A Non-blocking Global Virtual Time Algorithm with
Logarithmic Number of Memory Operations

Mauro Ianni, Romolo Marotta, Alessandro Pellegrini

DIAG—Sapienza Universita di Roma
{mianni,marotta,pellegrini} @dis.uniromal.it

Abstract—The increasing diffusion of shared-memory multi-
core machines has given rise to a change in the design
of Parallel Discrete Event Simulation (PDES) platforms. In
particular, the possibility to share large amounts of memory
by many worker threads has lead to a boost in the adoption of
non-blocking coordination algorithms, which have been proven
to offer higher scalability when compared to their blocking
counterparts based on critical sections. In this article we
present an innovative non-blocking algorithm for computing
Global Virtual Time (GVT)—namely, the current commit
horizon—in multi-thread PDES engines to be run on top of
multi-core machines. Beyond being non-blocking, our proposal
has the advantage of providing a logarithmic (rather than
linear) number of per-thread memory operations—read/write
operations of values involved in the reduction for computing
the GVT value—vs the amount of threads participating in the
GVT computation. This allows for keeping low the actual CPU
time that is required for determining the new GVT value.
We compare our algorithm with a literature solution, still
based on the non-blocking approach, but entailing a linear
number of memory operations, quantifying the advantages
from our proposal especially for very large numbers of threads
participating in the GVT computation.

I. INTRODUCTION

Parallel Discrete Event Simulation (PDES) is the univer-
sally recognized technique for achieving high performance
and scalable execution of large and/or complex discrete
event models [1]. It is based on partitioning the simulation
model into several distinct objects—also known as Logical
Processes (LPs)—and on enabling threads to concurrently
process simulation events occurring at the objects.

Beyond processing events, the threads running within the
PDES environment need to execute kind of housekeeping
algorithms (or protocols) in order to guarantee correctness of
the overall model execution trajectory. These algorithms can
be diverse depending on whether the PDES engine entails
the possibility to perform speculative event processing [2] or
not. In any case, by the course of time, the real implemen-
tation of such algorithms has been significantly impacted by
the advent and large diffusion of shared-memory multi-core
machines. They give the possibility to run PDES platforms
by relying on pure shared-data management paradigms,
which has led several of the housekeeping algorithms that
were originally conceived as distributed ones to slide toward

978-1-5386-4028-9/17/$31.00 (©2017 IEEE

Francesco Quaglia
DICII—Universita di Roma Tor Vergata
francesco.quaglia @uniroma?2.it

shared-memory based thread coordination algorithms.

A core housekeeping algorithm for PDES is the one used
to compute Global Virtual Time (GVT)—namely, the current
commit horizon of the simulation run. This is important
in order to support, e.g., inspections of the advancement
trajectory while executing the model [3]. Further, for specu-
lative (optimistic) PDES, GVT computation is fundamental
also by the side of memory management, since determining
the advancement of the GVT value along time allows for
garbage collecting obsolete data (e.g. checkpoints) that were
stored in order to correctly support rollback operations in
case of erroneous speculation.

In this article we focus on computing the GVT value in a
shared-memory multi-thread speculative PDES environment.
In particular, we propose an innovative non-blocking GVT
algorithm suited for this kind of environments.

Algorithms belonging to the non-blocking class allow
manipulating shared-data without relying on critical sections
[4]. Rather, they exploit atomic Read-Modify-Write (RMW)
machine instructions—like Compare-and-Swap (CAS) and
Fetch&Add (FAD)—to enable threads to atomically change
portions of (complex) data structures, or to detect that an
attempt to make the change fails because of a concurrent
update. In the latter case, the operation can be either retried
or pushed toward a fall-back path that possibly enables
success [5]. With this paradigm, the execution of any thread
is never delayed because of the activities by concurrent
threads since no lock-protected critical section is ever in
place. This allows for both scalability and resilience to
thread reschedule.

As far as we know, a non-blocking algorithm to compute
GVT in speculative PDES has been already proposed in the
literature [6]. The novelty in the GVT algorithm we present
compared to such literature proposal is that we carry out the
computation with logarithmic number of local (per-thread)
memory operations vs the number of involved threads,
rather than a linear one as in [6]. This allows reducing the
actual CPU time spent while executing steps of the GVT
algorithm especially for largely scaled up thread counts.
As an advantage, the saved CPU time can be exploited for
carrying out other tasks that are functional to advancing the
simulation model execution—such as event processing.

We provide experimental results demonstrating a signif-
icant reduction of the CPU time usage by our proposal
compared to the solution in [6]. Particularly, we observe a
reduction of CPU time usage for GVT computation of more
than 50% when the thread count approaches the value 16K.

The remainder of this article is structured as follows. In
Section IT we discuss related work. The non-blocking GVT
algorithm with logarithmic number of memory operations is
presented in Section III. Experimental results are provided
in Section IV.

II. RELATED WORK

Different GVT algorithms have been proposed in the liter-
ature, which are suited for different kinds of systems, namely
distributed-memory systems vs shared-memory ones.

In distributed-memory systems, the core problem to cope
with while computing the GVT value is to account for
messages (or anti-messages) that are still in transit across
processes. In fact, by its definition (see, e.g., [2]), the GVT
value must represent the minimum timestamp of any task
(or event) that may still occur in the overall system. In this
contexts, a few proposals have been based on explicit mes-
sage acknowledgment schemes [7]-[9] in order to determine
which messages (or anti-messages) are still in transit and
which processes are responsible for keeping into account the
timestamps of in-transit messages while computing the GVT
value. Some of these proposals (see, e.g., [7], [9]) opt for
acknowledging individual messages, which reduces the time
interval along which a message can result as still in-transit.
Other approaches (see, e.g., [8]) opt for acknowledging
batches of messages (rather than individual ones), which
allows for reducing the overhead due to acknowledgment
messages but stretches the interval of time along which a
message still results in-transit (although being potentially
already processed at the destination). This, in its turn, leads
to worsening the approximation provided by the algorithms
on the actual GVT, given that “obsolete” timestamps might
be still considered in the global reduction while computing
the new GVT value.

The proposal in [10] avoids message acknowledgments. It
associates messages with “phases” (represented by different
message coloring schemes) so that it is possible for the
processes in the system to determine whether the timestamp
of any message (or anti-message) needs to be accounted for
in the current GVT computation. On the other hand, this
algorithm requires control messages to set-up the start of a
new GVT computation.

The need for both control messages and acknowledgments
is removed by the proposal in [11], which has been tailored
to distributed-memory clusters where specific bounds can
be assumed on the message delivery transfer across the
nodes and the clocks of the different machines can be
assumed to be (perfectly) synchronized. In this proposal,
new computations of the GVT value are triggered by specific

timeouts that occur in synchronized way across all the nodes
in the system. This gives rise to the scenario where all
the nodes observe the start of the GVT algorithm at the
same identical time instant, and are able to determine what
messages (or anti-messages) can be still in transit since the
start of the current GVT computation, given the knowledge
on the upper bound delivery delay.

Still tailored to message-passing systems, the GVT al-
gorithms presented and evaluated in [12] share with our
approach the idea of avoiding blocking phases. This enables
such proposals to scale to large numbers of CPU-cores in
the underlying computing platform, an objective that we
target as well. However, such approaches primarily target
scalability in relation to messaging operations, while we
focus on the reduction of CPU time usage for GVT memory
operations when large numbers of threads are involved.

Differently from all the above proposals, we target (spec-
ulative) PDES systems to be run on top of shared-memory
multi-core machines, rather then distributed-memory clus-
ters.

As for literature results tailored to tightly coupled shared-
memory systems, the common reference GVT algorithm is
the one in [13]. This algorithm requires the PDES system to
be “observable”, a property which expresses that no message
(or anti-message) can ever be in-transit, given that the
corresponding send operation leads to directly incorporating
the message into the recipient message-queue. Such property
is clearly suited for PDES platforms relying on pure shared-
memory implementations of housekeeping protocols such as
message (event) exchange across different worker-threads.
In this algorithm, the start of the GVT computation phase
is instantaneously visible to all the processes, given that it
simply requires setting the value of a counter into shared-
memory to the number of participating processes. However,
the computation of the local minimum at each process and
the decrease of the counter in order to indicate that the
contribution by the process has been made available, are exe-
cuted within a critical section, which may represent a major
impairment to scalability. In our algorithm we avoid any
critical section, by trading-off in a completely different way
synchronization costs and the number of phases required to
compute the new GVT value in a fully non-blocking fashion.

Similar considerations apply to the shared-memory GVT
algorithm presented in [14], which is based on a critical
section used to atomically update the entries of an array
of elements with size equal to the number of participating
processes/threads.

As pointed out before, the only non-blocking GVT al-
gorithm for shared-memory (observable) PDES systems we
are aware of is the one presented in [6]. In this algorithm,
non-blocking manipulation of atomic counters is used to
identify what is the current execution phase of the GVT
algorithm at each thread, say whether the thread is still
determining its local minimum, or has already determined it

and can therefore post such a value onto an entry of an array
for enabling the actual reduction leading to the new GVT
value. We share with this solution basic principles in relation
to the usage of atomic counters for discriminating phases
of the GVT algorithm. However, while the GVT reduction
in [6] is carried out as a traversal on the array of local
minima (with linear cost) carried out by any thread to select
the absolute minimum, in our non-blocking GVT algorithm
the computation of the absolute minimum within the array
is itself an additional protocol, executed along a sequence
of non-blocking phases by having each thread accessing a
constant number of memory locations in each phase. Given
that the number of phases is the logarithm of the number
of entries in the array—which corresponds to the number of
threads—we finally achieve logarithmic number of memory
operations carried out by a thread for determining the GVT.

We note that, in principle, once the array of local minima
is fully populated, the computation of GVT via traversal
of the array in the approach [6] could be carried out by a
single thread (rather than all). This thread could then make
the new GVT available to the others. However, adopting
this optimization (in terms of reduction of CPU time spent
for traversal operations) as a variation of the scheme in [6]
would lead a single thread to (significantly) decelerate its
event-processing activities, especially for very large numbers
of the entries of the array to be traversed. This is poten-
tially adverse to the generation of rollbacks in speculative
executions, since the simulation objects bound to the other
threads might be allowed to run significantly ahead in logical
time, with increased likelihood of being hit by an event with
timestamp in the past. This negative phenomenon might
appear especially when executing models with fine-grain
events. In our solution we reduce the overall CPU time used
for GVT computation compared to the original proposal in
[6] while still keeping the CPU usage for the GVT algorithm
relatively balanced across threads. In fact, a thread performs
at worst O(log(n)) memory operations more that another
one, rather than O(n), with n being the number of involved
threads (or array entries). This can favor the avoidance of
the divergence of logical clocks of the objects bound to
different threads while performing the non-blocking GVT
computation.

Finally, the problem of computing reductions efficiently
has been also addressed for the case of SIMD (Single
Instruction Multiple Data) architectures, such as in CUDA
[15]. In this work the objective is the one of achieving a
work-efficient parallel solution, say one that does not require
more computation steps than the sequential solution. This
approach allows performing the reduction (in particular,
Parallel Prefix Sum) in a work-efficient manner by relying
on a total number of O(n) computing steps, while we
enable O(log(n)) memory operations to be carried out by
each individual thread (so we guarantee logarithmic thread-
local work). However, the proposal in [15] is based on

while (not end simulation){

do {
housekeeping; //e.g. queues management
process event; B

}
Co —
dof C1

GVT tasks; «<——> —
| l

atomic
counters

Ck

Figure 1. The main loop of a thread - GVT tasks are executed at each
loop in non-blocking fashion subject to GV'T'_flag being true.

fully synchronous execution across the threads, as typical
of SIMD approaches, while we enable non-blocking GVT
computation on MIMD (Multiple Instructions Multiple Data)
platforms thus allowing threads to interleave reduction tasks
with other kinds of tasks.

III. NON-BLOCKING GVT COMPUTATION WITH
LOGARITHMIC NUMBER OF MEMORY OPERATIONS

As hinted, our non-blocking GVT algorithm works by
having each thread operating within phases. No thread can
pass to the next phase until all threads have concluded their
tasks in the current phase. However, this is not realized by
using blocking synchronization schemes. Rather, we exploit
atomic counters as in the spirit of the proposal in [6]. If a
thread has already finalized its task in the current phase of
the GVT algorithm, it increments the atomic counter asso-
ciated with such phase and then simply resumes processing
other tasks (events and other housekeeping operations)—
rather than remaining blocked waiting for the other threads
to finalize their corresponding tasks. On the other hand,
querying the atomic counters periodically allows the thread
to get insights on the fact that all the threads have finalized
their tasks related to the current GVT computation phase,
so that each of them can move to the next phase.

At a high level of abstraction, the schematization of the
execution flow of a thread in our target PDES environment
is provided in Figure 1. Essentially, the thread executes
a main loop where it performs housekeeping operations—
such as the management of the event queues associated with
the simulation objects bound to it—and actually processes
events. However, at each iteration of the loop, it also
executes some non-blocking step of the GVT algorithm.

In particular, the thread checks if GVT computation is
currently in place, by checking the GVT_flag in shared-
memory. In the positive case, it uses a thread-local variable
current_phase to identify in which phase of the GVT
algorithm it currently resides. This will lead the thread
to identify what atomic counter C; needs to be currently
exploited to drive the execution of the GVT algorithm.
Specifically, as soon as the thread finalizes its task associated
with the ¢-th phase of the non-blocking GVT algorithm, it
increases atomically the corresponding counter C; via a FAD

Algorithm 1 Generic GVT computation phase at thread ¢

if (GVT_flag){
if (taSkcurrent_phase not done)
then{

do taskcyrrent_phase; //do the job associated with the current phase
FAD(Cr urrent_phase); //signal via the atomic counter that the job has been done

}

if (Ceurrent_phase = NUM_THREADS){ //all threads finalized the current phase - move to next phase

current_phase = current_phase + 1;

}

machine instruction. If the counter value after the atomic
update is equal to the number of involved threads then it
means that entering the next phase is admitted. This will
lead the thread to update its current_phase variable since
all threads are allowed to move to the next phase. By the
schematization of execution flow in Figure 1, the check on
the value of C; is carried out periodically within the main
loop, still in non-blocking fashion by simply reading the
current counter value. Algorithm 1 reports the pseudo-code
describing the actions that are performed by a thread in order
to carry out its computation within the i-th phase of the GVT
algorithm, according to the description we have provided.

A few phases of our non-blocking GVT algorithm corre-
spond to the ones in the solution in [6]. In particular, we refer
to that article for all the phases related to the identification
of the local minimum by each thread. However, as hinted
before, in [6] the task associated with a core phase of non-
blocking GVT computation corresponds to traversing all the
entries of an array where each thread has previously posted
its local minimum and in identifying the absolute minimum.
We refer to as task,cquction the task associated with such a
reduction phase. Also, we denote with valuesy[] the array
where each thread has posted its local minimum.

In our proposal, taskrequction 1S no longer a traversal
on the array valuesg[]. Rather, this task is divided into
phases still executed in non-blocking mode and coordinated
via atomic counters indicating how many threads already
finalized their activity within the current phase.

In the first phase of reduction a thread identifies a com-
petitor thread and makes a challenge with it in order to post
its local minimum onto one entry of another array of half
of the size of valuesy[], which initially has all its values set
to dummy_value. We refer to the half size array associated
with the first phase of reduction as values;[]. Similarly,
values;[] will denote the array used for the i-th phase of
reduction—which will still be based on a challenge between
pairs of threads—and we have that the size (number of
entries) of values;[] is always half of the size of values;_1][].

We denote with T; a thread and with T} its competitor.
In the first phase of reduction, both these threads try to
post their local minima, namely valuesg[i] and valuesy[j],

onto the same entry x of values;[] using a CAS machine
instruction. Therefore, only one of the two threads will
actually win the race and will have its local minimum loaded
onto valuesy [z]. The winner has concluded its task, and will
participate in the other reduction phases by doing nothing—
it will simply pass through these phases by still relying on
updates and periodic checks of the corresponding atomic
counters. On the other hand, the looser needs to check
whether its local minimum stored in some entry of valuesg]]
is lower than values;[z]. In the positive case it updates
valuesy[z] with its local minimum. In this way values; [z]
will keep the value of a reduction that involved values|i]
and valuesg[j].

When all the entries of waluesi[] have been filled,
meaning that each pair of competitor threads < 4,5 >
have already been challenged, and the corresponding atomic
counter indicates this, the next phase of reduction can
start, which will involve a similar challenge between newly
defined pairs of competitor threads among those that are still
in competition since they have lost a previous challenge.
At each challenge we have half of the threads that finish
their job and the remaining half that need to carry out a
new challenge. Thus the number of reduction phases to
implement the original task;cduction 18 log(n), with n being
the number of threads. We also recall that a constant number
of memory operations are performed by a thread in each
phase.

Indicating with alive;, the number of threads still in-
volved in challenges—where alivey is initially set to
NUM_THREADS—we can easily get deterministic as-
sociation of the indexes ¢, j (the two competitors) and z (the
target entry in the half size array) guaranteeing no overlap
of the indexes involved in different challenges. In particular,
this can be achieved by relying on the following relations
that can be computed individually by any thread in constant

time:
. alivey,
e [0,——1
e o]
alive, —1 — 14
r = i (D

TO Talive-1
valueso " | | | |]
CAS CAS
winner looser
votues; [| | | | H

if values[alive-1] is less than
values ;[0] then update

the looser thread will take care of
propagating the value to the subsequent
phase of reduction

Figure 2. Thread challenge at each phase of reduction.

Also, at the end of the challenge carried out in the h-th
phase of reduction, if the j-th thread is the looser, then it
sets its logical identity within the GVT algorithm to ¢ for
the next iteration, which allows the above equations to still
be usable for the (h + 1)-th non-blocking reduction phase.

An example schematization of the behavior of our de-
composition of task,eduction iNto non-blocking phases (or
subtasks) is provided in Figure 2. As shown in the picture,
and according to Equation 1, Tj is competitor of Tijipeq—1-
Also, they both try to update values;[0] via CAS, with
valueso[0] and valuesg[alivey — 1] respectively.

In this example, Tj is the winner, so it will simply go
ahead passing to the subsequent phases of reduction, with
no actual work to be performed. Rather, T};,c,—1 checks
whether its local minimum kept by valuespalivey — 1] is
lower than the current value kept by values;[0] and if yes
it posts its local minimum onto values;[0]. At this point
thread Tgiive,—1 Virtually sets its identity to the value 0 so
as to participate to the next phase of reduction, specifically
figuring as the owner (or the responsible) ol values;[0].

The pseudo-code describing the generic non-blocking
phase of such a reduction approach is provided in Algo-
rithm 2. The thread-local variable winner keeps track of
whether the thread has won a challenge. Also, the variable
reduction_phase keeps track of the current phase of reduc-
tion and the flag done,cduction_phase indicates whether the
job to be carried out by the thread in the current phase of
reduction has already been completed.

Clearly, as soon as all the phases of reduction are carried
out and all the threads enter the log(n)-th phase—with
n being NUM_THRFEADS—the corresponding task to
carry out simply consists in reading the newly available
value of the GVT from values;og(n)[0].

As a final note, the start of the GVT algorithm can be
simply triggered by setting all the atomic counters to the
value 0 and updating GV'T'_flag to true. This can be done
with no risk of critical races by having the threads updating
a global variable keeping track of the current GVT round via

CAS. The unique thread that updates this variable success-
fully is the one in charge of triggering the new GVT round
by setting the atomic counters and GVT'_flag. On the other
hand, GVT_flag is reset by the thread that last concludes
the execution of the final phase of the non-blocking GVT
algorithm according to the scheme proposed in [6]. This is
managed by having FAD returning the counter associated
with that phase atomically with the update itself. Therefore
a thread can always distinguish whether it released the last
unit to add to the counter used to track the finalization of
the last phase of the GVT algorithm.

IV. EXPERIMENTAL RESULTS

In this section we report experimental results showing the
effects of our non-blocking GVT algorithm, comparing it
with the proposal in [6] and with a variation of it. This
variation is the one we discussed in Section II, in which
we enable a single thread to traverse the array where each
thread already posted its local minimum—in a previous non-
blocking phase of GVT computation according to [6]—in
order to finally compute the global minimum. Given that the
proposal in [6] has been shown to better scale with respect
to blocking algorithms for GVT computation in shared
memory systems (such as [13]) and to be more resilient to
thread reschedules in terms of performance degradation, we
feel it can represent a good reference in our experimental
assessment.

Because of the non-blocking nature of all the solutions
we compare in this experimental study, we identify the
following two main metrics as representative:

- The total CPU time (TOCT) used by the threads for
computing a new GVT value. Recall that threads spend
their CPU time in parallel and with no dependency due
to critical sections (e.g. spin-lock wait phases). Hence
TOCT does not correspond to the latency for computing
the new GVT. However, given the “background” nature
of non-blocking GVT computation in our algorithm
and in the competitor approaches we experiment with,
CPU time usage appears to be more relevant than
latency. This is aligned with the objective of trading-
off non-blocking phases vs GVT computation latency
to achieve higher scalability, like in the spirit of the
approach in [6].

- The maximum difference of CPU-time usage (MDCU)
between all pairs of threads participating in the GVT
computation.

Given that the CPU time for computing a new GVT value
is spent along the critical path of execution of the threads
involved in the computation, TOCT is suited to detect
whether an algorithm imposes higher or lower overhead
to the simulation run. In particular, the lower the value of
TOCT the lower the overhead.

On the other hand, MDCU is suited to detect whether
some thread is impacted more significantly than the others

Algorithm 2 Generic phase of reduction at thread ¢ - all the reduction phases contribute to execute task,eduction

it (GVT_flag){

if (redution_phase is new AND winner){ // we entered a new reduction phase - but no work needs to be done since we won a previous challenge
FAD(C'reduction_phase); !/ signal via the atomic counter that the thread finalized this phase

}

if (redution_phase is new AND Not winner AND Not done,cquction_phase){ // We entered a new reduction phase and need to participate
outcome = CAS(valuesyeduction_phase+1[Z], dummy_value, values edyction_phaselt)); // try to update target location via CAS

if (outcome is FALSE){ // thread lost the challenge

Ualues7‘eduction_phase+l ["L'] = min(Ualues'r'eduction_phaseJr1 [.’L’], valuesreduction_phuse M)’

donereduction_phuse = TRUE;

set thread identity to a; // it might already correspond to = (see Equation 1) but setting is anyhow safe

else{
winner = TRUE;

FAD(C'reduction_phase); //signal via the atomic counter that the thread finalized this phase

}

if (Creduction_phase = NUM_THREADS){ /fall threads finalized the current phase of reduction - move to next phase

reduction_phase = reduction_phase + 1;

}

in terms of the CPU time it spends for participating in the
GVT algorithm. In other words, it indicates whether the
workload for GVT computation is fairly distributed across
all the threads or not.

It appears clear that a low (or very low) value for TOCT
does not necessarily represent the ideal outcome since, as
we noted in Section II, experiencing non-minimal values of
MDCU indicates that most of the work required for GVT
computation is executed by a reduced number of threads (or
by a single one). In such scenarios, given the non-blocking
nature of GVT computation—which still enables speculative
processing of events within the PDES system while GVT
tasks are executed in background style—the threads that
are mostly impacted by GVT computation may generate a
situation where the simulation objects they are managing can
remain back in logical time. This can happen exactly because
less CPU time is devoted to processing the events along the
threads they are bound to compared to what happens for
simulation objects bound to other threads—those threads that
are less impacted by GVT computation. Such temporarily
unbalanced usage of CPU for computing the new GVT
value may therefore give rise to unbalance in the speculative
advancement of the logical time of the simulation objects, a
phenomenon that is recognized to be adverse to optimistic
synchronization.

Overall, non-minimal MDCU values are related to a
sudden imbalance caused by GVT computation which is
not easily manageable. In fact, it is not directly face-
able via common (dynamic) load-balancing algorithms for
speculative PDES (e.g. [16]-[18]), which are essentially
tailored to keep the execution balanced on the long term just
depending on the simulation workload, not the per-thread

cost for computing GVT. Overall, the ideal non-blocking
GVT algorithm would be the one jointly guaranteeing low
TOCT and low MDCU.

Clearly, our non-blocking GVT algorithm is suited for
very large numbers of speculative PDES threads (e.g. thou-
sands) running on the underlying multi-core machine in
real concurrency. In fact, this is the scenario where the
logarithmic memory operations complexity it provides can
originate benefits. On the other hand, testing our proposal
with thousands of threads in a real deploy of a speculative
PDES environment would require the same amount of CPU-
cores to be available in the underlying hardware, which at
current date is an unlikely scenario except for data centers
embedding high-end computing facilities. To bypass this
problem, so as to be able to experiment with very large
thread counts on top of medium-end off-the-shelf multi-core
machines entailing common CPU-core counts—of the order
of a few tens—which are available in our laboratory, we
have taken the following approach.

We assesses our proposal embedding it within a skeleton
that mimics the thread-level dynamics of speculative PDES
platforms (say the loop presented in Figure 1), but where
the computation in the do{housekeeping; process
event; } code block is replaced by a blocking operating
system sleep. In this way, we can accommodate much larger
numbers of threads on the underlying multi-core machine
without leading them to use CPU cycles except for GVT
computation tasks. This provides also the advantage that we
can easily measure the actual usage of CPU time by the
threads exploiting the getrusage () system call offered
by Linux, which is our underlying operating system. In fact,
any user-space CPU time accounted for by this service is

actually related to GVT computation tasks since no other
activity is carried out in user space code by the threads
running the skeleton. We also note that relying on operating
system sleeps does not affect the reliability of data we
collect, just because the GVT tasks in the algorithms we
experiment with are non-blocking. Therefore the CPU time
they require along a thread is essentially independent of
whether other threads are in the sleep state or not.

In the skeleton, we have implemented the computation of
the local minimum to be posted onto the valuesy|| array as
a simple extraction of a random timestamp. This enables us
to assess the various non-blocking GVT algorithms without
biasing the study towards a specific implementation of the
speculative PDES engine. In fact, different engines may pay
different costs to compute the local minimum depending on
their internal organization—as an example, the cost can be
influenced by whether each thread manages a single queue
of events for all its bound simulation objects or separated
event queues. In other words, in our study we account for
the net CPU time required for running non-blocking GVT
tasks provided that the local minimum is already available
according to the way the specific PDES engine computes it
along a thread.

All the experiments have been carried out running the
skeleton on top of a 32-core HP ProLiant machine equipped
with 64 GB of RAM, running Linux (kernel version 3.2). We
report results achieved by running with up to 16K threads
since going beyond this value has generated a freeze of the
operating system because of the unavailability of memory
for managing the launched threads, and consequently also
kernel level demons/operations.

In Figure 3 we report the values we have observed for
TOCT for the case of all the non-blocking GVT algorithms
we have compared. Each reported value has been computed
as the average over 100 GVT computations by each algo-
rithm. We denote with Log-NBGVT our new proposal, with
Lin-NBGVT the linear cost solution in [6] and with OL-
NBGVT the variation of this algorithm where a single thread
traverses the array keeping the local minima for determining
the new GVT value. For the reported data set we have used
an operating system sleep period of 1 second within the
skeleton, but we observed no significant impact on the values
of TOCT (and also MDCU) by setting different values of the
sleep time. As hinted before, this is expected just because
of the non-blocking nature of the tasks carried out in the
different GVT algorithms we experimented with.

By the data we see how, for thread counts of the order of
2K and 4K, Log-NBGVT initially shows a slight increase of
the total CPU time for computing the GVT value compared
to Lin-NBGVT. This is due to the higher cost spent by
Log-NBGVT for managing atomic counters, along multiple
phases, which does not yet pay-off with respect to the
cost spent by Lin-NBGVT for traversing the array of local
minima along any thread. However, as soon as the thread

3.5

25

-0 mm&

2K 4K 8K 16K
number of threads

Log-NBGVT —= Lin-NBGVT === OL-NBGVT m==m

CPU time for GVT computation (seconds)

Figure 3. Total CPU time for GVT computation.

count is scaled up to 8K or 16K, Log-NBGVT provides
a reduction of TOCT by slightly more than 50%. In fact,
for 16K threads, Lin-NBGVT spends around 3 seconds of
CPU time (slightly less than 200 microseconds per-thread on
the average) for the GVT computation while Log-NBGVT
spends around 1.5 seconds of CPU time (100 microseconds
per-thread on the average). Better reductions of TOCT area
achieved by OL-NBGVT. However, this variation of Lin—
NBGVT definitely suffers from the problem of creating an
imbalance in the cost spent by the threads for carrying out
GVT tasks. This is evident when looking at data related to
MDCU which are reported in Figure 4. For thread count
scaled up to 16K, we observe a value of MDCU by OL-
NBGVT of the order of slightly less than 400 microseconds.
This value is even worse than the average per-thread CPU
cost spent by Lin-NBGVT under the same setting probably
due to the lower effectiveness of caching when a single
thread tries to access the array in read mode for performing
the traversal operation. In fact, having multiple threads doing
this job as in Lin-NBGVT can favor the joint exploitation
of lower level caches (e.g. the L3 cache). Ideally, for fine-
grain models, say of the order of 30 micro-seconds per
event, the other concurrent threads could process (16K-
1)x400/30 events, while the simulation objects bound to
the unique thread traversing the array of local minima in
OL-NBVGT would be locked in logical time. If at least
one of these events is eventually impacted—in terms of
its causal consistency—when resuming the processing along
that thread, a potential cascade of rollbacks might lead to
significant wasted computation. Log-NBGVT alleviates the
problem since the skew in CPU time usage by all the pairs
of different threads is definitely reduced, even with thread
count scaled up to 16K. In fact, for such a large number of
threads it is of the order of 30 microseconds.

V. CONCLUSIONS

In this article we have addressed the problem of com-
puting the GVT value in speculative PDES platforms to be
run on top of shared-memory multi-core machines. We have

c
(V]
1000 ‘
5 Log-NBGVT ——
83 OL-NBGVT ——
S
8o
SE 100
£
° 8
5]
© o 10 ——
so
[
2
O [e N
X 1
= 2k 4k 8k 16k

Number of threads

Figure 4. Max CPU-time usage difference between any pair of threads
participating in the GVT computation.

presented a non-blocking GVT algorithm such that no thread
is ever delayed while carrying out GVT computation tasks
depending on the actions by other threads. Logically, the
algorithm partitions the computation of a new GVT value
into phases that are executed asynchronously by the threads,
and where each thread determines that a new phase can
be entered by simply checking the value of some atomic
counter residing on shared-memory. The number of phases
is logarithmic with respect to the number of values to be
involved in the reduction for computing the new GVT—
which corresponds to the number of participating threads—
and in each phase only a constant number of buffers (values)
are manipulated by a thread. This allows reducing the actual
CPU time required for the reduction compared to a literature
non-blocking GVT algorithm where each thread needs to
scan an array keeping the input values of the reduction.
Also, the save of CPU time is achieved by having it
balanced across the participating threads, which is important
in order to avoid sudden skews in the advancement of the
simulation along the different threads running within the
PDES platform. An experimental study with a synthetic test-
bed where up to 16K threads are run shows that such a CPU
save can reach the order of 50%.

REFERENCES

[1] Richard M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30-53, October 1990.

[2] David R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and System, 7(3):404-425, July
1985.

[3] Diego Cucuzzo, Stefano D’Alessio, Francesco Quaglia, and
Paolo Romano. A lightweight heuristic-based mechanism for
collecting committed consistent global states in optimistic
simulation. Proceedings of the 11th IEEE International
Symposium on Distributed Simulation and Real Time Appli-
cations, pages 227-234, 2007.

[4] Maurice Herlihy. Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems, 13(1):124—
149, 1991.

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and
Francesco Quaglia. A conflict-resilient lock-free calendar
queue for scalable share-everything PDES platforms. In
Proceedings of the ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pages 15-26, 2017.

Alessandro Pellegrini and Francesco Quaglia. Wait-free
global virtual time computation in shared memory Time-
Warp systems. In Proceedings of 26th IEEE International
Symposium on Computer Architecture and High Performance
Computing, pages 9-16, 2014.

Tel Gerard. Topics in Distributed Algorithms.
University Press, 1991.

Cambridge

Yi-Bing Lin and Edward D. Lazowska. Determining the
global virtual time in a distributed simulation. In Proceedings
of the 19th International Conference on Parallel Processing,
pages 201-209, 1990.

Ten-Hwang Lai and Tao H. Yang. On distributed snapshots.
Information Processing Letters, 25(3):153-158, 1987.

Friedemann Mattern. Efficient algorithms for distributed
snapshots and global virtual time approximation. Journal of
Parallel and Distributed Computing, 18(4):423-434, 1993.

David W. Bauer, Garrett Yaun, Christopher D. Carothers,
Murat Yuksel, and Shivkumar Kalyanaraman. Seven-o’clock:
A new distributed GVT algorithm using network atomic
operations. In Proceedings of the 19th Workshop on Parallel
and Distributed Simulation, pages 3948, 2005.

Kalyan S. Perumalla, Alfred J. Park, and Vinod Tipparaju.
Discrete event execution with one-sided and two-sided gvt
algorithms on 216,000 processor cores. ACM Transactions on
Modeling and Computer Simulation, 24(3):16:1-16:25, 2014.

Richard M. Fujimoto and Maria Hybinette. Computing global
virtual time in shared-memory multiprocessors. ACM Trans-
actions on Modeling and Computer Simulation, 7(4):425-
446, 1997.

Zhonge Xiao, Fabian Gomes, Brian Unger, and John G.
Cleary. A fast asynchronous gvt algorithm for shared memory
multiprocessor architectures. In Proceedings of the 9th
Workshop on Parallel and Distributed Simulation, pages 203—
208, 1995.

M. Harris, S. Sengupta, and J.D. Owens. Parallel prefix sum
(scan) with CUDA. GPU Gems, 3(39):851876, 2007.

Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia.
Load sharing for optimistic parallel simulations on multi core
machines. SIGMETRICS Performance Evaluation Review,
40(3):2-11, 2012.

Christopher D. Carothers and Richard M. Fujimoto. Efficient
Execution of Time Warp Programs on Heterogeneous, NOW
Platforms. [EEE Transactions on Parallel and Distributed
Systems, 11(3):299-317, 2000.

D. W. Glazer and Carl Tropper. On process migration and
load balancing in time warp. IEEE Transactions Parallel and
Distributed Systems, 4(3):318-327, 1993.

