
Machine Learning-based Elastic Cloud Resource
Provisioning in the Solvency II Framework

Andrea La Rizza∗‡, Giuseppe Casarano‡, Gilberto Castellani†‡,
Bruno Ciciani∗, Luca Passalacqua† and Alessandro Pellegrini∗

∗Department of Computer, Control and Management Engineering – Sapienza, University of Rome
Email: larizza.1252622@studenti.uniroma1.it, {pellegrini,ciciani}@dis.uniroma1.it

†Department of Statistical Sciences – Sapienza, University of Rome
Email: {luca.passalacqua,gilberto.castellani}@uniroma1.it

‡Alef S.r.l.
Email: {andrea.larizza,giuseppe.casarano,gilberto.castellani}@alef.it

Abstract—The Solvency II Directive (Directive 2009/138/EC)
is a European Directive issued in November 2009 and effective
from January 2016, which has been enacted by the European
Union to regulate the insurance and reinsurance sector through
the discipline of risk management. Solvency II requires Euro-
pean insurance companies to conduct consistent evaluation and
continuous monitoring of risks—a process which is computa-
tionally complex and extremely resource-intensive. To this end,
companies are required to equip themselves with adequate IT
infrastructures, facing a significant outlay.

In this paper we present the design and the development of
a Machine Learning-based approach to transparently deploy on
a cloud environment the most resource-intensive portion of the
Solvency II-related computation. Our proposal targets DISAR R©,
a Solvency II-oriented system initially designed to work on a
grid of conventional computers. We show how our solution allows
to reduce the overall expenses associated with the computation,
without hampering the privacy of the companies’ data (making
it suitable for conventional public cloud environments), and
allowing to meet the strict temporal requirements required by
the Directive. Additionally, the system is organized as a self-
optimizing loop, which allows to use information gathered from
actual (useful) computations, thus requiring a shorter training
phase. We present an experimental study conducted on Amazon
EC2 to assess the validity and the efficiency of our proposal.

I. INTRODUCTION

The European Directive 2009/138 (Solvency II) [1] requires
insurance undertakings to evaluate technical provisions in a
market-consistent way and to measure the Solvency Capital
Requirement (SCR) with the Value-at-Risk approach measured
with at 99.5% confidence level over a 1 year unwinding period.
Moreover, it is expected that insurance undertakings own an
effective risk-management system comprinsing strategies, pro-
cesses and reporting procedures necessary to identify, measure,
monitor, manage, and report on a continuous basis the risk,
at the individual and at an aggregated level. Risk depends on
all the sources the company is or could be exposed, and their
interdependencies ([1], art. 44). It is possible to identify at
least five relevant areas that should be covered by such a sys-
tem: underwriting and reserving, asset-liability management,
investment, liquidity/concentration risk management, and risk-
mitigation techniques. The features deriving from the Directive
become significantly resource-intensive when the undertaking,
in addition to the so-called standard formula approach detailed
in the Directive, calculates technical provisions and SCR using
an internal model, either full or partial ([1], art. 112). The
internal model is a system used by the undertaking to assess

risks and to determine the overall solvency needs, that is
supposed to ensure better quality standards by the description
of idiosyncratic exposure to risk, that is however subject to
the approval of the national supervisory authority ([1], art.
112–127).

A recent proposal [9] has addressed the computational
problems deriving from Solvency II compliance in the context
of Italian life insurance, introducing DISAR R©, a commercial
system originally designed to work on a grid of conventional
computers. DISAR tackles market-consistent valuation of the
complex cash flows using numerical techniques in a stochastic
framework, namely Monte Carlo simulation, on a fine-grained
time grid. Nevertheless, the underlying assumption behind
the efficiency of DISAR is the availability of large-scale
computing infrastructures. Due to the periodical nature of
the computations related to the Directive, setting up large
clusters can easily be seen as a cost-ineffective solution by
most companies which are required to adhere to the Directive.

The cloud computing paradigm [14], which allows to use
virtualized resources in lieu of physical ones, is now univer-
sally recognized as a means to significantly reduce the costs
associated with running IT premises, adopting the pay-as-you-
go model. Recently, the financial world has shown as well a
growing interest towards this paradigm [12]. In this paper we
follow this track, and propose a solution to deploy Solvency II-
related computations on the cloud, by relying on a distributed
version of DISAR. Our proposal has several benefits: i) the
deploy of the computation is completely transparent to the end
user, so that no actual modification to the original workflow is
required; ii) the overall cost faced by companies to comply
with the Solvency II Directive is significantly reduced, as
dedicated hardware is no longer required; iii) the actual pay-
as-you-go cost is optimized, so that our proposal is able to
fine tune the amount of resources required for the computation,
depending on input data and the characteristics of the available
virtualized architectures.

As for the above point iii, we explicitly rely on a Machine
Learning (ML)-based system to determine what is the best
configuration of the distributed deploy. In particular, we ex-
plicitly take into account the time required to carry out the
Solvency II-related computations, and the expected cost to
use virtualized resources. Therefore, by using our approach,
companies are able to meet the stringent time requirements
imposed by the EU Directive, while minimizing the associated

Fig. 1. The DISAR Architecture.

outlay. Moreover, we have organized our system as a self-
optimizing loop [7], which allows us to use the data obtained
while carrying out useful actual computations to enlarge the
knowledge base used by our ML-based prediction models. In
this way, every computation that is carried out by a company
is used as well to give better predictions for later deploys. This
allows to significantly reduce the training phase of the system,
thus further reducing the costs associated with the utilization of
cloud-based virtualized services. To the best of our knowledge,
this is the first attempt at making the requirements of the
Solvency II Directive more feasible and more cost-effective,
at the same time.

The remainder of this paper is structured as follows. In
Section II we give an overview of the DISAR System. Sec-
tion III discusses the ML-based approach, the used prediction
models, and the transparent deploy system. An experimental
assessment of our proposal is shown in Section IV.

II. THE DISAR R© SYSTEM

The Dynamic Investment Strategy with Accounting Rules
(DISAR) System [9], [8] is designed for the evaluation and
control of minimum-guaranteed profit-sharing life policies
indexed to the returns of dedicated funds (segregated funds).
It is based on market-consistent evaluation criteria under
uncertainty in a general asset-liability management (ALM)
framework. In particular, DISAR considers accounting rules
that control the segregated fund budget and the management
strategy for the financial contracts portfolio. This is done
using a stochastic model considering several sources of fi-
nancial uncertainty such as interest rate, equity, currency and
credit/default risk, in addition to sources of actuarial risks such
as longevity/mortality and lapse. Actuarial risks are assumed
to be mutually independent, while financial risks are possibly
correlated.

DISAR is aimed to the evaluation of risks of profit-sharing
life polices, that are the main type of life polices sold in Italy,
taking into account the details of the cash flows generated by
the contracts. For illustrative purposes, let us consider the very
simple case of a single premium pure endowment insurance
contract, written a time t = 0 on a life aged x, with term T
years and initial insured sum C0, focusing on financial risks.
The value at time T of the benefits promised by the insurance
undertaking to the subscriber can be expressed as:

YT = C0ΦT1{E(T)}, (1)

where the indicator of the random event E(T) takes into
account the actuarial uncertainty (survival/lapse of the sub-
scriber) and ΦT represents the readjustment factor defined as:

ΦT =

T
∏

t=1

(1 + ρt) = (1 + i)−T
T
∏

t=1

(

1 + max{βIt, i}
)

, (2)

where ρt is the readjustment rate defined as:

ρt =
max{βIt, i} − i

1 + i
, (3)

β ∈ (0, 1) and i ≥ 0 are respectively known as the par-
ticipation coefficient and the technical rate and contractually
specified, while It ∈ R—the return of the segregated fund—is
a random variable. Letting Ft be the value of the segregated
fund at time t (when the premium payed by the subscriber is
invested), then the return rate earned by the fund in the period
[t− 1, t] is:

It =
Ft

Ft−1
− 1, t = 1, 2, ..., T. (4)

When It > i, a fraction of the return earned in excess of i
is credited to the subscriber by increasing the insured sum, so
that:

Ct = Ct−1(1 + ρt), t = 1, 2, ..., T, (5)

A key point is that Ft is not necessarily the market value of
the fund, but could be a book value (i.e. a value that depends
only on prices at which assets have been bought and sold),
so that the volatility of returns can be strategically controlled
by the manager of the segregated fund. Therefore, a proper
risk management system should take into account the way the
segregated fund is managed.

Equation (1) is fundamental to understand which aspects
liability depends on. In general, valuation of risk requires
to compute the distribution of the value Yt at time t of the
random variable YT (in the Solvency II framework t = 1) on
which the risk measure is defined. When actuarial risks are
also taken into account, the indicator in (1) is replaced by a
proper expression and the determination of Yt becomes more
complex, although the general framework remains unchanged.

In DISAR, the distribution of Yt is determined using nested
Monte Carlo simulations [10]. The Monte Carlo technique is
used to produce real-world or natural scenarios corresponding
to the possible future evolution of the financial and actuarial
risk drivers. For each real-world scenario, a second-stage
(nested) Monte Carlo set of scenarios is simulated according
to risk-neutral probabilities, that are used to obtain the future
value of contingent-claim contracts by properly taking into
account the premia investors require to face risks. The use
of the risk-neutral setting is a standard technique that ensures
the correct market-consistent valuation under the hypothesis
of absence of arbitrage on the market. A nested Monte Carlo
simulation is thus a two stage procedure in which:

1) nP independent sample paths of the risk drivers are
generated from t = 0 to t = 1 under the real world
measure P, conditionally to the information available at
time t = 0, i.e. to the filtration F0;

2) for each of the nP paths, nQ independent sample paths
from t = 1 to t = T are generated under risk-neutral
probability Q, conditional to the filtration F1.

The set of nP simulations are referred to as outer simula-
tions, while the nQ ones as inner ones. Using this approach,
the computation is therefore composed of a nP × nQ simu-
lations, each simulation being composed of the trajectory of
each risk driver up to time T , that can easily be as large as
100 years, given actual human lifetime extension. The number
of inner and outer simulations should be chosen in order to
achieve an adequate precision on the 99.5% quantile of Yt.
If nQ is too small, a bias is introduced in the determination
of the quantile of Yt, while if nP is too small the statistical
error affecting the determination of the quantile is too large.
As a result, the number of total simulations may be impres-
sive. Moreover, the computational effort required to evaluate
liability cash flows in each single outer scenario could be very
high, depending of the features of the policies involved.

Since the procedure is particularly time-consuming, within
DISAR the computational burden is parallelised and dis-
tributed. Moreover, the number of inner simulations can be
strongly reduced if the so-called Least Square Monte Carlo
(LSMC) technique is used [5]. With LSMC, the plain Monte
Carlo determination of Yt is replaced by a truncated series
expansion in orthonormal polynomials, whose parameters are
calibrated with a n′P × n′Q smaller sample obtained by plain
nested Monte Carlo simulation. Also in that case the compu-
tation is performed in a parallel and distributed way.

From the architectural point of view, DISAR has a
client/server distributed organization, which is shown in Fig-
ure 1, allowing to concurrently use various workstations. Its
main components are:

1) A Database Server, hosting a Relational Database Man-
agement System.

2) A Master Server, hosting the Disar Master Service (Di-
MaS).

3) A set of Computing Units: each unit hosts the Disar
Engine Service (DiEng) that manages the Disar Actuarial
Engine (DiActEng) and the Disar Asset-Liability Man-
agement Engine (DiAlmEng).

4) A set of Clients, each hosting the Disar Interface (DiInt)
that allows to set computational parameters and monitors
the progress of the elaborations.

DISAR allows an efficient parallelization of the computation
because it relies on elementary elaborations blocks (EEB),
which are a set of elaborations identified by common char-
acteristics that make them identical from the point of view
of risks. In particular, two types of EEBs are considered:
A) actuarial valuation, namely the computation of actuarial-
expected cash-flows generated by the contracts, and B) Asset-
Liability Management valuation, that is the evaluation of
market consistent values of contracts.

When the computations is started, DiMaS divides all the
input data in EEBs, thus it acts as the orchestrator of the
system. It defines as well the elementary elaboration blocks,
estimates the complexity of the elaborations, establishes the
elaboration schedule, distributes the elementary requests to
the processing units and monitors the process. The DiEng
component on each node delivers the elaboration to DiActEng
or to DiAlmEng depending on the elaboration type:

• DiActEng carries on the computation of type-A EEBs,
namely it operates on the policy portfolio related to
the segregated funds, it receives as input the contractual

information, the consistency of policies and the technical
information, and it computes on the related schedule the
aggregate probabilized flows related to net performance,
without loss of information;

• DiAlmEng is in charge of type-B EEBs. It operates
on the policy portfolio related to the segregated funds,
receiving as input the contractual information, the ac-
counting information, the probabilized flows computed
by the DiActEng, the financial hypothesis on the market
structure, the features of the management strategy and
produces the characteristic quantities useful to evaluate
and to manage the risk.

III. THE ML-BASED TRANSPARENT DEPLOY SYSTEM

The most time-consuming activities of DISAR are related
to type-B EEBs. Since these activities are based on Monte
Carlo simulations, they can be parallelized by distributing
different work units on the available computing nodes, let
them be physical or virtual. Each node computes concurrently
average local values, which are then suitably combined to
produce the final global results. Since the amount of data to be
processed in this phase of the computation is unbounded, the
data scattering and gathering can be efficiently supported using
Message Passing primitives, such as the Message Passing
Interface (MPI) [19].

This data-separation approach is particularly effective in the
Solvency II scenario, since aggregation of locally-computed
values can be carried out only at the end of local simulations,
although the duration of each type-B EEB is not related to
the duration of the other ones. As an additional effect, the
data used by type-B EEB, although related to the assets of
specific companies, do not allow to gather useful information
on them. In fact, since the DB is not exported to the cloud,
the nQ inner simulations are anonymized data, thus perfectly
suitable for processing on a public environment.

We base our transparent deploy system on Starcluster [18], a
tool which allows to activate any number of VMs on Amazon
EC2. Whenever the user of DISAR starts a new simulation, the
interface automatically activates the required number of VMs.
The distributed nature of DISAR perfectly fits this deploy
system, as every VM will run part of the computation.

To reduce the cost of the simulation, we rely on a set
of Machine Learning-based prediction models. These models
are integrated into the DISAR interface modules to determine
what is the most time- and cost-effective deploy on a cloud-
based environment. In particular, the user of the system can
specify a set of available virtualized architectures, along with
its capabilities (in terms of, e.g., CPU power, and RAM) and
cost per hour. This information is stored in a database which
is then coupled with runtime data. Whenever a new simulation
is run, the system stores the execution time into the database.

To build our ML-based execution time prediction models,
we rely on Weka [20], a framework to integrate various ML
algorithms with Java-based applications. In particular, we have
selected Multi-Layer Perceptron [15] (MLP), Random Trees
(RT) and Random Forests (RF) [6], IBk [2], KStar [13], and
Decision Tables (DT) [3]. Additionally, we have experimen-
tally selected the characteristic parameters relative to each
EEB that induce the highest variability in the execution time
of the simulation, namely the number of representative con-
tracts—that is, the policies with equal insurance parameters

Algorithm 1 Selection of the best-suited configuration.

X = {MLP,RT,RF, IBk,KStar,DT}
M = {...} ⊲ The set of available virtual hardware configurations
Tmax

N = [1,max]
procedure PREDICT(CharacteristicParameters f)

C = ∅ ⊲ The set of feasible deploys
for n ∈ N do

for m ∈M do
for x ∈ X do

timex ← px(m,n, f)
end for

time←

∑
i∈|X| timex

|X|
if time ≤ Tmax then

cost← hour_cost · time
C ← C ∪ 〈m,n, cost〉

end if
end for

end for
if RAND() < ε then

selected← random element in C
else

selected← min
cost

C

end ifreturn selected

end procedure

(same readjustment rate parameters, same age, gender, etc),
the maximum time horizon of the policies, the segregated fund
asset number and the number of financial risk-factors. Each
execution of a DISAR simulation involves different values of
these parameters, depending on the specific company asset
which is taken into account. Therefore, whenever a simulation
is executed on the cloud, the total execution time is stored into
the database along with the values for the above parameters.

We therefore re-train the ML-based models after each
execution of the DISAR simulation. Since the duration of each
simulation could be significantly long, this approach allows to
refine the prediction models while carrying out useful work.
Moreover, this approach allows to increase the knowledge base
used by the prediction models in a way which is independent
of the actual company the simulation is run for. In fact,
although the parameters could vary from one company to the
other, they are not necessarily bound to a specific one. In this
way, refining the prediction models for a given company could
provide benefits for Solvency II simulations of different ones.

The knowledge base is then exploited to find a suit-
able configuration for the deploy on a cloud-based envi-
ronment. As mentioned before, two constraints should be
taken into account, namely the total expected time for a
given simulation, and the total expected cost. We define a
family of prediction models P which is composed of all
the prediction models px : M × N × F → R+, where
x ∈ {MLP,RT,RF, IBk,KStar,DT} represents the ML
algorithm used to build the prediction p, M is the domain of
virtualized architectures that can be used to instantiate a VM,
the value n ∈ N represents the number of instantiated VMs,
and F is the set of characteristic parameters of interest for a
given computation. The co-domain of each px is the expected
execution time on the given deploy configuration.

We therefore evaluate every px on all the available con-
figurations m ∈ M , and all the natural values in the range
[1,max], where max is a maximum threshold that can be
specified by the user of the system. To account for possible
prediction errors by the various models px, we compute a
final value time for a given virtualized configuration (namely,
virtualized hardware and number of instances) as the average

of all the times predicted by the models. This allows to
reduce the impact of prediction errors by some of the models,
a situation which is expected only at the beginning of the
system’s lifetime, when the data in the knowledge base is
reduced.

Through the DISAR interface, the user can select a max-
imum execution time Tmax which is the timing constraint
required to carry on the simulation, so as to respect the
constraint imposed by the Solvency II Directive. Therefore,
all the configurations such that px(m,n, f) > Tmax ∀x are
simply discarded. Then, given the fact that each virtualized
architecture is associated with a per-hour cost, every configu-
ration 〈m,n〉 is associated with an additional cost parameter c
which tells the expected expenditure to run the simulation on
the configuration. Therefore, given all the tuples 〈m,n, c〉 we
select the one associated with the minimum cost c. This allows
us to meet the time constraints while selecting the lowest
cost possible. We emphasize that this approach explores very
different configurations, in which less powerful virtualized
architectures could be selected in place of more powerful ones,
provided that they allow to meet the time constraints.

To ensure that all the configurations are suitably explored,
after filtering out all the configurations such that px(m,n, f) >
Tmax, with a small probability ε we select a random config-
uration. This allows to enlarge the knowledge base, possibly
reducing the number of false positives on the expected exe-
cution time. The complete algorithm to computed the deploy
organization is shown in Algorithm 1. As a side note, our
DISAR interface allows to supersede the ML-based predicted
configuration, so as to allow an early manual training phase,
which could be used to artificially grow the knowledge base
at the beginning of the lifetime of the system.

Finally, we emphasize that since the ultimate goal of our
proposal is to reduce the overall cost of the simulation, having
some nodes which finish their local computation far before
other ones could be a significant issue. In fact, the nodes
which have already completed their tasks would be idle until
the slowest one completes, just to execute the data gathering
procedure. Cloud-based deploys would increase their cost with
no benefit. Our approach allows to transparently capture this
issue, without relying on more time-consuming scheduling of
MPI-based computations. In fact, configurations which involve
a large number of nodes which are idle most of the time are
immediately discarded thanks to the models learned by the
ML algorithms.

IV. EXPERIMENTAL ASSESSMENT

In this Section we present an experimental assessment [17]
of the validity and applicability of our approach, carried out
on the Amazon AWS infrastructure. We have selected three
portfolios mimicking typical Italian insurance company ones,
choosing 15 different EEBs. We have set the number of risk-
neutral iterations to 50 for all the simulations—a value that
introduces an acceptable statistical error within the LSMC
approach. Concerning the natural iterations, we have fixed
their value to 1,000 for illustrative purposes (typical required
values are on the order of 10,000 to 100,000). The virtualized
architectures which we have used in our experimentation are:

• m4.4xlarge: 16 vCPUs, 64 GiB of RAM;
• m4.10xlarge: 40 vCPUs, 160 GiB of RAM;

• c3.4xlarge: 16 vCPUs, 30 GiB of RAM;
• c3.8xlarge: 32 vCPUs, 60 GiB of RAM;
• c4.4xlarge: 16 vCPUs, 30 GiB of RAM;
• c4.8xlarge: 36 vCPUs, 60 GiB of RAM.

In order to quantify the goodness of the approach, we show
the difference between a predicted execution time and its
actual value δ̄, which in turn affects the predicted cost of the
cloud-based deploy. We explicitly study this distance on the
distributions’ tails.

Let us denote a real execution time—which is only known
after a simulation is carried out—as Θ, and the value estimated
by the prediction model px selected according to Algorithm 1
as Θ̂. The distance δ̄ can be calculated as:

δ̄ =
1

N

N
∑

i=1

(

Θ̂i −Θi

)

, (6)

where N is the number of samples for each architectural
configuration. This value tells how much on average the
estimated values deviate from the real ones. Moreover, it
allows to understand if the algorithm over or underestimates
the execution time. Yet, assessing the validity using only δ̄
is not enough, as outlying points could significantly affect the
validity of the prediction. In particular, while an overestimation
only implies a higher outlay, an underestimation might violate
the timing constraints which are fundamental to meet the
deadlines imposed by the Directive.

In Table I we report the average error δ̄ by the models when
the knowledge base is composed of around 1500 samples. The
results show that the selected ML algorithms show a high ac-
curacy despite the limited size of the training data—compared
to total execution times which can last up to several hours—
and are therefore suitable for our purpose. This conclusion is
backed as well by the data shown in Figure 2, which shows the
discrepancy between the time predicted and actual execution
time. By the plot we can see that the point cloud is clustered
along the theoretical line, which is associated with the ideal
model which is able to predict execution time with a 100%
accuracy. This is confirmed by Figure 3, where it is shown that
around 80% of the predictions have an absolute error smaller
than 200 seconds. Higher errors are related to configurations
with a small number of samples in the training dataset.

Concerning the performance of our distributed approach, we
report in Figure 4 average speedup data for our cloud-based
deploy versus a sequential execution of the simulation. By
the results, we can see that the cloud-based deploys offer a
performance gain which is non-negligible, and therefore—if
we associate the obtained speedup with the large number of
simulations which are required by the Directive—they allow
to meet the stringent time constraints associated with the
Solvency II Directive. Moreover, Table II reports the average
cost associated with one simulation on each of the selected
virtualized infrastructures. The total experiments for this paper,
which are composed of 1500 runs, entailed a total cost of
128$. This is an outlay significantly smaller than the cost of
any modern high-end computer grid.

As a final comparison, we have forced the execution of
a large configuration on the higher-end VM and on the
most cost-effective one. Our ML-based prediction selected
configurations for the same input data which show a cost

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

p
re

d
ic

te
d
 t

im
e
 (

s
e
c
)

real time (sec)

Theoretical
DT
IBk

KStar
MLP

RF
RT

Fig. 2. Plot of real and estimated execution time.

predicted−real (sec)

p
e
rc

e
n
ta

g
e

−6000 −4000 −2000 0 2000 4000

0
1
0

2
0

3
0

4
0

Fig. 3. Distribution of the error associated with the used prediction models.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

c3.4 c3.8 c4.4 c4.8 m4.4 m4.10

Fig. 4. Speedup of the cloud-based execution wrt the sequential one.

TABLE I
δ̄ REPORTED BY EACH CLASSIFIER ON EACH OF THE SIX TRAINING SET WITH A 40%-60% SPLITTING PERCENTAGE, IN SECONDS.

m4.4.xlarge m4.10.xlarge c3.4.xlarge c3.8.xlarge c4.4.xlarge c4.8.xlarge

IBk -34.9 -229 -8 12 -241 -253
KStar -5.3 1.5 1.5 -95 -131 -189

RT 50.0 -156 -13 -85 -186 -279
RF 20.6 -208 -30 -74 -232 -256

MLP 72.0 -28 -113 -30 -161 -227
DT 9.7 -80 63 -43 -317 -293

TABLE II
PER-SIMULATION AVERAGE COST.

m4.4.xlarge 0.052$
m4.10.xlarge 0.120$
c3.4.xlarge 0.041$
c3.8.xlarge 0.121$
c4.4.xlarge 0.066$
c4.8.xlarge 0.086$

decrease up to 54% with respect to the higher-end machine,
and an execution time reduction up to 48% with respect to
the most cost-effective one. This result supports our claim
that our proposal can reduce the outlay associated with Sol-
vency II-related computations, still allowing to meet the time
requirements of the Directive.

V. RELATED WORK

The literature is significantly lacking of ML-based ap-
proaches to optimize financial applications on cloud envi-
ronments. At a more broader scope, the works in [4], [16]
use ML-based prediction models to determine, at runtime, the
resource demand of web-based applications. Although similar
in spirit to our proposal, we target a closed system model
which has a limited lifetime, and therefore requires a more
accurate determination of the needed resources. On the other
hand, the target of [4], [16] is an open model entailing an
application which could be run indefinitely long. Therefore,
we explicitly use more ML-based models at once, while the
works in [4], [16] use a single model at a time, although in a
repeated fashion.

The work in [11] adopts different analytic approaches to
determine an optimal resource provision of cloud-based appli-
cations. The analytic approach allows to provision computing
resources for stages as well as a long-term plan. Contrarily, we
target the resource provisioning in a less dynamic environment,
which is nevertheless high resource-intensive, and we do this
relying on ML techniques to develop the models, rather than
using analytic instruments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a ML-based system to trans-
parently deploy on a cloud environment computations related
to the Solvency II Directive. Using our approach, it is possible
to meet the stringent requirements of the EU Directive, while
keeping the outlay associated with the computation low. In
particular, we have experimentally shown how our solution
allows to accurately predict cloud-based execution times, and
is able to explore a large number of different virtualized
architectures, so as to account for their different prices.

So far, our system considers homogeneous deploys, namely
it does not consider the possibility of employing VMs in-
stantiated using different virtualized hardware configurations.
Introducing this additional variability aspect will be the subject
of future work.

REFERENCES

[1] Directive 2009/138/EC of the European Parliament and of the Council
of 25 November 2009 on the taking-up and pursuit of the business
(Solvency II) of Insurance and Reinsurance. Official Journal of the
European Union, L351(1), 2009.

[2] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning
algorithms. Machine Learning, 6(1):37–66, 1991.

[3] E. Alpaydin. Introduction to Machine Learning. 3rd edition, 2014.
[4] A. a. Bankole and S. a. Ajila. Predicting cloud resource provisioning

using machine learning techniques. In 2013 26th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), pages
1–4. IEEE, may 2013.

[5] D. Bauer, A. Reuss, and D. Singer. On the calculation of the Solvency
II Capital Requirement based on Nested simulations. ASTIN Bulletin,
42(2):453–501, 2012.

[6] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
[7] B. A. Caprarescu and D. Petcu. A self-organizing feedback loop for

autonomic computing. Computation World: Future Computing, Service
Computation, Adaptive, Content, Cognitive, Patterns, ComputationWorld
2009, pages 126–131, 2009.

[8] G. Casarano, G. Castellani, L. Passalacqua, F. Perla, and P. Zanetti.
Relevant applications of Monte Carlo simulation in Solvency II. Soft
Computing, pages 1–12, September 2015.

[9] G. Castellani and L. Passalacqua. Applications of Distributed and
Parallel Computing in the Solvency II Framework: The DISAR System.
In G. et al., editor, Euro-Par 2010 Parallel Processing Workshops,
volume 6586 of Lecture Notes in Computer Science, pages 413–421.
Springer Berlin Heidelberg, 2011.

[10] T. Cazenave and N. Jouandeau. Parallel Nested Monte-Carlo search. In
Proc. IEEE Int. Parallel Distrib. Processes Symp., pages 1–6, 2009.

[11] S. Chaisiri, B.-S. Lee, and D. Niyato. Optimization of Resource
Provisioning Cost in Cloud Computing. IEEE Transactions on Services
Computing, 5(2):164–177, apr 2012.

[12] R. Gill. Why Cloud Computing Matters to Finance. Strategic Finance,
(January):43–48, 2011.

[13] G. Gins, B. Pluymers, I. Smets, J. Espinosa, J. Van Impe, and P. Perner.
Advances in Data Mining. Applications and Theoretical Aspects. Ad-
vances in Data Mining. Applications and Theoretical Aspects, 6870(July
2015):314–328, 2011.

[14] B. Hayes. Cloud computing. Communications of the ACM, 51(7):9, jul
2008.

[15] S. Haykin. Neural networks expand SP’s horizons. IEEE Signal
Processing Magazine, 13(2):24–49, mar 1996.

[16] S. Islam, J. Keung, K. Lee, and A. Liu. Empirical prediction models
for adaptive resource provisioning in the cloud. Future Generation
Computer Systems, 28(1):155–162, jan 2012.

[17] A. La Rizza. Elastic Cloud Resources Provisioning for Life Insurance
Undertaking Applications. Master’s thesis, Sapienza, University of
Rome, Rome, Italy, 2015.

[18] MIT. Starcluster. http://star.mit.edu/cluster/.
[19] MPI Forum. Message Passing Interface Forum. http://www.mpi-

forum.org/, 1994.
[20] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, and S. J.

Cunningham. Weka: Practical machine learning tools and techniques
with Java implementations. In Proc ICONIP/ANZIIS/ANNES99 Future
Directions for Intelligent Systems and Information Sciences, 1999.

