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Abstract—Concurrency control protocols based on read-
validation schemes allow transactions which are doomed to abort
to still run until a subsequent validation check reveals them as
invalid. These late aborts do not favor the reduction of wasted
computation and can penalize performance. To counteract this
problem, we present an analytical model that predicts the abort
probability of transactions handled via read-validation schemes.
Our goal is to determine what are the suited points—along a
transaction lifetime—to carry out a validation check. This may
lead to early aborting doomed transactions, thus saving CPU
time. We show how to exploit the abort probability predictions
returned by the model in combination with a threshold-based
scheme to trigger read-validations. We also show how this
approach can definitely improve performance—leading up to
14% better turnaround—as demonstrated by some experiments
carried out with a port of the TPC-C benchmark to Software
Transactional Memory.

Index Terms—performance optimization, transactional run-
time environments, early transaction aborts

I. INTRODUCTION

Read-validation is a widely used technique in concurrency
control protocols for transactional systems. It allows transac-
tions to run without locking data being read, thus unleashing
concurrency especially in read-intensive workloads. This ap-
proach is actually exploited in several families of concurrency
control protocols, such as optimistic and multi-version ones
[1]. In the context of distributed transactional systems, like
in-memory data management platforms in the Cloud, read-
validation based concurrency control allows for high scal-
ability even under data replication [2]. On the downside,
because of the intrinsic structure of read-validation schemes,
the readset of a running transaction can become no longer
valid because of conflicting updates performed by concurrent
transactions. Therefore, read-validation schemes need to assess
the validity of a transaction by means of a read-validation
operation. Typically, a transaction is validated at its commit
attempt. However, it is also possible to assess the validity
of a transaction at earlier points along its lifetime. This can
be done either for the sole purpose of performance, or to
support correctness criteria stricter than serializability, such
as opacity [3]. In any case, a concurrency control protocol
doesn’t necessarily reassess the validity of a transactional
readset immediately after a conflict has arisen due to updates
by a concurrent transaction. This prevents the possibility of
early aborting a transaction that is already doomed to abort.

In fact, the transaction will run until a commit is attempted,
or until the concurrency control protocol decides to perform
a read-validation. In both cases, this ultimately leads to waste
of resources (e.g., CPU).

In this article we present a performance optimization for
transaction processing systems. Our approach is based on
a simple analytical model which predicts, at runtime, the
probability that a transactional readset has become invalid.
Such probability is then used by a threshold-based mechanism
to proactively fire a transaction validation check whenever its
value exceeds a given threshold. The threshold parameter can
be tuned so as to optimize the trade-off between how much
processing time can be saved (thanks to early aborts), and how
often this gain may be achieved.

We frame our contributions within the field of Software
Transactional Memory (STM), a paradigm based on the notion
of transaction to support synchronization operations involving
shared-data accesses by concurrent threads. Its relevance is
witnessed by the fact that it is nowadays supported by the
world leading C(++) compiler for Unix systems, and is in-
tegral part of the runtime environments of some well-known
programming languages (such as Clojure and Haskell). The
STM paradigm is also at the core of the construction of several
NoSQL data stores used in modern systems, like the Infinispan
data layer for JBoss applications [4]. In any case the model we
present, and the transaction validation technique based on it,
is of general conception, and could be exploited in the context
of different transactional system technologies.

The experimental assessment of our model-based validation
technique has been carried out by integrating it into the open
source TinySTM [1] package1. Experimental tests have been
performed on a port of the TPC-C benchmark to STM.

The remainder of this article is structured as follows. In
Section II we discuss related work. The model-based read-
validation technique is illustrated in Section III. An experi-
mental assessment of our proposal is presented in Section IV.

II. RELATED WORK

In the literature, several analytical models have been pre-
sented which cope with very disparate concurrency control

1Our implementation has been made open-source and is available at the
HPDCS research group github repository https://github.com/HPDCS



schemes for transactional systems (see, e.g., [5]–[7]). Most
of them have been exploited as off-line tools for perfor-
mance analysis and prediction, while a few of them have
been exploited as runtime decision supports. In the specific
context of STM, analytical runtime decision models have been
proposed in order to determine suited levels of parallelism for
running applications [8]–[10]—as a way to avoid trashing due
to excessive transaction aborts. However, to the best of our
knowledge, none of the past literature works provides a model
coping with the problem of determining proactively whether
to (re)assess the validity of a transaction along its life time
in concurrency control mechanisms based on read-validation
schemes.

In [11] a model-based proactive approach is exploited in
order to determine whether to scale up/down the number of
nodes of an in-memory transactional data store depending on
workload changes. However, this proposal does not attempt
to optimize performance via proactive checks of transactions’
validity along their lifetime. The proposed model predicts
performance for the scenario where transactions are aborted
either when reaching their commit point, or when the con-
currency control mechanism detects some inconsistent access
to data. Previously issued accesses are not accounted for to
proactively predict transaction validity, as instead we do in
our proposal. On the other hand, the approach in [11] can
be seen as orthogonal to ours. The former is mostly oriented
to drive decisions on the amount of resources to be used to
sustain a given workload, while our proposal is oriented to
optimize the usage of each individual CPU-core by reducing
CPU-waste.

In [12] the transaction validity check is triggered periodi-
cally, via an ad-hoc operating system support integrated within
Linux. Differently from this proposal, our model-based read-
validation scheme does not need special support within the
operating system, thus being of wider applicability. Also, the
solution in [12] does not rely on any prediction scheme for
choosing at which points to attempt transaction validation. The
validation task is triggered independently of the probability
that the transaction has become invalid. In our proposal, the
validation task is triggered on the basis of predictions carried
out by the analytical model.

Several works have targeted the reduction of the incidence
of transaction aborts via heuristic based approaches [13]–
[15]. These solutions either try to sequentialize conflicting
transactions on the same thread or control the concurrency
degree of the STM-based application by changing the number
of threads/transactions that are allowed to run in parallel. A
comprehensive survey of the proposed techniques can be found
[16]. Other techniques have been oriented to the optimization
of the strategy for managing contention across concurrent
transactions [17], [18]. Some of these approaches also enable
the runtime adaptation of the contention management strategy
to the workload profile [18]. The orthogonal issue of mapping
threads to CPU-cores for performance optimization has been
addressed in [19]. An approach aimed at reducing the waste
of CPU-time and energy caused by transaction aborts, which

acts with per-transaction granularity, is the one in [20]. Here
the authors propose a solution for enabling a no longer valid
transaction to be rolled back partially (rather than totally),
which may help saving work otherwise doomed to be un-
fruitful. Our work is orthogonal to (and ideally combinable
with) the above solutions. Our target is to select points along
the transaction lifetime where a read-validation operation is
likely to produce an early abort of the transaction. On the other
hand, similarly to the proposal in [20], we retain the ability to
reduce CPU-time waste on per-transaction granularity. Indeed,
our analytical model is exploited to trigger early transaction
aborts that would have never be triggered by the underlying
transactional layer otherwise.

III. MODEL-BASED PROACTIVE READ-VALIDATION

Our probabilistic model is built on top of a transactional
system with an optimistic concurrency control. Transactions
are executed speculatively and can be aborted if something
has doomed their execution. In particular, we assume that
the readset of a running transaction can, at any time, be
invalidated by a conflicting transaction—i.e., a concurrent
transaction performing conflicting updates on the same data.
In this scenario, the concurrency control protocol will not
necessarily reassess the validity of the first transaction in a
timely manner. Therefore, it will miss the opportunity to early
abort the transaction.

Our focus in on those concurrent updates which conflict
with prior reads by a different transaction. Stated differently,
we only consider the abort probability deriving from write-
after-read conflicts in the readset of a running transaction.
Any abort or conflict occurring due to other events—write-
after-write or read-after-write conflicts, and even conflicts on
internal metadata—are not considered in the model and are
not accounted for when computing the abort probability of a
transaction. Write-after-write conflicts can be already handled
efficiently by many read-validation schemes, since typically a
transactional write operation takes a lock on the transaction
object being written. The same holds true for read-after-write
ones, as reading an object which is subject to a write lock
is disabled in many protocols enforcing strict correctness. As
for internal metadata conflicts, this is an orthogonal problem
which depends on the specific software implementation of a
given concurrency control protocol. For the sake of brevity,
and in accordance with our focus on write-after-read conflicts,
in the rest of this paper we will refer to read-validations as
simply validations. Additionally, we will call abort probability
the probability of observing any write-after-read conflict on
the objects read by a running transaction. Therefore, the abort
probability of a transaction is the probability that a transaction
has become invalid (or doomed) due to conflicting updates to
the objects in its readset.

A commit validation is the task which is performed at
commit time to check that the readset of a transaction is
still valid at that point. A validation is proactive (also termed
as early validation) if it is performed prior to commit time,
in an attempt to anticipate an abort that would only occur



Fig. 1: A visual representation of our threshold-based mecha-
nism for proactive read-validation.

at commit time. When a proactive validation produces an
abort, we call it an early abort. Generally speaking there
are many points along the lifetime of a transaction which
can be good candidates for proactive validations (e.g., upon
accessing a transactional object for the first time). Choosing
whether and when to perform such an early validation is a
choice which depends on performance and correctness aspects.
Indeed, many concurrency control protocols already perform
proactive validations that may lead to early aborts. Despite this
fact, in our work we show how to install even further proactive
validations within the execution of transactions, in an attempt
to achieve a higher amount of early aborts and save even
more computing resources. These additional early validations
are model-based, i.e., they are driven by the analytical model
explained in Section III-A, which takes a transactional readset
as input and returns the probability of an abort resulting
from observing conflicting accesses to the objects in this set.
When we wish to distinguish model-based validations from
other validations already performed by the concurrency control
protocol, we call the latter as spontaneous validations. In order
to trigger a model-based proactive validation, the computed
abort probability must exceed a given threshold value, as we
will discuss in detail in Section III-B.

Figure 1 shows two conflicting transactions performing read
and write operations on four shared objects—a, b, c, and
d. If our model-based mechanism is absent, the underlying
concurrency control mechanism is anyhow able to perform
some early validations (marked as V). The first of such early
validations is forced on transaction Tx0 right after its read
access to object a, but at this point the readset of Tx0 is
still valid and so there is no need to abort. In between
this access and the next access to object b, the readset of
Tx0 becomes invalid due to a conflicting write access to a
performed by another transaction Tx1, which occurred after
the first validation of Tx0 and becomes visible after Tx1
commit (marked as C). Therefore, Tx0 is doomed to abort.
However, only after Tx0 has performed a read access to
d the underlying concurrency control mechanism decides to

trigger another validation and the abort (marked as A) of the
transaction Tx0. Hence, the time between the access to object
b and that to d is spent doing useless work. Let’s see what
happens we introduce a validation mechanism which is based
on our analytical model and the abort probability computed
over time. In the example we only report the abort probability
for transaction Tx0. Whenever such probability exceeds the
specified threshold value (TV), the model-based mechanism
is ready to trigger a model-based validation. In the example,
this may happen as soon as a read to object c is performed,
thus producing an early abort and reducing the time spent
on useless computation by an amount which is equal to the
highlighted area on the timeline of Tx0.

The remainder of this section is devoted to providing the
details on the analytical model being used and to discuss
the threshold-based mechanism used to trigger model-based
proactive validations.

A. The analytical model

We denote with D the repository of data objects available to
transactions for read and write operations, with dj being the
j-th element of this set. The readset of a transaction x at time t
is denoted withRx(t). It is composed of a sequence ri of reads
of elements inD. Each ri is a tuple 〈ji, ti〉 containing the index
of the transactional object being read and the time at which the
read occurred. Both t and ti represents points on a physical
time axis2. We also maintain a global commit clock which
advances with each distinct commit of a transaction. This clock
is essentially a global counter of committed transactions and
exists on a logical time axis. To ease the mapping between
logical and physical time, as required in our analysis, we
conveniently denote with cc(t) the current global commit clock
at physical time t.

With no loss of generality, we assume a system with
one or more execution phases, such that each phase reaches
stationary conditions and such conditions may vary across
different phases. Therefore, we essentially model the system
independently in each one of the aforementioned phases. As
soon as each phase becomes stable, the rate at which updates
to transactional objects are carried out by transactions has a
characterizing average value. In such a case, t and ti refer
to the elapsed time since the beginning of the current stable
execution phase.

The number of updates to a given element dj in D, which
have occurred up to time t, are denoted as nj(t). The value
nj(t) is by definition lower than or equal to cc(t), since an
object dj can be updated at most once at each commit. The
update rate λj of a transactional data object dj at steady
state is computed as the limit of the number of updates
globally performed by transactions divided by the current
global commit clock at time t when t tends to infinity:

λj = lim
t→∞

nj(t)

cc(t)
(1)

2Note that such wall-clock time has nothing to do with the version clock (or
object timestamp) of time-based and/or multi-version transactional systems.



In our model, the update rate is used to compute the probability
that one or more updates affected any object dj in between s
and t, where s is a reference time and t is the current time.
This scenario can be modelled using a Bernoulli trial where
the success probability pj is λj and the failure probability
qj is 1 − pj . In this context, we observe a success when the
object dj is updated at least once by any transaction, while a
failure means that no update has occurred in between s and t.
Since an update can only occur upon a global commit clock
increment, the probability of failure in the [s, t] time interval
depends on the number of global commit clock increments
in the same period. Therefore, the failure probability over
[s, t] is the probability of observing as many failures as the
number of commits performed in the same physical time
period, which can be expressed as cc(t)−cc(s). The resulting
failure probability corresponds to the probability of failure
of independent Bernoulli trials, derived using a geometric
distribution:

qj(s; t) = q
cc(t)−cc(s)
j (2)

The reference time for a transactional object read by a transac-
tion coincides with its reading time ti. Anything that happened
before this moment is not of interest for the model, as the
object didn’t belong to the transactional readset. Therefore,
we are only interested in those updates that occur after a
transactional object in D is actually read by a transaction x
and is put into its transactional readset Rx. Given that s equals
ti for each ri in Rx(t), the failure probability at time t can
be rewritten as:

qri(t) ≡ qji(ti; t) = q
cc(t)−cc(ti)
ji

(3)

The failure probability for the entire readset Rx(t) of transac-
tion x is the probability of failure for any object in the readset.
In this context, a readset Rx containing objects ri = 〈ji, ti〉
is valid at time t if no object dji read at ti has been updated
in (tj , t] by some concurrent committing transaction. The
following equation expresses the probability of observing a
valid readset at time t:

Qx(t) =
∏
i

qri(t) =
∏
i

qji(ti; t) (4)

To obtain the abort probability for transaction x at time t,
we must have at least a success (therefore an update) inside
Rx(t), meaning that the readset is invalid. In accordance with
elementary probability theory, this means that the modelled
abort probability of a transaction x having a readset at time t
can be expressed as:

Ax(t) = 1−Qx(t) (5)

An useful property of the geometric distribution that we exploit
is the memorylessness property. It states that the probability
of observing a failure at time t given that a reference time s
already passed is actually equal to the probability of observing
a failure in between s and t. Notice that we already exploited
this property in Equation 2. In that case, the reference time s
was the time at which we first read the transactional object.

However, it may be the case that an object is re-read during
the lifetime of a transaction. This happens for example after
a validation operation marks the readset as valid at time t′.
Upon a readset validation occurring at time t′, all objects
within it are checked to see if there has been any concurrent
update by a conflicting transaction. If that is not the case, it
means that the transactional object ri was still valid at time
t′, using ti as reference time. This is equivalent to saying that
the object ri was re-read at t′, since we know that up to that
moment there were no conflicts. If this is true for every object
in the readset, the latter is valid and so is the transaction.
When a new validation is performed, the reference time for
each ri is considered to be the last reading time, i.e., the
time at which the last (re-)read occurred. By refreshing the
reading time of all the objects in the readset, we abide by the
memorylessness property and we make sure that future abort
probability calculations performed by the model are correct.

B. Model-exploitation schemes

In this section we show how the proposed analytical model
can be exploited to optimize the performance of transactional
systems. A typical usage of the model is to put a threshold
on the maximum abort probability that can be tolerated at any
time in order to allow the transaction to run ahead without
being (re-)validated. Once this threshold is exceeded, the
transaction must undergo a validation of its readset, which
might lead to an early abort.

Clearly, the higher the threshold, the higher the probability
of actually experiencing an early abort when the predicted
probability exceeds the threshold. In such a case the cost for
performing the readset validation operation can actually pay
off. At the same time, for very large threshold values, either
the number of threshold violations decreases drastically or the
gain in terms of saved computation cost decreases.

To motivate the above assertion, let us first consider a
transactional system which only validates transactions’ read-
sets at commit time. Many DBMS implementations based on
the read-validation scheme actually adopt this approach. The
probability of abort as computed by our model in such a
scenario clearly increases as the transaction approaches its end,
being it a function of the current time t and of the distance
(in the past) of the performed read accesses. However, there
is little gain in aborting a transaction when it is about to be
aborted anyway by its commit-attempt procedure. Hence, it
would be better to set a threshold value which allows to invoke
an early validation when there is more computation time to
save (hence a lower threshold value).

On the other hand, lets us consider the case of a transac-
tional system which already performs spontaneous validations
in the middle of a transaction upon a few read accesses
to transactional objects, e.g., to provide some correctness
criterion stricter than serializability, such as opacity [3]. In
this other scenario, setting too high a threshold value for
firing validations means performing a model-based proactive
validation only in those rare cases when the aforementioned
spontaneous validations have failed to catch any abort. Hence,



even if the (predicted and real) probability of abort of the
transaction is high at some point in time, the probability
of getting to that point itself—and exploiting the model for
triggering validations—is actually very low.

Overall, finding an optimal value for the threshold parameter
is a challenging task. In this article we report performance data
without any manual or automatic determination of the optimal
threshold value TV . So we simply explore how performance
varies with different statically configured values of TV , as
a way to show the potential of our proposal under different
configurations. Generally speaking, there are at least two
main approaches to finding an optimal threshold value. An
off-line methodology is to run the application/workload of
interest while collecting some high-level profiles and statistics.
Then, the best threshold can be found after processing the
collected information. For example, one can compute the
actual abort probability distribution and set a threshold which
is near to the observed mode parameter of that distribution.
Another technique can be based on runtime feedback-oriented
optimization. The application is run with an initial threshold
value—possibly inferred using static off-line techniques such
as the one suggested above—and its performance over time is
observed. After some time, the threshold is changed and a new
observation period starts. A biased exploration, like the hill-
climbing approach, can be used to test new values and decide
when to stop. In general, a run-time methodology eventually
picks the threshold which provided the best performance
among all observed values. This process can be repeated over
time to optimize multi-phase applications. Additionally, when
the workload is comprised of large and small transactions
which exhibit quite different memory access patterns, the
threshold can be set separately for each transactional profile.
The extreme case is that of enabling the model and setting a
threshold only for a subset of the profiles. These approaches
will be explored in future work.

IV. EXPERIMENTAL EVALUATION

In this section we report an analysis of both the model
accuracy and the impact of model-based read-validation on
performance. This study exploits the TinySTM [1] package,
which is a single-version word-based implementation of LSA
(Lazy Snapshot Algorithm) for time-based STM systems. It
manages transactions by relying on a global version clock
(gvc), a shared counter which is atomically incremented when-
ever a thread commits a transaction that updates shared data.
A data object is a memory word, and each word address is
associated with its own meta-data consisting of a lock-bit and
a timestamp, both kept in a single entry of a hash array that
is manipulated atomically (also called lock array). When a
transaction successfully commits, the updated gvc value is
reflected as the new timestamp of the written word. Upon
(re)starting a transaction, a thread stores the current value of
the gvc into a local variable called transaction start-timestamp
(tst). Upon a write operation, the target address and the value
to be stored are both added to the transaction writeset. Read
operations on shared objects previously updated by the same

transaction are served by picking values from the transaction
writeset. Instead, read operations performed on shared objects
outside the writeset lead to sample the timestamp and the lock
bit of the shared object in order to check if (A) the timestamp
is less than or equal to the tst of the reading transaction, and
(B) the object is not currently locked. If both checks succeed, it
means that no concurrent transaction has modified the object
in the interval between the start of the reading transaction
and the actual read operation, hence the read value is valid.
Otherwise, the transaction gets aborted.

A mechanism that is used in combination with this scheme
is called snapshot extension. When the thread reads an object
whose timestamp is greater than tst, this mechanism checks
if all the previously executed transactional read operations
(if any) are still valid in an extended snapshot that includes
the timestamp of the culprit read. If yes, the snapshot seen
by the transaction is still consistent and the transaction is
not aborted. Additionally, the tst is updated to the gvc value
sampled immediately before performing the check. In such a
case, since the abort is avoided, the transaction can continue
its execution.

In this scenario, a validation (see points A and B above)
is only attempted upon explicit read accesses, when such
accesses may result into a violation of the opacity correctness
criterion. If a thread runs a transaction that does not access
shared data for a while (e.g., it manipulates local variables
into the stack), or accesses data deemed valid (the object
timestamp is within the transaction visibility snapshot), then
the underlying STM layer does nothing to detect conflicting
accesses. On the other hand, our analytical model can predict
the probability that the transaction has become invalid upon
performing those accesses, and be used to trigger a model-
based proactive validation.

A. Model accuracy

To quantitatively assess the accuracy of our model we have
carried out an experiment based on a synthetic benchmark
for STM. A shared array in memory constitutes the whole
transactional repository at disposal of transactions. Each trans-
action performs a given number of accesses to this repository,
split between read and write accesses hitting the set of
objects randomly. The size of the repository, the number of
transactional operations and the probability of performing a
read operation as the next transactional operation are all user-
defined parameters of the synthetic benchmark.

We report the accuracy plots obtained when setting the
overall dataset size to 1000 elements, and the number of
per-transaction operations to 50. The experiments have been
run relying on 24 threads hosted on top of a 32-core HP
ProLiant server whose detailed technical description is pro-
vided while illustrating the performance study in the next
sction. Figures 2a and 2b show how the predicted abort
probability compares with the actual abort probability when
the transaction read probability parameter is set to respectively
0.9 and 0.8—meaning that 10% or 20% of the data accesses
by transactions are in write mode. These scenarios represent a



(a) Accuracy results for the case of 90% reads, 10% writes (b) Accuracy results for the case of 80% reads, 20% writes

Fig. 2: Model validation plots using a synthetic benchmark. The dataset size is of 1000 elements, each transaction performs
50 operations on random dataset elements. The actual read/write ratio varies in the two experiments.

realistic situation where contention is fairly spread across all
the dataset, with a probability of abort that can still be high
due to the relatively high number of read operations compared
to the overall dataset size. Additionally, it emulates a real-
world application scenario where reads tend to be much more
frequent than writes. On the x-axis is the abort probability as
computed by the model, while on the y-axis is the actual abort
probability, derived as the ratio of aborts over total validations
for that specific point on the x-axis. To obtain a perfect match,
the predicted probability must equal the actual probability, as
suggested by the straight, blue line on the plot. The absolute
error committed at any point in Figure 2a never exceeds 4%.
Compared to the first plot, there is a slight loss in precision in
Figure 2b when the number of write operations is increased,
with a maximum absolute error that is roughly 5%. Such errors
suggest that the accuracy of the proposed model is affected
by small-order effects due to numerical stability and possibly
by some slight statistical correlations between read and write
operations from different transactions. Nevertheless, the data
also show that our model is reasonably stable and capable
of predicting the abort probability of transactions under the
studied settings with negligible precision error.

B. Performance results

We tested the performance optimization based on model
predictions, and the comparison of the predicted abort proba-
bility values to TV for triggering validations, with a port of
the TPC-C [21] benchmark to TinySTM. So the performance
study is carried out with a workload profile not fully matching
the one for which we reported accuracy data, which makes the
assessment of our proposal more meaningful.

TPC-C is representative of OLTP workloads and includes
different transaction profiles that simulate a whole-sale sup-
plying items from a set of warehouses to customers within
sales districts. In our experiments we instantiated one district,
and generated a workload made up by requests spanning
four different transaction profiles specified by the benchmark,

excluding the “delivery” profile since, according to the TPC-C
specification, it is conceived to be run in deferred mode. In
our porting to the target STM environment, CPU demands for
the different transactional profiles of TPC-C range from tens
of microseconds to milliseconds, as shown in Table I, where
we also report the percentage mix of the different profiles. It
must be noted that of all enabled profiles, “new order” is the
only one having a high CPU demand, a relevant share of the
whole workload (almost 50%), and a mixture of read and write
operations. The “stock level” profile is too a long-running one,
but it has a much smaller share of the workload and it is read-
only3. To emulate a realistic deploy for modern applications,
we have run experiments on a cluster of two 64-bit NUMA
HP ProLiant servers. The STM application is deployed on one
of these nodes—acting as a back-end data layer—while the
other node is used for generating the workload of transactional
requests. The server node is equipped with four 2GHz AMD
Opteron 6128 processors and 64GB of RAM. The client node
has two 2.2GHz AMD Opteron 6174 processors and 32GB
of RAM. Both processor models have eight NUMA nodes.
This type of machine is exactly the one on which we have run
the accuracy-assessment experiments presented in the previous
section. In all the experiments, threads remain pinned to their
NUMA nodes so as to minimize the impact of (possible) thread
migrations by the operating system. We don’t move data across
NUMA nodes and don’t change the default allocation policy
for dynamic memory.

We have run our experiments with continuous injection
of transactional requests, using 24 threads for processing the
requests at the back-end data management node and 6 threads
for managing the socket pool from which the client-generated
workload comes. This scenario led to use at most 94% of
the CPU computational power at back-end data management
node, thus avoiding hardware resources saturation that would

3Read-only transactions don’t usually undergo any validation upon their
commit. In fact, it is admissible that their readsets contain overwritten data,
provided that the readset is consistent in the first place.



ID Profile Type CPU demand % mix
1 new order RW ≈ 350 µsec 0.49
2 payment RW < 10 µsec 0.43
3 order status RO ≈ 10 µsec 0.04
4 stock level RO ≈ 650 µsec 0.04

TABLE I: Transaction profiles and associated CPU demand.

affect the reliability of the experimental analysis. In any
case, we have run with the highest concurrency admitted
by 24 threads since we configured TinySTM to rely on the
Commit-Time Locking scheme for data-lock acquisition upon
write operations. We set the backlog of pending transactional
requests to be processed at the server side to 4096, and we
experimented with a sustained workload leading the backlog
to be close to saturation at any used thread count. Each
experiment entails 3 million committed transactions.

In our experiments we varied the parameter TV using the
following values: 100%, 85%, 70%, 55%, 40%, 25% and
10%. Upon a read access to a transactional object at time
t performed by transaction x, the inequality Ax(t) > TV
is checked to verify whether the predicted abort probability
exceeds the threshold. If such inequality holds, a new val-
idation task is triggered before completing the access. The
configuration with TV = 100% leads our model-based opti-
mization to never fire any model-based validation, since the
estimated abort probability of transactions cannot be greater
than one. However, this configuration is important in order to
assess what is the actual overhead for managing the model
at runtime—especially to access the global commit clock
value and to keep information related to the update rate
of each distinct transactional word in memory. Indeed, we
observed that the overhead for handling the model at runtime
is essentially caused by conflicting cache-line accesses by
concurrent threads to the global commit clock value. Such
value must be updated each time a transaction commits in any
thread, and it must be accessed when the abort probability
value for a running transaction needs to be estimated via the
model. Our model-based validation scheme also lacks any
estimation of the actual cost for performing a model-based
proactive validation, compared to the cost of waiting until
the next spontaneous proactive validation. The presence of a
cost model would enable us to decide whether to perform
an additional validation depending on these estimations, even
when the threshold value has been exceeded. Techniques for
reducing such architectural impact on performance, and further
enhancing the gain provided by the model-based validation
scheme will be the target of future research work.

In Figure 3 we report the variation of the transaction
turnaround for profile #1 using the different values of TV ,
relative to the turnaround that can be observed when running
the original configuration of TinySTM (not embedding our
model-based validation scheme). We will refer to the latter
configuration as ‘baseline’ in our discussion. By the data
we see how, although the runtime management of the model
introduces about 5% overhead (see the bar for TV = 100%),

Fig. 3: Turnaround results for profile #1 compared to the
baseline.

Fig. 4: Throughput results compared to the baseline.

as soon as we also exploit the model we do not only re-
cover the loss of performance caused by the runtime model-
management overhead; rather, we also achieve a performance
gain over the baseline of about 14%. As already anticipated,
we reported data for profile #1 only since profiles #2 and #3
are so short running that no early abort technique allows for
actual improvements of their performance. On the other hand,
profile #3 and #4 are read only, and TinySTM already applies
to these profiles a set of runtime optimizations that stand aside
of the model-based read-validation scheme we present.

Even more important, we observe that the performance gain
provided by the model-based read-validation scheme is stable
for large interval of values of TV . In fact, the throughput
observed when the model is active, as shown in Figure 4,
tends to degrade towards the one of the baseline only when
TV exceeds the value 85%. This is in practice an indication
of the effectiveness of the approach even in contexts where no
(extremely) fine tuning of the value of TV is adopted. We also
note that the gain in the turnaround of profile #1 of TPC-C is
reflected into an overall throughput gain of about 8% over the
baseline when considering all the transaction profiles. This is
clearly linked to the relevance of profile #1 within the TPC-C
transaction mix.



V. SUMMARY AND FUTURE WORK

In this article we have presented a model for estimating
the abort probability of a transaction maintaining a readset of
all the read-accessed transactional objects. Our proposal has
applications to different concurrency control protocols which
avoid read-locking data objects, such as optimistic and multi-
version ones. Our model can be used to perform proactive
validations of transactions, as a means to abort no longer valid
transactions as fast as possible. We have shown the accuracy of
our model and the performance benefits that can be achieved
by exploiting it as a runtime decision model in the contest
of Software Transactional Memory (STM) applications. In
particular, we have adopted a simple threshold-based mecha-
nism to trigger proactive transaction validations whenever the
estimated abort probability of a transaction exceeds a certain
value. Thanks to this mechanism, we have observed up to 14%
performance gain—on a per transaction-profile analysis—for
a port of the TPC-C benchmark to the STM environment.
As future work we plan to investigate more sophisticated
strategies for exploiting the abort probability predictions by
the model in combination with other (predicted) costs—such
as the expected residual transaction execution time and the
real cost of the validation operation as function of the readset
size. We also plan to investigate architectural solutions for
reducing the overhead to manage the model at runtime, to
further improve the performance of transactional applications.
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