown in Figure 3.

The overall logic to compute and install groups is reported
in Algorithm 2. For the sake of performance, it is devised
mostly as a non-blocking algorithm [11], except for a final
synchronization point where all the worker threads hit a
barrier. The idea behind this algorithm is that while one
thread (which we refer to as the master thread, as the check
at line 6 indicates) computes the new groups, it is point-
less for the other worker threads to wait for this task to
complete. Rather they can keep on processing simulation
events. To let other worker threads continue processing, we
rely on counters which described the group determination
era, namely a global shared counter (group era) and a set of
thread-private counters (my group era). When the master
thread starts computing the new GLPs, the new group con-
trol blocks (which keep as well pointers to LP-related infor-
mation) are computed on a global data structure. When the
GLPs are all determined, via repeated calls to Regroup(),

this data structure with the relevant fields during the forth-
coming discussion.

the global group era counter is incremented (line 10). At ev-
ery main simulation loop cycle, all the other worker threads
compare the value of group era with their private value of
my group era (line 16), and only if it is incremented they
start installing the groups (line 20, for other worker threads).
In this way, even though the GLPs’ determination procedure
takes a bit of time, the speculative execution can continue
at other worker threads. Installing groups requires all the
worker threads to make a private copy of the shared group
control blocks on thread-private storage, and rebinding the
LPs belonging to their groups on them. This algorithm re-
quires an additional modification, related to the determina-
tion of ê. In fact, this should be done by the worker threads
only after that the GLPs have been bound to them (lines 14
and 22). The thread barrier at the end of the algorithm is
required so as to ensure that when the new GLPs are deter-
mined, no worker thread restarts executing events before all
the worker threads have a coherent view on what LPs they
are in charge of CPU-scheduling.

Algorithm 2 GLP Management Algorithm

1: new LP groups[]
2: LP groups[] (thread-private)
3: group era
4: my group era (thread-private)
5: procedure GroupCompute()
6: if MasterThread() then
7: for i ∈ [0, numLPs− 1] do
8: Regroup(LpGranulation, i, ⊥)
9: end for

10: group era← group era + 1
11: SanitizeGroups()
12: InstallGroup()
13: ThreadBarrier()
14: Compute Group Revelation Bounds for all bound groups
15: else
16: if my group era == group era then
17: return
18: end if
19: my group era← group era
20: InstallGroup()
21: ThreadBarrier()
22: Compute Group Revelation Bounds for all bound groups
23: end if

24: end procedure

An additional operation is required for avoiding under-
parallelism in the model execution. In particular, it could
be the case that due to the detected cross-state dependencies
the number of determined GLPs according to the algorithm
devised in Section 3.1 is smaller that the total number of
available worker threads. To avoid under-parallelism sce-
narios, the master thread executes the SanitizeGroups()
routine (line 11), which takes care of this. In particular,
if the number of GLPs NG is smaller than the available
number of worker threads C, additional C −NG groups are
instantiated. To determine which LPs should fall into these
new groups, the LpDependencies matrix is scanned, so as
to determine what are the LPs with the smallest number
of interactions, and they are taken out of their determined
groups according to a greedy approach.

An alternative approach to cope with discrepancies be-
tween C and NG would be the one of dynamically shrinking
the amount of available worker threads. This would not be a
means to avoid under-parallelism with respect to the amount
of worker threads (e.g. the amount of CPU-cores potentially
available within the hardware platform), rather for driving
the level of parallelism (hence the actual synchronization
dynamics) exclusively on the basis of cross-state dependen-

ST

ST

LP0

LP1

Group Bound

Target Event

Executed event Straggler message Causality violating event

Target Event

Figure 4: Group rollback.

cies materialization, according to the grouping algorithm we
presented. We plan to explore this approach as future work.

3.3 Managing Rollbacks
Concerning the reception of straggler messages, the execu-

tion of the rollback operation must take into account GLPs,
rather than single LPs. In fact, a straggler must rollback
the entire GLP, as shown in Figure 4. In particular, in the
depicted example, LP0 receives a straggler message keeping
event e at timestamp Te, which is smaller than the bound
of both LP0 and LP1. We note that rolling back as well
LP1 in this case is not an option. In fact, nothing prevents
the received straggler to manifest a cross-state dependency
when executed in forward mode. Nevertheless, since both
LPs belong to the same group, LP0 has direct access to
LP1’s simulation state. Therefore, if LP1 is not rolled back
as well, LP0 would see an inconsistent snapshot, related to
a simulation time in the future.

Whenever a straggler message estr is received, associated
with timestamp Tstr, the GLP’s state is set to the rollback
state, meaning that a causality violation was detected. At
this point, all the LPs that are members of the GLP must
rollback to a previous consistent simulation state. The first
task is therefore to identify such a consistent state. If we
consider a GLP G composed of |G| LPs, we select from each
LPi, i ∈ [0, |G − 1|] the target event ēi associated with a
timestamp Tēi < Tstr. A group-consistent simulation state

for G is the state S̄G =
⋃|G|−1

i=0 Si such that each Si keeps
the effects of the execution of all the events in the i-th input
queue up to the execution of ēi, included.

The goal of the rollback operation is thus to realign the
LP bound of every LPi, i ∈ [0, |G−1|] to ēi. In case the sim-
ulation engine bases its rollback operation upon checkpoint/
restore primitives, it would appear sufficient to select at each
LPi the simulation state checkpoint St

i such that t < Tstr,
and then execute the coasting forward phase. Unfortunately,
this simple solution could be easily proven wrong in a twofold
way. Consider, in fact, the example shown in Figure 5, where
GLP G is already revealed. The first anomaly is related to
the way the coasting forward phase is usually carried out.
In fact, according to [12], the traditional coasting forward
phase leads the LP to silently reprocess events until the sim-
ulation state is realigned to the desired point. Referring to
Figure 5, this means that LP0 is selected, its checkpoint is
restored, and events e1, e2, and e3 are reprocessed. Then,
LP1 is selected, its state is restored as well, and events e4,
e5, and e6 are silently replayed. The problem is related to
the fact that e5 generates a cross-state dependency towards
LP0. Since the group is already revealed, dependency de-
tection is disabled across the two involved LPs, and LP1

directly accesses LP0’s state. Nevertheless, since LP0 has
already reprocessed e3, LP1 observes an inconsistent snap-
shot, in a way which goes undetected. The second anomaly
is similar in spirit, but is actually related to the replay of
e1 at LP0. In fact, e1 generates a cross-state dependency
towards LP1, but: i) LP1 has not yet restored its previous
checkpoint, and ii) even if the checkpoint were already re-
stored, it would be associated with a simulation state farther
in simulation time.

To solve these inconsistencies, two changes to the tradi-
tional Time Warp operations should be actuated. First, a
group-log operation should be supported in case of checkpoint-
based rollback of GLPs, which is depicted in Figure 6. In
particular, the checkpointing period χ should be evaluated
at the GLP level, so that any data structure required to keep
track of how many events have been processed since the last
log should be kept in the group control block. Once the
checkpointing system detects that a state checkpoint should
be taken, a copy of the LP’s state at which the last event
was executed is immediately taken. Additionally, a check-
point control message is sent towards all the other LPs in the
group. Once the other LPs in the group are scheduled, this
control message is found in the input queue, and the simula-
tion kernel immediately takes a checkpoint state. The con-
trol message can be immediately discarded, as checkpoints
are ephemeral and do not survive a rollback operation to a
lower logical time—therefore a checkpoint control message
should be never replayed during a coasting forward phase.
In this way, whenever a checkpoint is selected during a roll-
back operation, it is guaranteed that any other LP in a given
GLP has a checkpoint associated with the same simulation
time instant, thus preventing the above second anomaly to
occur8. This is a necessary condition in case of a rollback,
and must be ensured as well in the case the group has just
been determined. To this end, the execution of a group-
activation control message involves as well taking a state
snapshot.

As for the first anomaly, it arises from the fact that a GLP
must be considered as a unique object, although associated
with multiple input queues (the input queues of its member
LPs). Therefore, the anomaly can be tackled by replaying
events according to their timestamp order in a GLP coasting
forward pahse, independently of the LP queue in which they
are found. To this end, the traditional STF scheduler can
be used during the GLP silent execution phase. This means
that the actual silent reprocessing of the events is carried
out by the same scheduling operation that is used in for-
ward execution mode, although this time operating at GLP
level. To prevent that duplicate messages are sent by LPs,
the whole group is moved to the silent execution state. In
this way, whenever some LP generates a new event destined
to any LP in the system, this event is simply discarded—
it was already sent before. To determine when the group
should leave the silent execution state and enter again the

8Clearly, the actual checkpoint operation can be optimized
using common literature techniques such as incremental
checkpointing ones [18, 19, 25], which might fit larger grain
LPs, just like GLPs. In our implementation, and in the
presented experimental study, we rely on a baseline pe-
riodic non-incremental checkpointing scheme. A deeper
study of the interactions between the GLP concept and op-
timized checkpoint/restore schemes, or even reverse com-
puting schemes for state recoverability (see, e.g., [5, 7]), is
planned as future work.

ST

ST

LP0

LP1

Group Bound

Antimessages

1 2

Restored checkpoint

4 5 6

Executed event Event silently reprocessedStraggler message Causality violating event

Restored checkpoint

3

dependencydependency

Figure 5: Inconsistent execution of traditional rollback/coasting forward phase with active groups.

ST

ST

LP0

LP1

Speculatively executed event

Event in the future

S

S Checkpoint control message

State log

Figure 6: Group checkpoint control messages.

ready state, it is sufficient to check when the group bound is
reached. At that point, all the events involved in the GLP
coasting forward figure as already reprocessed. An exam-
ple of this type of execution is depicted in Figure 7, where
events e1, e2, e3, e4, and e5 are processed in the correct
order by the STF scheduler. Event e3 is involved in a cross-
state dependency, but it anyhow observes a consistent GLP
snapshot.

In case a rollback operation falls before a GLP is revealed—
which is detected by checking if the timestamp of a straggler
message falls before the group revelation bound—the group
is brought back to the wait-for-group state, so that cross-
state dependencies are again runtime tracked according to
the original proposal in [16].

3.4 Lifetime of GLPs
So far we have discussed our GLP proposal in terms of

group determination, activation, and speculative execution.
A question which should be still answered is related to the
lifetime of a group: how long should a GLP exist in a given
simulation run? While detecting when a synergistic execu-
tion starts could be easy, thanks to the runtime tracking of
cross-state dependencies when LPs are not granulated, de-
termining when such a phase ends is a non-trivial achieve-
ment, given the fact that when a group is revealed, cross-
state dependencies are no longer traced (in fact, memory
access to any state of the LPs belonging to the group is di-
rectly allowed by the runtime system to the worker thread
that is in charge of managing the GLP). To this end, when a
group is created, a simulation-time interval δG is determined.
This interval is computed as the average simulation-time in-
crement that the model reaches in a given GVT phase. δG
is therefore a parameter which depends on the simulation
model and its current execution phase, which captures the
“speed” at which the parallel simulation is being carried out.
As a first estimation, we set a GLP lifetime to LG = kG · δG ,
where kG is a per-GLP value which is initially set to 3.

Therefore, whenever a group is detected, we immediately
schedule a group-untie control message to all the LPs in the
GLP at simulation time Tu = GV T + LG , where GV T is
the GVT value which was reduced when the group was de-
tected. This event is associated with an additional counter
in the group control block, which is initially set to the num-
ber of LPs in the GLP. Whenever such an event is executed
by a LP (still at platform level, with no real dispatching
of the application code), the counter is decremented, and
when it reaches zero the group is considered as untied. LPs
belonging to an untied group could be mapped to different
worker threads when a LP rebinding phase is executed, and
they again rely on the traditional Time Warp protocol, aug-
mented with cross-state access tracking as in the original
proposal in [16]. The group-untie control message should be
kept in the input queue, as its effects are not transient: a
rollback operation targeting a simulation-time instant which
falls before the group-untie moment must re-activate the
group, and therefore these control messages might be re-
played.

This first estimation of LG clearly needs to be improved
at runtime. In fact, a synergistic execution phase which led
to tying a number of LPs in a GLP could be either shorter
or longer. To this end, whenever a group is determined, we
generate a sort of group fingerprint, which is able to capture
the size and the LPs which are belonging to the GLP. This
fingerprint is based on a Bloom filter [2] using 3 hash func-
tions, which is a space-efficient probabilistic data structure,
telling whether an element is a member of a set. When a
group is determined at turn i, we compute the Bloom filter
Bi. At the next step, when groups are determined again, for
each group we compute the Bloom filter Bi+1. Note that,
by Algorithm 1, if the dependencies do not change signifi-
cantly, the same LPs are tied into the same GLP. Therefore,
we can compute the approximation of the intersection of the
two Bloom filters according to the result in [20] as:

−
m ln

[
1− Xi

m

]
k

−
m ln

[
1− Xi+1

m

]
k

+
m ln

[
1− Xi|Xi+1

m

]
k

(1)
where m is the size of the filters, k is the number of hash
functions (3 in our case), Xi is the number of bits set in
the i-th filter. Xi|Xi+1 denotes the bitwise OR between the
two filters. Counting the number of bits set in a given word
(a problem also know as the population count) could be a
costly operation. There are nevertheless specific hardware
supports for this (e.g., the popcnt instruction on modern
x86 processors) or extremely optimized software routines for
this [14].

ST

ST

LP0

LP1

Group Bound

Antimessages

2 5

1 3 4

Simulation state snapshot (restored)

Speculatively executed event

Event silently reprocessed

Straggler message

Causality violating event

Synchronized log

dependency

Figure 7: Group-rollback operation.

This number is an estimation of how much two instances
of a GLP associated with a given ID are different9. We
set the threshold τdif , which is used to apply a hill climb-
ing algorithm to self-tune the value kG of the group in the
following way:

k′G =

{
kG · (1 + α) if difG ≥ τdif
kG · (1− α) otherwise

(2)

where α ∈ [0, 1] is a tuning parameter which tells how fast
the value kG should be adapted, and difG is the outcome by
Equation (1). On the basis of Equation (2), GLPs last longer
in case they don’t change very much, while they are untied
more frequently in case the synergistic phases are short.

4. EXPERIMENTAL STUDY
We have implemented the support for GLPs within the

ROOT-Sim [21] package10, an open source Time Warp-based
general purpose simulation platform hosting simulation mod-
els developed using the C programming language. This plat-
form already offers the baseline support for cross-state syn-
chronization as presented in [16].

In this section we provide experimental data achieved by
testing our proposal running the implementation of a multi-
robot exploration and mapping simulation model, as devel-
oped in [15] according to the results in [8]. In this model, a
group of robots is set out into an unknown space, with the
goal of fully exploring it, while acquiring data from sensors
(e.g., cameras, lasers, . . .) which are used to map the envi-
ronment. The robots are equipped with enough processing
power to elaborate the sensors data online (thus, the map is
constructed during the exploration), so as to allow them to
rely on the acquired knowledge to drive the exploration in
a more efficient way. Specifically, whenever a robot has to
make a decision about which direction should be taken to
carry on the exploration, it is done by relying on the notion
of exploration frontier. By keeping a representation of the
explored world, the robot is able to detect which is the clos-
est unexplored area which it can reach, computes the fastest
way to reach it and continues the exploration.

The robots explore independently of each other until one
coincidentally detects another robot. Whenever two robots
enter a proximity region, they perform three different ac-
tions: i) they use their sensors to estimate their mutual
physical position—recall that they are just in proximity ; ii)

9Recall that the ID of a GLP corresponds to the ID of some
LP belonging to the GLP.

10The full source code of our implementation is available at
https://github.com/HPDCS/ROOT-Sim.

they verify the goodness of their position hypothesis by cre-
ating a rendez-vous point (not to be confused with rende-
vous control messages in the underlying Time Warp platform
supporting granulation) in the explored part of the region,
and trying to meet again there; iii) if the hypothesis is veri-
fied, they exchange the data acquired during the exploration,
thus reducing the exploration time and allowing for a more
accurate decision of the actions to be taken. Additionally, in
case step ii) succeeds (i.e., the robots actually meet in the
rendez-vous point), it means that the estimation of their
respective position is correct. Therefore, they can form a
cluster, i.e. they can start exploring the environment in a
collaborative way. This collaborative exploration can take
place in two different ways. On the one hand, they jointly
define (by relying on cost and utility functions, as defined in
[8]) their next exploration targets, so that they can minimize
the time required for a complete environment exploration.
On the other hand, they might decide to make a guess about
the position of other robots (the total number of which is
known) which are not part of the cluster yet. In the latter
case, one of the robots (the one for which the utility/cost
ratio is convenient) targets the hypothesized position. If a
robot is found there, the aforementioned steps are carried
out, so as to increase the knowledge of the environment.

Discovering the presence of a nearby robot is a crucial
step while coding this simulation model. In fact, in case of
reliance on classical PDES programming schemes not based
on cross-state access, either the robots must communicate to
each other their current position (thus exponentially increas-
ing the number of exchanged messages, say cross-scheduled
events, which in turn can limit the performance of the sim-
ulation), or they have to notify it to specific simulation ob-
jects (i.e., the regions), again increasing the number of mes-
sages exchanged. Additionally, to estimate the respective
position of the robots, many simulation events could be re-
quired. In this specific case, these events should be marked
with the same timestamp, thus requiring efficient (but non-
negligible in cost) tie-breaking approaches, like the one in
[13]. Third, exchanging map information could entail a data
transfer non-negligible in size, posing a huge burden on the
communication subsystem.

This model is therefore a good test-case for exploiting the
innovative programming paradigm based on cross-state ac-
cess, and to test the advantages from granulating LPs ac-
cording to the new mechanisms we have presented (just sup-
porting this programming model). In our implementation
(as said aligned with the one in [15]), we rely on two dif-
ferent types of LPs, namely active ones (implementing the
robots) and passive ones (implementing regions of the ex-

ploration environment). More specifically, the environment
is represented as a square region, divided into hexagonal
cells. This choice allows us to define a meaningful mobil-
ity model for the robots, and at the same time allows us
to define proximity regions which are used by the robots to
detect the presence of other ones in the nearby. Also, in our
model, periodic events occurring into any cell are envisaged
as the basis for modeling the evolution (inside the cell) of
any phenomenon characterizing the dynamic change in the
state of the explored region.

At simulation startup, each passive simulation object cre-
ates random obstacles (which prevent the robots from reach-
ing any neighbour cell), mimicking a rescue scenario, where
an open space is modified by an accident and the robots are
used to explore it for rescue activities. At the same time,
each passive LP instantiates in its private simulation state
(by relying on a traditional malloc call) a presence vector.
Each entry of the vector is associated with a specific robot.
Whenever a robot enters a given cell, it explicitly informs
the LP taking care of the cell’s state by exchanging an event,
piggy-backing a pointer to a buffer in the robot’s simulation
state which keeps the representation of the explored map.
When the cell processes this event, it stores the pointer in
the presence vector, which is then scanned to synchronize
the information in the map. In particular, all the robots’
states are in-place accessed, so as to copy the information
from one state to the other. This operation clearly triggers
cross-state synchronization and may lead to granulate LPs
temporarily residing in a given area, together with the LP
modeling the specific portion of the environment where they
reside.

To test the GLP proposal we have compared the exe-
cution time for this simulation model when run with the
granulation support, and without granulation thus running
with the baseline cross-state synchronization protocol (la-
beled as CS). We have also run the same identical model
on top of a serial engine based on a classical calendar-queue
scheduler. Finally, for completeness of the analysis, we have
run a version of the same model coded by only relying on
the traditional paradigm where cross-state access is not em-
ployed/supported, thus basing the interactions among the
different parts/entities in the model exclusively on the cross-
scheduling of events across the different LPs. For all the tests
we run a model with 1000 LPs, the 10% of which represent
robots, and the remaining 90% represent sub-regions of the
overall bi-dimensional region to be explored.

The hardware architecture used for running the experi-
ments is a 64-bit NUMA machine, namely an HP ProLiant
server, equipped with four 2GHz AMD Opteron 6128 pro-
cessors and 64 GB of RAM. Each processor has 8 cores (for
a total of 32 cores) that share a 12MB L3 cache (6 MB per
each 4-cores set), and each core has a 512KB private L2
cache. For the parallel runs we configured the simulation
platform to use 32 worker threads.

The total execution time for the simulations are reported
in Figure 8 for the different settings of the underlying simu-
lation engine (where each reported sample is averaged over
10 runs). For GLP-based runs, we have also considered the
variation of the threshold parameter τdep, which we recall
can be used to filter out cross-state dependencies that are
less valuable (say, their volume is lower than others) while
building the GLPs. Also, in GLP-based runs, the granu-
lation process is actuated after the first GVT computation

 0

 100

 200

 300

 400

 500

 600

Sequential

Traditional PDES

Baseline CS Sync

GLP τ
dep =5

GLP τ
dep =10

GLP τ
dep =15

GLP τ
dep =20

GLP τ
dep =100

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Configuration

Figure 8: Total execution time.

round that is subsequent to the fading (due to lifetime ex-
piration) of previously formed groups11.

By the results we observe that all the platform configura-
tions offering support for in-place cross-state access outper-
form the traditional PDES scenario, not admitting cross-
state accesses. Nevertheless, the baseline CS synchroniza-
tion scheme offers a limited gain, while the integration of
the new granulation support leads to noticeable performance
improvements. These improvements are better for larger
values of the parameter τdep, indicating that a more accu-
rate selection of actually valuable cross-state dependencies
can drive significantly better granulation decisions, leading
to more efficient synchronization dynamics, which lead the
execution time to be almost 3 times lower compared to both
the traditional PDES case and the baseline CS synchroniza-
tion scheme. An additional observation concerns the step
reduction of the execution time with GLPs when increasing
τdep from 10 to 15. From the collected statistics we noted
that this phenomenon is due to the fact that up to the value
τdep = 10, scenarios were generated where granulation in-
volved multiple LPs representing distinct sub-regions, which
does not favor concurrency since the model let each robot LP
to move around, with the constraint of residing at any time
in a single region. Hence, at any time instant, some event
can only lead to cross-state access involving a region and
its hosted robots. Different sub-regions, and their currently
hosted robots, should be therefore allowed to execute con-
currently to favor parallelism, by placing them in different
GLPs. Nevertheless, our solution allows to be sufficiently re-
silient to this scenario. In fact, the first value of τdep where
some thrashing phenomenon is observed (which in turn af-
fects the overall performance) is observed only for a much
higher value, namely τdep = 100.

5. RELATED WORK
The LP granulation scheme we have presented can be seen

as a means to bias synchronization dynamics in order to
let a Time Warp system improve its performance in con-
texts where different portions of the simulation model ex-
hibit more strict interdependencies (along different phases of
the simulation run). The consequence would be an improve-

11In all the parallel runs the GVT period has been set to 1
second.

ment of fruitful usage of computing resources while carrying
out speculative processing of DES models. This is the objec-
tive of classical load balanging/sharing approaches proposed
in literature (see, e.g., [4, 10, 22]). However, these proposal
are bound to scenarios where the interactions across the
model portions are explicit and only occur via the classical
event cross-scheduling approach (in-place state-wide access
to the model state is not supported/considered).

More generally, to the best of our knowledge, there are
not many proposals focusing on enabling non-explicit inter-
dependencies between different LPs for the case of opti-
mistic PDES. The work in [17] tackles the issue of trans-
parently supporting the access to a shared state portion of
the model by whichever event on multi-core Time Warp plat-
forms, which is anyhow confined to global variables. This
work presents state management/recoverability operations
that allow concurrent event-handlers, CPU-scheduled to run
events at multiple LPs, to observe a consistent global snap-
shot of such shared portion even in the case they do not
notify their operations via explicit event exchange. Beyond
a few technical differences—such as the reliance on appli-
cation software instrumentation in [17] vs the employment
of kernel-supported memory management facilities in order
to runtime detect the materialization of an in-place access
to some state portion in our proposal—the proposal in [17]
does not entail mechanisms for dynamically determining the
level of correlation of the memory (read/write) operations
involving the overall model state. Rather, our granulation
mechanism targets the dynamic discovery of such correla-
tion so as to dynamically create islands of the model state
where in-place access by the application code is enabled in
a synchronization efficient manner.

In [6] the authors present the concept of Extended LP
(Ex-LP). An Ex-LP is a collection of LPs that explicitly ex-
pose towards other (Ex-)LPs a certain amount of attributes,
which can be implicitly accessed/modified. The access to
exposed attributes is synchronized by relying on the Soft-
ware Transactional Memory (STM) paradigm. In this sense,
memory accesses to the shared portion of the state (the ex-
posed attributes) is as well speculative, and could be sub-
ject to undo (via transaction aborts). This proposal any-
how requires pre-declaration of the state portions that can
be subject to in-place concurrent access (since these must
be accessed via STM demarcated code blocks) and there is
no concept of dynamic clustering of different state portions
in order to apply cluster oriented synchronization mecha-
nism aimed at improving the runtime efficiency. Contrar-
ily, in our proposal we do not require any pre-specification
of what state portions will be accessed in-place by a same
event-handler execution instance, and we support the dy-
namic clustering scheme with associated runtime change of
the synchronization dynamics. Overall, we improve both
flexibility of model coding (via the support for state-wide
in-place access) and the potential for higher fruitful usage of
resources.

The notion of Kernel Process (KP) is presented in [3]. A
KP is a sort of PDES kernel-level thread instance that han-
dles a collection of LPs by managing a single event-list of
their events. The core objective is to optimize operations
such as the fossil collection (memory recovery), which can
pay-off even if false rollbacks can occur due to updates of
the unique (merged) event list caused by stragglers or anti-
messages (leading to rollback LPs in a KP that could still be
considered as causally consistent). In our proposal the clus-

tering of the LPs on a same thread is enabled dynamically
(although with no explicit fusion of the event lists of the
clustered LPs, rather by adopting a multi-list management
approach), depending on the cross-state dependencies that
are materialized at runtime and on the choice by the un-
derlying granulation mechanisms. Further, our Time Warp
environment supports a different programming model where
in-place access to whatever state location is enabled. We
feel that the event-list management features/optimizations
at the core of KPs could be somehow integrated with our
granulation support to further improve the performance of
the runtime system.

The proposal in [1], still targeting multi-core architectures
as we do, proposes a technique called Dynamic Local Time
Window Estimates (DLTWE), in which each processor com-
municates time estimates of its next inter-processor event to
its neighbors, which use the estimates as bounds for advance-
ment. The proposal specifically targets spatial simulations,
in which different (close) sub-volumes could be interested
by a rollback operation. A selective rollback function is de-
scribed, which allows to reduce the effects of rollbacks at
LPs managing “close” entities. Contrarily, we do not im-
pose any topology or predetermined relation across the LPs,
which is an implicit outcome thanks to the different sup-
ported programming model (based on in-place state access
everywhere). Moreover, we limit the effect of a rollback too
for applications exploiting such a programming model by ex-
plicitly avoiding causal inconsistencies across LPs that are
dynamically granulated together.

6. CONCLUSIONS
In this article we have introduced the concept of granular

Time Warp simulation objects, and the design of a runtime
PDES platform enabling the granulation process. This leads
to dynamically clustering the baseline Time Warp objects,
thus forming larger entities that advance in logical time as
individual larger-grain objects, whose elements do never give
rise to causality errors towards each other. This is achieved
by jointly supporting a programming model where the sim-
ulation code can be written in such a way to access in-place
the state of whichever object (either granular or not) while
processing each individual event, an approach that stands
as a valuable alternative to traditional PDES only based on
event exchanges for coding interactions across the objects.
Such cross-state accesses are what drive the formation of
granulated objects, which are aimed at clustering the base-
line objects that along specific execution phases shown larger
volumes of cross-state dependencies. Also, this mechanism
leads to runtime configurations where the level of parallelism
is dynamically determined on the basis of the level of cou-
pling of the objects, as determined by cross-state dependen-
cies materialization. We tested our proposal against tradi-
tional Time Warp and a variant with cross-state support
but no granulation, for the case of a multi-robot exploration
simulation model run on a 32-core machine. By the study
we report a 3x improvement in the model execution speed
thanks to our proposal.

7. REFERENCES
[1] P. Bauer, J. Lindén, S. Engblom, and B. Jonsson.

Efficient Inter-Process Synchronization for Parallel
Discrete Event Simulation on Multicores. In
Proceedings of the 3rd ACM SIGSIM Conference on

Principles of Advanced Discrete Simulation,
SIGSIM-PADS, pages 183–194. ACM Press, 2015.

[2] B. H. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[3] C. D. Carothers, D. W. Bauer, and S. Pearce. ROSS:
A High-performance, Low-memory, Modular Time
Warp System. Journal of Parallel and Distributed
Computing, 62(11):1648–1669, 2002.

[4] C. D. Carothers and R. M. Fujimoto. Efficient
Execution of Time Warp Programs on Heterogeneous,
NOW Platforms. IEEE Transactions on Parallel and
Distributed Systems, 11(3):299–317, 2000.

[5] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto.
Efficient Optimistic Parallel Simulations Using
Reverse Computation. ACM Transactions on Modeling
and Computer Simulation, 9(3):224–253, 1999.

[6] L.-l. Chen, Y.-s. Lu, Y.-P. Yao, S.-l. Peng, and L.-d.
Wu. A Well-Balanced Time Warp System on
Multi-Core Environments. In Proceedings of the 25th
Workshop on Principles of Advanced and Distributed
Simulation, PADS, pages 1–9. IEEE Computer
Society, 2011.

[7] D. Cingolani, A. Pellegrini, and F. Quaglia.
Transparently Mixing Undo Logs and Software
Reversibility for State Recovery in Optimistic PDES.
In Proceedings of the 2015 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation,
SIGSIM-PADS, pages 211–222. ACM Press, 2015.

[8] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz,
and B. Stewart. Distributed Multirobot Exploration
and Mapping. Proceedings of the IEEE,
94(7):1325–1339, 2006.

[9] R. M. Fujimoto. Performance of Time Warp Under
Synthetic Workloads. In Proceedings of the
Multiconference on Distributed Simulation, pages
23–28. Society for Computer Simulation, 1990.

[10] D. W. Glazer and C. Tropper. On Process Migration
and Load Balancing in Time Warp. IEEE
Transactions on Parallel and Distributed Systems,
4(3):318–327, 1993.

[11] M. P. Herlihy. Wait-free Synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124–149, 1991.

[12] D. R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and System, 7(3):404–425,
1985.

[13] H. Mehl. A Deterministic Tie-breaking Scheme for
Sequential and Distributed Simulation. In Proceedings
of the 6th Workshop on Parallel and Distributed
Simulation, PADS. ACM Press, 1992.

[14] R. E. Odeh and D. E. Knuth. The Art of Computer
Programming. Volume 1: Fundamental Algorithms.,
volume 64. Addison-Wesley Professional, mar 1969.

[15] A. Pellegrini and F. Quaglia. Programmability and
Performance of Parallel ECS-based Simulation of
Multi-Agent Exploration Models. In Proceedings of the
2nd Workshop on Parallel and Distributed
Agent-Based Simulations, PADABS, pages 395–406.
LNCS, Springer-Verlag, 2014.

[16] A. Pellegrini and F. Quaglia. Transparent Multi-core
Speculative Parallelization of DES Models with Event
and Cross-state Dependencies. In Proceedings of the
2nd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, SIGSIM-PADS, pages
105–116. ACM Press, 2014.

[17] A. Pellegrini, R. Vitali, S. Peluso, and F. Quaglia.
Transparent and Efficient Shared-State Management
for Optimistic Simulations on Multi-core Machines. In
Proceedings of the 20th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, MASCOTS, pages
134–141. IEEE Computer Society, 2012.

[18] A. Pellegrini, R. Vitali, F. Quaglia, A. Pellegrini, and
F. Quaglia. Autonomic State Management for
Optimistic Simulation Platforms. IEEE Transactions
on Parallel and Distributed Systems, 26(6):1560–1569,
2015.

[19] R. Rönngren, M. Liljenstam, R. Ayani, and
J. Montagnat. Transparent Incremental State Saving
in Time Warp Parallel Discrete Event Simulation. In
Proceedings of the 10th Workshop on Parallel and
Distributed Simulation, PADS, pages 70–77. IEEE
Computer Society, 1996.

[20] S. J. Swamidass and P. Baldi. Mathematical
Correction for Fingerprint Similarity Measures to
Improve Chemical Retrieval. Journal of Chemical
Information and Modeling, 47(3):952–964, 2007.

[21] The High Performance and Dependable Computing
Systems Research Group (HPDCS). ROOT-Sim: The
ROme OpTimistic Simulator.
https://github.com/HPDCS/ROOT-Sim, 2012.

[22] R. Vitali, A. Pellegrini, and F. Quaglia. Load Sharing
for Optimistic Parallel Simulations on Multi-core
Machines. ACM SIGMETRICS Performance
Evaluation Review, 40(3):2, 2012.

[23] R. Vitali, A. Pellegrini, and F. Quaglia. Towards
Symmetric Multi-threaded Optimistic Simulation
Kernels. In Proceedings of the 26th Workshop on
Principles of Advanced and Distributed Simulation,
PADS, pages 211–220. IEEE Computer Society, 2012.

[24] J. Wang, D. Jagtap, N. B. Abu-Ghazaleh, and
D. Ponomarev. Parallel Discrete Event Simulation for
Multi-core Systems: Analysis and Optimization. IEEE
Transactions on Parallel and Distributed Systems,
25(6):1574–1584, 2014.

[25] D. West and K. Panesar. Automatic Incremental State
Saving. In Proceedings of the 10th Workshop on
Parallel and Distributed Simulation, PADS, pages
78–85. IEEE Computer Society, 1996.

