
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

AUTONOMIC ORCHESTRATION OF IN-SITU AND IN-TRANSIT DATA ANALYTICS FOR
SIMULATION STUDIES

Xiaorui Du Adriano Pimpini
Zhuoxiao Meng

Anibal Siguenza-Torres
Alois Knoll

Technical University of Munich Sapienza, University of Rome
Arcisstraße 21 Via Ariosto 25

Munich, 80333, GERMANY Rome, 00185, ITALY

Andrea Piccione Alessandro Pellegrini
Stefano Bortoli

Huawei Munich Research Center University of Rome Tor Vergata
Riesstraße 25 Viale del Politecnico 1

Munich, 80992, GERMANY Rome, 00133, ITALY

ABSTRACT

Modern parallel/distributed simulations can produce large amounts of data. The historical approach of
performing analyses at the end of the simulation is unlikely to cope with modern, extremely large-scale
analytics jobs. Indeed, the I/O subsystem can quickly become the global bottleneck. Similarly, processing on-
the-fly the data produced by simulations can significantly impair the performance in terms of computational
capacity and network load. We present a methodology and reference architecture for constructing an
autonomic control system to determine at runtime the best placement for data processing (on simulation
nodes or a set of external nodes). This allows for a good tradeoff between the load on the simulation’s
critical path and the data communication system. Our preliminary experimentation shows that autonomic
orchestration is crucial to improve the global performance of a data analysis system, especially when the
simulation node’s rate of data production varies during simulation.

1 INTRODUCTION

Simulation is essential in many application areas, establishing itself as a third way of science alongside theory
and on-field experimentation. Simulation studies constitute increasingly sophisticated processes involving
large-scale models and numerous simulation experiments, often computationally intensive. To support the
execution of these models, relying on highly parallel and distributed High-Performance Computing (HPC)
systems is imperative. HPC simulations enable unprecedented levels of accuracy in models and make
previously intractable problems tractable by exploiting distributed memory. They can allow for practical
what-if analysis, as alternative scenarios can be explored through multiple concurrent simulations. However,
the great detail achieved in simulations poses a significant problem in analysing simulation results.

From the point of view of computing resources, we can now exploit exascale architectures (Dongarra
et al. 2019) thanks to extraordinary worldwide results (Kothe et al. 2019; Gagliardi et al. 2019). Anyhow,



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

it is evident that managing data input/output (I/O) is one of the main bottlenecks compared to previous
petascale systems (Lang et al. 2009). To overcome this limitation, many techniques have been proposed
on the hardware side (see, e.g., Liu et al. 2003; Liu et al. 2012), whose ultimate aim is to reduce the
impact of buffering or manipulation by software to move data.

However, these performance improvements are orthogonal to the fundamental design challenges of
deciding how to distribute the simulation data and where to process it. As shown by Pu et al. (2015), the
classical approach of aggregating all data in a single node significantly inflates the timeliness of analyses.
In this direction, various techniques have been proposed to improve the performance of data analytics
activities. For instance, Ellis (2014) showed that stream-processing-based data analysis is promising since
it allows processing or generating even visual representations in real-time. However, it is challenging
because the speed of receiving data and the limited time to understand it make it difficult for analysts to
sufficiently examine the data without missing significant changes or patterns (Kesavan et al. 2020).

To reduce the load on the network, in-situ workflows have become popular (Larsen et al. 2017; Childs
et al. 2022). They integrate the processing of data generated in the simulation pipeline to transfer already
aggregated or pre-processed data to the analytics nodes. Anyhow, this strategy may lead to performance
disadvantages because the processing tasks are placed on the simulation critical path. With this in mind,
Bennett et al. (2012) showed how, for some simulation models, it is possible to construct an efficient
organization in which part of the data processing takes place in situ and part on remote nodes (called
in-transit processing). They divided in-situ and in-transit processing statically by analyzing the model’s
requirements. Identifying an optimal division can be a complex task, in general: given a set of queries on
the output of a simulation, determining which part of the analysis must be performed on the simulation
nodes and which on the external nodes is a problem that depends directly on the queries performed (e.g.,
if aggregate metrics are of interest, it is imperative to transfer all or part of the data).

Similarly, the dynamics of the model also play a key role. If a model is not balanced, different simulation
nodes may observe a diverse workload in the in-situ processing activities, even for the same queries. This
phenomenon, related to the need for synchronization to ensure consistency, can lead to disappointing
performance results, regardless of whether the simulation synchronization scheme is conservative (e.g.,
Chandy and Misra 1979) or optimistic (e.g., Jefferson 1985). The performance drop can be even greater
if the amount of data generated by the simulation varies over time due to highly-dynamic scenarios.

We address the issues above by studying an autonomic self-optimization technique (Kephart and Chess
2003) to orchestrate simulation data analytics. Through our approach, we show how it is possible to
decide which portion of data processing should be performed in transit or in situ, depending on the runtime
dynamics of the simulation model and the particular type of data analytics queries. We emphasize that
the goal of this paper is not to propose an optimal self-optimization technique but rather to highlight the
need for such approaches to deliver competitive simulation-analytics systems. Additionally, we depict a
distributed architecture for simulation and data analytics that enables us to execute diverse user-defined
queries competitively, leveraging our autonomic methodology. This architecture is archetypal of distributed
data analytics jobs and is therefore organized to decouple data generation from the data processing part.
The autonomic orchestration is based on live data obtained from software probes injected into the various
components and on historical data that reduce the exploration time of the different configurations.

We exercise our methodology against multiple configurations of an agent-based simulation model
executed on top of the CityMoS simulation framework (Zehe et al. 2017), a high-performance microscopic
traffic simulator. The choice of microscopic traffic simulation as a subject of this study was made because
it can provide large amounts of data to support multiple data analytics queries. Overall, our experimental
evaluation shows that self-adaptive orchestration of the data analytics activities can deliver a non-negligible
reduction in the time-to-completion of the joint simulation and analytics activities.

The remainder of this paper is structured as follows. In Section 2, we formalize our problem statement,
illustrating the motivations of our work. Section 3 discusses related work. The autonomic orchestration
methodology is described in Section 4. An experimental assessment is presented in Section 5.



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

Figure 1: Variation of end-to-end completion time when using in-situ, in-transit, or autonomic computation.

2 BACKGROUND AND MOTIVATION

Considering a generic multi-query analytics study based on n simulation and m processing nodes, deciding
upon in-situ or in-transit data processing can be based on the notion of end-to-end completion time. This
notion captures the idea that the user is typically interested in obtaining the result of the computation of
the data independently of how the data processing is executed. Therefore, it is reasonable to try to reduce
the time-to-solution, which may behave differently depending on the processing paradigm used.

Figure 1 depicts from a high level the possible dynamics of in-situ or in-transit data processing. In the
former case, simulation nodes may dedicate non-negligible time to data processing, giving the following
formulation of the the end-to-end completion time:

Tsitu = max
i∈[1,n]

(tsimi + tproci) , (1)

where tsimi represents the time required to run the simulation on the i-th simulation node, while tproci

accounts for the time needed to collect the relevant data from the simulation state and process the queries.
Conversely, in the second case, the time spent on data serialization/deserialization can greatly lengthen the
time needed to obtain the final results. In this case, the end-to-end completion time can be captured as:

Ttransit = max
i∈[1,n]

(tsimi + tseri + tidlei) , (2)

where tseri captures the time to serialize the portion of the simulation state used for query evaluation, and
tidlei accounts for the time to complete the query processing at the end of the simulation. Despite high-level,
Equations (1) and (2) provide an insight into the effect of runtime dynamics on end-to-end computation.
If the amount of data generated by the simulation is large, then tseri grows. At the same time, in the case
of in-transit processing, simulation nodes could be idle for a long time: tidlei can be a dominating factor.

The effects of Equations (1) and (2) are shown empirically in Figures 2 and 3, where we report the
simulation results of a synthetic grid road network composed of 100 intersections, 81 traffic lights, and 800
lanes with a peak of ∼2,500 agents. The total length of the road network is 41 km. Although simple, this
model has a time-varying workload associated with the number of active vehicles—the bell curve in the
figures. From the in-situ results (Figure 2), we observe that processing activities become dominant when
the number of vehicles is high—tproci increases. Conversely, in the in-transit case (Figure 3), the waiting
time to process a single data point rises as the analytics nodes start lagging behind.

Even in this simple model, it is not possible to know a priori whether Tsitu > Ttransit since this depends
on the dynamics of the model and the involved queries. The best scenario for minimizing end-to-end
completion time is obtained when the coupled simulator-analytics system can determine timely whether,
at a certain execution stage, it is more convenient to transfer data to the remote nodes for analysis or it is
more convenient to carry out (partial or full) processing directly on the simulation nodes.

To support this decision, we propose the inclusion of an autonomic orchestrator that jointly monitors the
progress of simulation and data analysis. It is capable of interacting with the query processing activities to
migrate the computation towards the hybrid in-situ/in-transit configuration that can reduce the completion
time of the analytics job. As we will show, even with the use of a simple autonomic model, this approach
can significantly reduce the end-to-end time even for complex simulation scenarios, allowing tasks to be
orchestrated as shown in Figure 1.



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0.0

0.1

0.2

0.3

W
al

l-c
lo

ck
 ti

m
e 

[s
]

0

1

2

A
ge

nt
 co

un
t

×103

Compute in-situ
Simulation

Agent count

Figure 2: In-situ computation characterization.

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0
100

101

102

103

W
al

l-c
lo

ck
 ti

m
e 

[s
]

0

1

2

A
ge

nt
 co

un
t

×103
Time spent in queue Agent count

Figure 3: Buffering time for in-transit computation.

3 RELATED WORK

The performance gap between parallel/distributed simulations and I/O systems has expanded the number
of works dealing with in-situ or in-transit processing. In the case of in-situ simulations, many works
propose approaches that attempt to reduce the completion time of data analysis by resorting to dedicated
hardware (e.g., Li et al. 2010; Zhang et al. 2012) or dedicated software solutions (e.g., Zheng et al. 2010;
Vishwanath et al. 2011; Chen et al. 2016). Conversely, in the context of in-transit simulations, various
combinations of data staging areas have been studied (see, for example, Abbasi et al. 2009; Zheng et al.
2010; Vishwanath et al. 2011). Godoy et al. (2020) attempt to provide a unified API to support the
movement of data generated by HPC systems, also exploiting cloud environments.

Both of these approaches aim to improve performance: the former removes some of the data analysis
work from the critical path of the simulation, while the latter seeks to exploit asynchronous data movement
to reduce the impact of I/O operations. Our approach is orthogonal in that it attempts to adaptively combine
both methodologies, using runtime performance data to make a choice that reduces the total time to complete
a joint simulation-analysis job.

Isaacs et al. (2014), Muelder et al. (2016), Sanderson et al. (2018), Kesavan et al. (2020) have
considered real-time visualization of data from highly parallel applications or systems as a reference
scenario for on-the-fly data processing. These solutions are tailored for computationally intensive tasks
such as data visualization, while our goal is to support generic data processing, even supporting various
queries at the same time. Bennett et al. (2012) start from considerations similar to those underlying
this work, reasoning about the opportunity to combine in-situ and in-transit processing to improve the
performance of data analytics approaches. Unlike Bennett et al. (2012), our work considers the possibility
of determining at runtime which is the best way to evaluate queries on the data produced by the simulation
to maximize performance even in the presence of highly dynamic workloads.

The importance of combining in-situ and in-transit processing is also discussed by Zheng et al.
(2011), providing a performance model to quantitatively describe the trade-offs of these two approaches
in a simulation. However, this model is based on the total cost of queries after simulation, limiting
its applicability in highly dynamic scenarios. Furthermore, the model assumes that processing the data
generated by the simulation is faster than the simulation itself. This assumption may fall if the queries to
be evaluated are large in number or very complex.

Similarly, Zou et al. (2014) explore in-transit and in-situ selection strategies by analyzing the possibility
of reducing data movement and eliminating severe I/O performance bottlenecks. The proposed algorithm
allows for runtime selection; however, in order to work, it requires idle nodes to be started and a (baseline)
subset of data to be processed to estimate the cost of the upcoming query, which could impose significant
overhead on the simulation.

The idea of moving the computation instead of the data was explored by Docan et al. (2011). They
share with us the concept of performing the same computation on the data in different locations, depending
on performance requirements or the load on the I/O system. However, our work introduces the possibility of
partial computations, making it possible to compute specific metrics in situ and others in transit, depending
on the overall load on the system. Furthermore, our goal is not to migrate the executable that performs



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

the computation from one node to another since queries of interest to data analysts are easily distributed
across all nodes beforehand.

4 AUTONOMIC DATA ANALYTICS ORCHESTRATION

In the definition of our policy, we assume a finite set of metrics denoted as m0,m1, . . . ,mn, and we consider
a scenario where the system user may desire to evaluate these metrics at arbitrary time points t during the
simulation. Such computations are referred to as queries. The time required to evaluate a query q depends
on a specific data set collected from the simulation state to evaluate the metrics associated with q. We
call it the query’s content. Specifically, we are interested in determining the size of the content, denoted
as size(q). We assume that the simulation and the analytics processes are independent, possibly running
on their own machines connected through a network.

4.1 The Autonomic Orchestration Algorithm

Let us start analyzing the cost of a single query q. From the perspective of one simulation node s, we can
model the cost of evaluating q as follows:

tsitus = [executes(q)]t (3)

ttransits = [serialize(q)+ send(q)]t (4)

At first glance, we should always greedily choose the approach with the lowest estimated cost between
the two. This would minimize the end-to-end time on the simulation node, and, in the case of very
lightweight analytics, it could also effectively solve the problem.

In a realistic scenario, this choice would be biased towards the in-transit strategy; for non-trivial queries,
the local execution cost would likely be higher than serialization and network activities, also because they
could be partially carried out in the background. The large amount of data processed in transit would result
in a growing number of tasks waiting for processing in the analytics node. Ignoring memory limitations,
these tasks would continue being processed long after the simulation node has completed its computation.
Therefore it is necessary to take into account the costs of both strategies also on one analytics node a:

tsitua = 0 (5)

ttransita = [receive(q)+deserialize(q)+ executea(q)]t (6)

Highly-dynamic workloads and possible network delays make it hard to determine these costs precisely
when making a decision; thus, we must rely on some simplifying assumptions. We use a simple linear
approximation, assuming that each query mk has a relatively-stable cost per byte, observable during the
system’s lifetime. We can then derive the per-byte cost Sk for the in-situ computation on simulation nodes,
and the per-byte costs Tk and Ak for the in-transit strategy on the simulation and analytics nodes respectively.

Deciding how to merge the two cost estimates to make a good decision can be tricky, especially
when multiple simulation and analytics nodes are used. Since the system can comprise any number of
independent nodes with overlapping computations in wall-clock time, it is unfeasible to satisfactorily
estimate or characterize this global end-to-end time, particularly given the unknown and variable simulation
computational load.

Thus, our autonomic algorithm operates under a “best-effort” approach considering two key factors.

1. If an analytics node is experiencing a high computational load, new in-transit computations may
have to wait in the queue for a long time. If the simulation nodes’ computation were to complete
soon, waiting for the analytics nodes would be undesirable.

2. Since the completion of any subsequent activity depends on the simulation computation, the default
optimal approach is to minimize the computational cost on the simulation nodes, if possible.



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

Data for analytics

Metadata

Data Producer

Estimated costs
Estimator

Decision
Placement
decision

Query executor

Historic data

Analytics node status

Heuristics
gatherer

Data sender

In-situ In-transit

Simulation node

Measured times
(transfer + deserial)

Deserialized request

Receiver /
deserializer

Historic dataHeuristics
gatherer

Measured (execution) times

Query executor
Request to handle

Request queue metadata

Requests queue
Estimated load

Load estimator Data sender

Analytics node

Serialized request

Figure 4: The distributed architecture for autonomic orchestration of data analytics Jobs.

Therefore, our primary objective is to utilize the greedy approach as much as possible while ensuring
the analytics nodes are not overloaded. We introduce a new time quantity, twaita , defined as the duration for
which a new query request must wait before being processed by the analytics node a. Although the exact
value of twaita is not known at all times, an analytics node a can estimate it by combining the estimated
ttransita of the queries in its queue. With type(q) denoting the type of the query q, we can estimate the
waiting time using the following equation:

twaita =
queuea

∑ size(q) ·Atype(q) (7)

It should be noted that Equation (7) should not account for the network transfer time receive(q) for
queries that are already received by the analytics node a and are waiting in its queue to be executed. While
a precise estimation would consider this distinction, it has been omitted here for brevity and simplicity.

Now, we can introduce a baseline autonomic decision policy as follows: first, we set a threshold time
tmax as the maximum time the user may want to wait for the given analytics job after the simulation has
been completed. Then, we evaluate twaita ; if it is greater than tmax for all analytics nodes, we execute the
query in situ. Otherwise, we apply the simulation node’s greedy decision criterion and randomly select
one of the analytics such that twaita < tmax. Assuming long simulation runs, twait and the other relevant
quantities can be lazily updated periodically.

If, at any moment, a simulation node performs analytics computations in situ, it will allow the analytics
node to catch up, reducing the estimated twait for future queries, which have a higher probability of being
offloaded to the analytics node, maintaining dynamic equilibrium. Simulation node makes independent
decisions on where the analytics processing should occur; thus there may be particular instants in which
some analytics nodes may have a backlog of tasks such that twaita > tmax. As we will show experimentally,
even this simple approach can deliver non-negligible benefits in the overall time-to-solution. As mentioned,
this paper’s focus is not on identifying an optimal autonomic policy.

The time threshold tmax acts as a tolerance value, where a higher value increases the simulation node’s
resource utilization efficiency but may cause longer analytic node waiting times, which may be acceptable
for long simulation runs. Conversely, a lower value of tmax guarantees that the analytic node will not get
overloaded, resulting in sub-optimal use of the simulation node capabilities.

4.2 Reference Architecture

To deploy the aforementioned autonomic policy, we designed a logical architecture consisting of the
previously-mentioned parts: a simulation and an analytics component. The main building blocks of this



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

Table 1: Analytics queries used in the assessment—n is the number of agents.

Query Description

Agent count (Q1) Read the pre-computed agent number per road. Computational complexity: Θ(1).

Average speed (Q2) Average speed of agents. Computational complexity: Θ(n).

Top speed per road (Q3) Get the speed of the top k fastest agents in each road. Computational complexity: Θ(n log(n)).

Agent distances (Q4) Distance between all agents. Computational complexity: Θ(n2).

architecture are shown in Figure 4. The architecture is general, so we have embedded multiple fundamental
building blocks in it, although only the ones highlighted in green are relevant to our current proposal.
As shown, the components establish a feedback loop. The autonomic orchestrator uses this loop to make
decisions to balance computational load and data transmission costs. The simulation component sends data
to the analytics component, which periodically responds by providing statistics on its internal load. These
runtime measurements are used to cope with the non-constant simulation load and the varying network
and system conditions.

Relying solely on the most recent measurement is insufficient, as sudden spikes in conditions can
occur and significantly impact computation. This may lead to unstable and incorrect decisions made by
the autonomic components of the system. The Heuristics gatherer component is designed to mitigate this
issue by collecting measurements and aggregating them into more stable values—currently, we rely on
an exponential moving average. In analytics nodes, the Load estimator uses local heuristics and pending
requests’ metadata to gauge the time to completion of all local jobs, as discussed in Section 4.1.

The actual autonomic decision-making combines the Estimator and the Placement decision components.
The Estimator component utilizes metadata provided by the data producer (e.g., size and type of output
data streams) and information about local and analytics nodes’ processing performance to estimate the
costs associated with both in-situ and in-transit processing strategies. The Placement decision component
determines the appropriate processing strategy (in-situ or in-transit) for a given set of analytics, effectively
serving as the core of the autonomic decision system. This is done by implementing the autonomic policy
described in Section 4.1.

5 EXPERIMENTAL ASSESSMENT

Our simulation model consists of a road network and a series of itineraries that the cars follow. Specifically,
the network we used for the experiments is the city of Shenzhen in China. The environment map was
converted into a CityMoS (Zehe et al. 2017) configuration starting from OpenStreetMap data, using the
tool by Meng et al. (2022). We have simulated 10 hours (an interval representative of a regular working
day) starting at 8:00 am and ending at 6:00 pm.

At simulation startup, the model is unloaded. The number of vehicles peaks at ∼10,600 at noon,
slowly drops to ∼6,500 at 2:00 pm, and then regrows to ∼11,400 at 4:00 pm, then goes towards zero
until the simulation ends. This oscillating behavior was explicitly configured to mimic a classical Gaussian
Mixture Model of traffic volume over the day (Hu and Hellendoorn 2013). The vehicles follow itineraries
generated based on origin-destination matrices between pairwise traffic analysis zones (Li et al. 2021). To
emulate a complex analytics scenario, we have used a total set of 4 different queries evaluated over the
entire simulation run. The queries we have used are reported in Table 1.

We have relied on a small cluster composed of 6 server machines, each one equipped with two Intel Xeon
E5-2680 v3 @2.50 GHz CPUs with 12 physical/24 logical cores and 256 GB RAM each, connected via 10
Gbps Ethernet. We have conducted experiments using a variable number of simulation and analytics nodes
using this cluster. We have also used a single node to host both the simulation and analytics components of
Figure 4, to study the behavior of our approach in a severely constrained setup. In this scenario, we used
the same number of simulation and data analytics cores in both setups to make the results comparable.



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

In-situ In-transit Static Autonomic
0

1000

2000

3000

Co
st

 [s
]

3532

2767

2040 1861

Simulation
Analytic

(a) 1-second resolution.

In-situ In-transit Static Autonomic
0

1000

2000

3000

Co
st

 [s
]

3498

2745

2021
1829

Simulation
Analytic

(b) 4-second resolution.

In-situ In-transit Static Autonomic
0

1000

2000

3000

Co
st

 [s
]

3488

2794

2064
1858

Simulation
Analytic

(c) 8-second resolution.

In-situ In-transit Static Autonomic
0

1000

2000

3000

Co
st

 [s
]

3496

2837

2099
1864

Simulation
Analytic

(d) 16-second resolution.

Figure 5: Single node: end-to-end completion time with the same amount of processed data.

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0.0

0.5

1.0

1.5

2.0

W
al

l-c
lo

ck
 ti

m
e 

[s
]

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0.0

0.5

1.0

1.5

2.0

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0.0

0.5

1.0

1.5

2.0

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

×104

0.00

0.25

0.50

0.75

1.00

×104

0.00

0.25

0.50

0.75

1.00

×104

0.00

0.25

0.50

0.75

1.00

A
ge

nt
 co

un
t

×104
Compute in-situ Compute in-transit Data transfer Deserialization Serialization Simulation Agent count

(a) In-situ processing (b) In-transit processing (c) Static assignment (d) Autonomic policy

Figure 6: Single node: workload composition across nodes, 8 seconds resolution.

All the simulation runs have been configured using the same random seed, and the provided results are
averaged over 5 different runs. We have also varied the query evaluation resolution, namely the amount
of simulated time after which all queries are evaluated on the buffered data.

We have compared four different configurations to illustrate the benefits of the proposed autonomic
approach. In the in-situ configuration, all analytics processing is executed on the simulation nodes on the
simulation critical path. The in-transit configuration performs no computation on the simulation nodes,
thus transferring all the data to the analytics nodes, in a round-robin fashion. The static assignment
configuration is the optimal reference configuration. It is based on running all the simulation and analytics
activities and determining post-mortem the best placement for the queries in Table 1, similarly to Zheng
et al. (2011). After identifying the optimal configuration, we rerun the entire experiment to measure
the end-to-end completion time. This approach allows evaluating, for every configuration, the best-suited
processing configuration, determined by hand. Finally, the autonomic configuration evaluates the proposed
autonomic orchestration approach.

5.1 Experimental Results

In Figure 5, we report the end-to-end completion times when the simulation and analytics components
of Figure 4 are deployed on the same machine. As can be seen, the autonomic approach outperforms all
configurations independently of the query evaluation resolution, providing a performance increment of up to
47%. The reasons for these results can be drawn from Figures 6 and 7, where we report the characterization
of the simulation/analytics processing workloads and the time the data spent in the analytics node’s queue
before being processed, respectively. Similarly to Figure 3, we superimposed the model load over time.
The plots show the values averaged every 48 seconds of simulated time, for visualization purposes.

As can be seen, in the case of in-situ processing, the simulation node spends a non-negligible amount
of time computing the queries (Figure 6a). As an effect, the simulation throughput is reduced as the
query evaluation happens on the critical path. An orthogonal scenario is observed when relying on pure
in-transit processing (Figures 6b and 7a). Here, we observe that while the simulation node spends a
non-minimal amount of time in serialization and data transfer activities, the analytics node’s waiting time



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0
100

101

102

103

W
al

l-c
lo

ck
 ti

m
e 

[s
]

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0
100

101

102

103

8:00 10:00 12:00 14:00 16:00 18:00
Simulation time

0
100

101

102

103

0.00

0.25

0.50

0.75

1.00

×104

0.00

0.25

0.50

0.75

1.00

×104

0.00

0.25

0.50

0.75

1.00

A
ge

nt
 co

un
t

×104
Time spent in queue Agent count

(a) In-transit processing (b) Static assignment (c) Autonomic policy

Figure 7: Single node: time the data spent waiting in the analytics node queue, 8 seconds resolution.

1:5 2:4 3:3 4:2 5:1
Analytic nodes : Simulation nodes

0

1000

2000

3000

W
al

l-c
lo

ck
 ti

m
e 

[s
]

1:5 2:4 3:3 4:2 5:1
Analytic nodes : Simulation nodes

0

1000

2000

3000

Autonomic In-situ In-transit Static

(a) Balanced workload (b) Imbalanced workload

Figure 8: Distributed setup with end-to-end time.

S A
In-situ

S A
In-transit

S A
Static

S A
Autonomic

0

200

400

600

800

1000

A
ve

ra
ge

 W
al

l-c
lo

ck
 ti

m
e 

[s
]

S A
In-situ

S A
In-transit

S A
Static

S A
Autonomic

0

200

400

600

800

1000
Computation Data transfer Deserialization Serialization Simulation

(a) Balanced workload (b) Imbalanced workload

Figure 9: Distributed setup with cost characterization.

grows unmanageable. Both phenomena are because the queries are evaluated over a large amount of data,
especially when the workload peaks. Here, data buffered for data analytics increases significantly, delaying
the end-to-end completion.

Interestingly, the static assignment configuration (Figures 6c and 7b) exhibits a comparable behavior.
Although seemingly counterintuitive, the reason is in the variable workload. When the workload is low
(e.g., at the beginning or end of the simulation), the time spent on serialization and data transfer activities
on the simulation node (Figure 6c) is relatively low. Thus, the analytics node can quickly process the
data received (Figure 7b). When the load increases, the processing time on the analytics node increases
dramatically, accumulating delay. This delay is such that even when the load decreases (e.g., in the middle
or at the end of the simulation), the analytics node relentlessly tries to catch up with the queued work,
deferring the completion time.

The autonomic approach correctly captures the overloading of the analysis process and the increased
workload on the critical path. Looking at the results in Figures 6d and 7c, we notice that the system
continuously switches between in-situ and in-transit processing phases. This way, query evaluation activities
are carried out simultaneously on both the simulation and analysis processes. The immediately observable
effect is that, at the data analysis node (Figure 7c), the average data processing latency is kept around the
tolerance threshold. At the same time, the proportion of time spent on simulation activities (Figure 6d) is
greater, indicating a reduction in the load on the critical path.

In Figure 8, 9, we show the behavior of the proposed approach in a distributed simulation setup.
Here, we have varied the ratio of nodes used for simulation and analytics in a cluster of 6 machines.
As can be seen, when the number of simulation nodes decreases, processing the queries in situ increases
the completion time. This is expected because the total computing power available to process simulation
and analytics activities is decreased. On the other hand, the in-transit configuration observes a reduced
end-to-end time when increasing the number of nodes up to 3 analytics nodes and 3 simulation nodes.



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

Then, the end-to-end time rises again. This trend is explained by considering that when the number of
simulation nodes is high (in the 1:5 ratio), the simulation speed is high because the distributed execution
of the model can advance the simulation state very quickly. In this case, the analytics node is flooded with
many queries, which prolongs the completion time—we observe the idle time depicted in Figure 1. The
best ratio is found with an equal number of simulation and analytics nodes.

The autonomic orchestration approach can capture the different capabilities of the deployments. When
the number of simulation nodes is reduced, it prefers the in-transit computation, allowing the simulation
to keep up with the generation of new data. Conversely, when the number of analytics nodes is low, it
effectively exploits in-situ computation to relieve the analytics node from the higher burden. Interestingly,
the results for the distributed setup confirm our observations in Figure 5: the autonomic model either
outperforms the optimal static configuration, thanks to the capability to continuously switch between in-
situ and in-transit computation, depending on the current workload, or matches the static configuration
performance. Again, this result is substantial because the autonomic model needs no apriori information
to deliver a close-to-optimal result.

Moreover, in the configuration with an equal number of simulation and analytics nodes, namely when the
in-situ and in-transit configurations show a comparable performance, we note that autonomic orchestration
provides a large improvement over the static configuration. To better study the reasons behind this behavior,
we provide in Figure 9a the characterization of the costs for this configuration. As can be seen, the autonomic
approach correctly captures that the simulation node can also be exploited for analytics processing in certain
phases of the execution. In that case, it switches to in-situ computation. This switch is done during the
lifetime of the simulation for the different queries. Conversely, the static approach executes each query in
situ or transit. The autonomic orchestrator is much more versatile and can respond promptly to execution
dynamics.

The distributed setup we discussed distributes the road map evenly across the different simulation
nodes. Given the length of the simulated timeframe and the agents’ dynamics, the load on the various
simulation nodes can be considered balanced. We have also studied the behavior of the autonomic approach
in case of an imbalanced simulation—the corresponding results are provided in Figures 8b and 9b. In
this configuration, the imbalance is generated by the different simulation nodes taking care of an uneven
number of road segments (in the 5 simulation nodes case, each takes care of 10%, 15%, 20%, 25%, 30%
respectively). As we can observe, the workload imbalance increases the time required to complete the
simulation (except for the single simulation node case, where the single node keeps the same load). This
is related to the increased idle time of the less-loaded simulation nodes every time that the distributed
simulation has to synchronize. Despite this increment, the relative trends of the different configurations do
not significantly change.

All these results are an indication of the versatility and resilience of the reference architecture proposed
in this work since it can orchestrate data analysis activities in different deployments, even when non-minimal
transmission delays are introduced–we recall that data analysis activities involve up to 300 GB of data
potentially transferred between nodes.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented an autonomic orchestrator for the execution of data analysis jobs and a
reference distributed architecture. Taken together, these two components make it possible to reduce the
end-to-end completion time for evaluating multiple queries on data generated by simulations.

In future work, we plan to make the autonomic policy more resilient to sudden fluctuations in workload
and to introduce additional dimensions to assist in the choice of the best placement of query computation.
In particular, we want to investigate query optimization techniques that also consider the data of interest
from the simulation state to avoid repeated access to the same parts of the state, e.g., to reduce serialization/
deserialization time.



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

REFERENCES
Abbasi, H., M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng. 2009. “DataStager: Scalable Data Staging Services

for Petascale Applications”. In Proceedings of the 18th ACM International Symposium on High Performance Distributed
Computing, 39–48. New York, NY, USA: ACM.

Bennett, J. C., H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen. 2012. “Combining in-situ and in-transit processing to enable extreme-scale
scientific analysis”. In Proceedings of the 2012 International Conference for High Performance Computing, Networking,
Storage and Analysis, 1–9. Piscataway, NJ, USA: IEEE.

Chandy, K. M., and J. Misra. 1979. “Distributed simulation: A case study in design and verification of distributed programs”.
IEEE Transactions on Software Engineering SE-5(5):440–452.

Chen, C., M. Lang, L. Ionkov, and Y. Chen. 2016. “Active Burst-Buffer: In-Transit Processing Integrated into Hierarchical
Storage”. In Proceedings of the 2016 International Conference on Networking, Architecture and Storage, 1–10. Piscataway,
NJ, USA: IEEE.

Childs, H., J. C. Bennett, and C. Garth. (Eds.) 2022. In Situ Visualization for Computational Science. Mathematics and
Visualization. Cham, Switzerland: Springer Nature.

Docan, C., M. Parashar, J. Cummings, and S. Klasky. 2011. “Moving the code to the data - dynamic code deployment
using ActiveSpaces”. In Proceedings of the 2011 International Parallel & Distributed Processing Symposium, 758–769.
Piscataway, NJ, USA: IEEE.

Dongarra, J., S. Gottlieb, and W. T. C. Kramer. 2019. “Race to Exascale”. Computing in science & engineering 21(1):4–5.
Ellis, B. 2014, June. Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data. Hoboken, NJ, USA: Wiley.
Gagliardi, F., M. Moreto, M. Olivieri, and M. Valero. 2019. “The international race towards Exascale in Europe”. CCF

Transactions on High Performance Computing 1(1):3–13.
Godoy, W. F., N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck,

A. Huebl, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire,
E. Suchyta, K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky. 2020. “ADIOS 2: The
Adaptable Input Output System. A framework for high-performance data management”. SoftwareX 12:100561.

Hu, Y., and J. Hellendoorn. 2013. “Daily traffic volume modeling based on travel behaviors”. In Proceedings of the 10th
International Conference on Networking, Sensing and Control, 639–644. Piscataway, NJ, USA: IEEE.

Isaacs, K. E., P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, and B. Hamann. 2014. “Combing the Communication
Hairball: Visualizing Parallel Execution Traces using Logical Time”. IEEE transactions on visualization and computer
graphics 20(12):2349–2358.

Jefferson, D. R. 1985. “Virtual Time”. ACM Transactions on Programming Languages and Systems 7(3):404–425.
Kephart, J. O., and D. M. Chess. 2003. “The Vision of Autonomic Computing”. Computer 36(1):41–50.
Kesavan, S. P., T. Fujiwara, J. K. Li, C. Ross, M. Mubarak, C. D. Carothers, R. B. Ross, and K.-L. Ma. 2020. “A visual

analytics framework for reviewing streaming performance data”. In Proceedings of the 2020 IEEE Pacific Visualization
Symposium, 206–215. Piscataway, NJ, USA: IEEE.

Kothe, D., S. Lee, and I. Qualters. 2019. “Exascale Computing in the United States”. Computing in science & engineering 21(1).
Lang, S., P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock. 2009, November. “I/O performance challenges at leadership

scale”. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Number
Article 40 in SC ’09, 1–12. New York, NY, USA: Association for Computing Machinery.

Larsen, M., J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and C. Harrison. 2017. “The ALPINE In Situ Infrastructure:
Ascending from the Ashes of Strawman”. In Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis
and Visualization, 42–46. New York, NY, USA: Association for Computing Machinery.

Li, M., S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C. Engelmann, and G. Shipman. 2010. “Functional Partitioning
to Optimize End-to-End Performance on Many-core Architectures”. In Proceedings of the 2010 International Conference
for High Performance Computing, Networking, Storage and Analysis, 1–12. Piscataway, NJ, USA: IEEE.

Li, Z., G. Xiong, Y. Zhang, M. Zheng, X. Dong, and Y. Lv. 2021. “Urban Trip Generation Forecasting Based on Gradient
Boosting Algorithm”. In Proceedings of the 1st International Conference on Digital Twins and Parallel Intelligence, 50–53.
Piscataway, NJ, USA: IEEE.

Liu, J., J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. 2003. “High performance RDMA-based MPI implementation over
InfiniBand”. In Proceedings of the 17th annual international conference on Supercomputing, 295–304. New York, NY,
USA: Association for Computing Machinery.

Liu, N., J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn. 2012. “On the role of burst buffers
in leadership-class storage systems”. In Proceedings of the 28th Symposium on Mass Storage Systems and Technologies
(MSST), 1–11. Piscataway, NJ, USA: IEEE.



Du, Pimpini, Piccione, Meng, Siguenza-Torres, Bortoli, Knoll, and Pellegrini

Meng, Z., X. Du, P. Sottovia, D. Foroni, C. Axenie, A. Wieder, D. Eckhoff, S. Bortoli, A. Knoll, and C. Sommer. 2022.
“Topology-Preserving Simplification of OpenStreetMap Network Data for Large-scale Simulation in SUMO”. In Proceedings
of the 2022 SUMO User Conference, Volume 3, 181–197. Hannover, Germany: TIB Open Publishing.

Muelder, C., B. Zhu, W. Chen, H. Zhang, and K.-L. Ma. 2016. “Visual Analysis of Cloud Computing Performance Using
Behavioral Lines”. IEEE transactions on visualization and computer graphics 22(6):1694–1704.

Principe, M., A. Piccione, A. Pellegrini, and F. Quaglia. 2020. “Approximated Rollbacks”. In Proceedings of the 2020 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, 23–33. New York, NY, USA: ACM.

Pu, Q., G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and I. Stoica. 2015. “Low Latency Geo-distributed
Data Analytics”. SIGCOMM Comput. Commun. Rev. 45(4):421–434.

Sanderson, A., A. Humphrey, J. Schmidt, and R. Sisneros. 2018. “Coupling the Uintah Framework and the VisIt Toolkit for
Parallel In Situ Data Analysis and Visualization and Computational Steering”. In High Performance Computing, edited by
R. Yokota, M. Weiland, J. Shalf, and S. Alam, Volume 11203 of LNCS, 201–214. Cham, Switzerland: Springer.

Vishwanath, V., M. Hereld, and M. E. Papka. 2011. “Toward simulation-time data analysis and I/O acceleration on leadership-class
systems”. In Proceedings of the Symposium on Large Data Analysis and Visualization, 9–14. Piscataway, NJ. USA: IEEE.

Zehe, D., S. Nair, A. Knoll, and D. Eckhoff. 2017. “Towards citymos: a coupled city-scale mobility simulation framework”. In
Proceedings of the 5th GI/ITG KuVS Fachgespräch Inter-Vehicle Communication, edited by A. Djanatliev, K.-S. Hielscher,
and R. German, Volume CS-2017-03 of Technical Reports, 26–28. Nuremberg, Germany: Friedrich-Alexander-Universität
Erlangen-Nürnberg.

Zhang, F., C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and H. Abbasi. 2012. “Enabling In-situ Execution of Coupled
Scientific Workflow on Multi-core Platform”. In Proceedings of the 26th International Parallel and Distributed Processing
Symposium, 1352–1363. Piscataway, NJ, USA: IEEE.

Zheng, F., H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf, S. Klasky, and N. Podhorszki. 2011. “In-situ I/O processing: a
case for location flexibility”. In Proceedings of the Workshop on Parallel Data Storage, 37–42. New York, USA: ACM.

Zheng, F., H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf. 2010.
“PreDatA – preparatory data analytics on peta-scale machines”. In Proceedings of the 2010 International Symposium on
Parallel & Distributed Processing, 1–12. Piscataway, NJ, USA: IEEE.

Zou, H., Y. Yu, W. Tang, and H.-W. M. Chen. 2014. “FlexAnalytics: A Flexible Data Analytics Framework for Big Data
Applications with I/O Performance Improvement”. Big Data Research 1:4–13.

AUTHOR BIOGRAPHIES
XIAORUI DU is a Ph.D. student at the Technical University of Munich (TUM) and Huawei Munich Research Center. His
research interest is efficient data analytics for large-scale simulations. His email address is xiaorui.du@huawei.com.

ADRIANO PIMPINI is a Ph.D. student at Sapienza University of Rome. His research interests are high-performance computing
and large-scale simulations, especially of Spiking Neural Networks. His email address is pimpini@diag.uniroma1.it.

ANDREA PICCIONE is a Senior Research Engineer at Huawei Munich Research Center. His research interests are high-
performance computing and large-scale agent-based simulations. His email address is andrea.piccione@huawei.com.

ZHUOXIAO MENG is a Ph.D. student at the Technical University of Munich and Huawei Munich Research Center. His research
interests are controllability and interoperability of large-scale simulations. His email address is zhuoxiao.meng@huawei.com.

ANIBAL SIGUENZA-TORRES is a Ph.D. student at the Technical University of Munich and Huawei Munich Research Cen-
ter. His work is centered on parallel large-scale microscopic traffic simulations. His email address is anibal.siguenza1@gmail.com.

STEFANO BORTOLI is a Principal Research Engineer and Team Manager at Huawei Munich Research Center. He received
a PhD in Computer Science at the University of Trento (Italy) in 2013. His research interests are traffic optimization, traffic
simulations, and in general high-performance simulations. His email address is stefano.bortoli@huawei.com.

ALOIS KNOLL is a professor of Computer Science at the Technical University of Munich (TUM). He received his diploma
(M.Sc.) degree in Electrical/Communications Engineering from the University of Stuttgart and his Ph.D. degree in Computer
Science from the Technical University of Berlin. His email address is knoll@mytum.de.

ALESSANDRO PELLEGRINI is an assistant professor at the University of Rome Tor Vergata in the School of Engineering.
He received his Ph.D. in Computer Engineering from Sapienza, University of Rome, in 2014. His research interests are
high-performance computing and large-scale simulations. His email address is a.pellegrini@ing.uniroma2.it.

mailto://xiaorui.du@huawei.com
mailto://pimpini@diag.uniroma1.it
mailto://andrea.piccione@huawei.com
mailto://zhuoxiao.meng@huawei.com
mailto://anibal.siguenza1@gmail.com
mailto://stefano.bortoli@huawei.com
mailto://knoll@mytum.de
mailto://a.pellegrini@ing.uniroma2.it

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	RELATED WORK
	AUTONOMIC DATA ANALYTICS ORCHESTRATION
	The Autonomic Orchestration Algorithm
	Reference Architecture

	EXPERIMENTAL ASSESSMENT
	Experimental Results

	CONCLUSION AND FUTURE WORK

