
A Framework for High Performance Simulation of
Transactional Data Grid Platforms∗

Pierangelo Di Sanzo, Francesco Antonacci, Bruno Ciciani, Roberto Palmieri,
Alessandro Pellegrini, Sebastiano Peluso, Francesco Quaglia, Diego Rughetti, Roberto Vitali

HPDCS Research Group, DIAG - Sapienza, Università di Roma

ABSTRACT
One reason for the success of in-memory (transactional) data
grids lies on their ability to fit elasticity requirements im-
posed by the cloud oriented pay-as-you-go cost model. In
fact, by relying on in-memory data maintenance, these plat-
forms can be dynamically resized by simply setting up (or
shutting down) instances of so called data cache servers.
However, defining the well suited amount of cache servers
to be deployed, and the degree of in-memory replication of
slices of data, in order to optimize reliability/availability and
performance tradeoffs, is far from being a trivial task. To
cope with this issue, in this article we present a framework
for high performance simulation of in-memory data grid sys-
tems, which can be employed as a support for timely what-
if analysis and exploration of the effects of reconfiguration
strategies. The framework consists of a discrete event simu-
lation library modeling differentiated data grid components
in a modular fashion, which allows easy (re)-modeling of dif-
ferent data grid architectures (e.g. characterized by different
concurrency control schemes). Also, the library has been de-
signed to be layered on top of the open source ROOT-Sim
parallel simulation engine, natively offering facilities for op-
timized resource usage in the context of model execution on
top of multi-core and cluster based architectures. Finally,
instances of data-grid models supported by the framework
have been validated against real measurements obtained by
deploying the Infinispan data grid onto Amazon EC2 virtual
clusters, and running the well known TPC-C benchmark. By
the experiments we demonstrate closeness of simulation out-
puts and real measurements, while jointly showing extreme
scalability of the framework, in terms of speedup and ability
to manage extremely large data grid models.

∗This work has been partially supported by the Cloud-TM
project (co-financed by the European Commission through
the contract no. 57784). The package has been released
as part of this project deliverables, and is accessible at
the URL https://github.com/cloudtm/cloudtm-autonomic-
manager/tree/master/src/dags.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2013 March 5–8, Cannes, France.
Copyright 2013 ACM 978-1-936968-00-8 ...$10.00.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distribu-
ted Systems—Distributed Applications; I.6.8 [Simulation
And Modeling]: Types of Simulation—Discrete Event,
Parallel

General Terms
Algorithms, Performance, Measurement

Keywords
Transactional data platforms, Parallel discrete event simu-
lation

1. INTRODUCTION
With the advent of cloud computing, we have experienced

the proliferation of a new generation of in-memory, transac-
tional data platforms, often referred to as NoSQL data grids,
among which we can find products such as Red Hat’s Infin-
ispan [12], VMware vFabric GemFire [19], Oracle Coher-
ence [15] and Apache Cassandra [14]. These platforms well
meet the elasticity requirements imposed by the pay-as-you-
go cost model since they (a) rely on a simplified key-value
data model (as opposed to the traditional relational model),
(b) employ efficient in-memory replication mechanisms to
achieve data durability (as opposed to disk-based logging)
and (c) natively offer facilities for dynamically resizing the
amount of hosts within the platform.

However, one aspect that still represents a core issue to
cope with is related to how to (dynamically) dimension and
configure the system in order to, e.g., match a predetermined
Service Level Agreement (SLA), while also minimizing oper-
ating costs related to, e.g., renting the underlying virtualized
infrastructure. In fact, forecasting the scalability trends of
real-life, complex applications deployed on distributed in-
memory transactional platforms is an extremely challenging
task. Specifically, as also shown in [8], when the number
of nodes in the system grows and/or the workload inten-
sity/profile changes, the performance of these platforms may
exhibit strong non-linear behaviors, which are imputable to
the simultaneous, and often inter-dependent, effects of con-
tention affecting both physical (CPU, memory, network) and
logical (conflicting data accesses by concurrent transactions)
resources.

Recent approaches have tackled the issue of dynamically
reconfiguring these platforms via the reliance on analytical
modeling, machine-learning techniques or a combination of
the two approaches (see, e.g., [8]). In this article we provide

an orthogonal solution which is based on high performance
simulation techniques. Specifically, we provide a framework
for simulating data grid platforms on top of high perfor-
mance parallel discrete event simulation (PDES) engines,
particularly the open source ROOT-Sim engine [11]. The
framework can be exploited for timely what-if analysis in
order to determine what would be the effect of reconfiguring
various parameters, like:

• number of cache servers within the platform;

• degree of replication of the data-objects;

• placement of data-copies across the platform.

Hence, it can be exploited in order to timely determine
well suited configurations (e.g. minimizing the cost for the
underlying virtualized infrastructure) vs variations of the
volume of client requests, the actual data conflict and the
locality of data access. It can also be used for long term
planning within SLAs in order to determine whether to ac-
cept some scale-up in the maximum sustainable volume of
requests, and at what cost for the customer (as a reflection
of the planned costs for the underlying infrastructure).
The framework has been developed as a library imple-

menting data grid models developed according to the tra-
ditional event-driven approach, where the evolution of each
individual entity to be simulated within the model is ex-
pressed by a specific event-handler. These event handlers
have been implemented in order to make them compliant
with the programming model offered by the ROOT-Sim par-
allel/distributed simulation environment. Hence the library
can be natively hosted on top of a run-time environment
allowing high performance model execution via transpar-
ent parallelization/synchronization of the running code on
multi-core machines and clusters.
On the other hand, the library has been structured in or-

der to provide a means for easy development of data grid
models offering specific facilities and supporting proper al-
gorithms (e.g. in terms of management of the consistency of
replicated data). In particular, distributed data grids relying
on two-phase-commit (2PC) as the native scheme for cache
server coordination (as typical of most of the mainstream
implementations [12]), have an execution pattern already
captured by the the skeleton model offered by the library.
Hence, differentiated data management protocols could be
easily implemented via the framework. Models natively of-
fered within the framework include data grids ensuring re-
peatable read semantics, which are based on lazy locking.
Primary data ownership vs multi-master schemes are also
natively offered.
Fidelity of the provided skeleton and models has been

demonstrated by comparing simulation outputs with real
measurements achieved by running the TPC-C benchmark
[18] on top of the Infinispan data grid system by JBoss/Red-
Hat, namely the mainstream data layer for JBoss applica-
tions, on virtualized infrastructures hosted by Amazon EC2.
On the other hand, from the experimental study we also
show how the framework can provide speedup and fast de-
livery of simulation outputs for largely scaled up models.
The remainder of this paper is structured as follows. In

Section 2 we discuss related work. The framework archi-
tecture is presented in Section 3. Experimental data are
reported in Section 4.

2. RELATED WORK
The issue of optimizing the configuration of data grids

has been addressed in literature according to differentiated
methodologies. The work in [8] provides an approach where
analytical modeling and machine learning are jointly ex-
ploited in the context of performance prediction of data
grid systems hosted on top of cloud based infrastructures.
The analytical approach is mainly focused on capturing dy-
namics related to the specific concurrency control algorithm
adopted by the data grid system, while machine learning is
targeted at capturing contention effects on infrastructure-
level resources. Differently from our approach, this work
copes with a specific data grid configuration (hence a specific
data management algorithm) to which the analytical model
is targeted. Instead, we offer a framework allowing the mod-
eling of differentiated data management schemes, which does
not even impose specific assumptions on the workload pro-
file (in fact real execution traces can be used to drive the
simulated data access). Also, the employment of machine
learning, which requires the actuation of training, does not
always allow reliable extrapolation of performance values re-
lated to configurations that significantly diverge from those
that have been observed in the training phase. This prob-
lem is avoided via the approach we propose since we purely
rely on simulation. The latter consideration also applies to
the proposal in [6], which provides data grid reconfiguration
schemes based on pure machine learning.

One approach close to our proposal has been presented
in [17], where a simulation layer is provided entailing capa-
bilities of simulating data grid systems. Differently from the
present proposal, the architecture of the simulation system
is based on a data grid simulation layer (as opposed to our
lower layer, which is a general purpose parallel simulation
engine). Further, the whole system architecture is based on
Java technology, while we target C technology and paral-
lel processing, hence endemically increasing the relevance of
(and focus on) performance aspects of the simulation envi-
ronment, which is especially important in the case of real-
time re-configuration strategies based on what-if analysis.

Simulation of data grid systems has also been addressed
in [13]. In this proposal, the modeling scheme of the data
grid is based on Petri nets, which are then solved via simu-
lation. Instead, we proposed a functional model not explic-
itly relying on modeling formalisms, except for the case of
some specific component (such as the CPU). These are any-
way modeled via queuing approaches, rather than Petri nets.
Further, one relevant difference between the work in [13] and
our proposal lies on that our simulation models are able to
simulate complex transactional interactions entailing multi-
ple read/write (namely get/put) operations within a same
transaction. Instead, the work in [13] only models single
get/put interactions to be issued by the clients. As for this
aspect, our approach can be considered as more general.

Finally, a less closely related work to our proposal can be
found in [5], where simulation supports for backup data stor-
age systems in peer-to-peer networks are presented. Com-
pared to our present proposal, this work is focused on lower
level data management aspects, such as the explicit model-
ing of actual stable storage devices. Instead, our focus is on
distributed dynamics at the level of in-memory data storing
schemes, which are independent of stable storage technolo-
gies.

3. THE SIMULATION FRAMEWORK
As hinted, our framework has been designed in order to

be layered on top of the ROOT-Sim parallel/distributed sim-
ulation engine, which offers supports for optimistic synchro-
nization of the simulation objects included within the model.
Hence, some of the framework design choices have been
taken in order to provide a final structure that is aimed at
not hampering the exploitation of parallelism while model
execution is in progress. One major choice along this di-
rection has been targeted at reducing to a minimum the
presence of simulation objects that may figure out as syn-
chronization bottlenecks, which, in the context of optimistic
synchronization, maps onto avoiding the presence of simu-
lation objects whose rollbacks can lead to spreading effects
where cascading rollback is induced on many other objects
within the model. Particularly, network delays for messages
sent across the different components within the simulation
model are not simulated by explicitly including a network
simulation-object. Instead, each simulation object within
the model has the ability to compute network delays as-
sociated with simulating message-send operations towards
other simulation objects, and to schedule the corresponding
message-arrival events onto the destination object.
Overall, our simulation models of data grid systems are

mapped onto a system representation only entailing two
types of simulation objects: (A) client objects and (B) cache
server objects. Having multiple client objects running con-
currently on top of ROOT-Sim leads to great exploitation of
parallelism while generating the simulated workload of re-
quests towards the data grid layer. On the other hand, hav-
ing multiple cache server objects running concurrently leads
to great exploitation of parallelism while simulating actual
data access operations, especially when the simulated con-
figuration entails partial data replication schemes (as typical
of when high scalability needs to be provided within the data
grid [16]).
As for the latter point, given that our base simulated pro-

tocol for cache server coordination is 2PC, upon any 2PC-
based coordination action, only those cache servers main-
taining copies of the data to be locked need to mutually
exchange simulation events. If the degree of replication is
limited, as typical of partial replication schemes, the set of
servers that coordinate with each other while handling client
requests gets reduced, hence leading to simulate the evolu-
tion of groups of cache servers along different critical paths
in different phases of the simulation run. Again, this likely
favors parallelism in the model execution.
In the next subsections we focus on the structure and

event patterns of cache server and client simulation objects.
Particularly, we focus on their associated skeleton and on
the offered supports for easy modifiability of their simu-
lated logic so to allow easy re-implementation of differen-
tiated data grid simulation models, particularly on the side
of differentiated concurrency control schemes and supports
for distributed transaction atomicity.

3.1 The Cache Server Simulation-Object
A cache-sever simulation object within our framework can

be schematized as shown in Figure 1. By the scheme we can
identify four main software components:

• the transaction manager (TM);

• the distribution manager (DM);

Figure 1: Client and Cache-Server Simulation Ob-
jects.

• the concurrency control (CC); and

• the CPU.

Any simulation event destined to the cache server is even-
tually passed in input to TM, which acts therefore as a front-
end for event processing. Once scheduled whichever event,
TM determines the amount of CPU time required for ac-
tual processing of the requested activity, which depends on
the type of the scheduled event, and on the current CPU
load. Hence, the CPU load is updated on the basis of the
newly scheduled activity. Then the completion time for the
activity is determined, which depends on the current CPU
load, and a CPU-complete event is scheduled, at the corre-
sponding simulation time. To determine the CPU delay, the
CPU resource has been modeled as a G/M/K queue, which
allows capturing scenarios entailing multiple CPU-cores. Al-
though more sophisticated models could be employed (see,
e.g., [9]), we relied on G/M/K queues since, in our target
simulation scenarios, the core dynamics are associated with
contention on logical resources, namely data-objects, rather
than physical resources, and on distributed (locking) strate-
gies for the management of atomicity of the updates of dis-
tributed/replicated data copies. Hence, communication de-
lays play a major role in the determination of the achiev-
able performance, as compared to CPU delays for process-
ing local activities. As a consequence, the G/M/K queue is
expected to reveal adequate for the objectives of the frame-
work. For the same reason depicted above, effects of virtual
memory on the latency of operations provided within the
data grid simulation model are not explicitly considered.

When a local processing activity gets completed, TM takes
again control (via the aforementioned CPU-complete event)
and performs the actual updates related to the activity.
These updates are different depending on the exact type
of event that triggered CPU work.

As for simulation events scheduled by client simulation
objects towards the cache servers, the corresponding event-
types within our skeleton are listed below:

• begin, used to notify to TM that a new transactional
interaction has been issued by some client, which must
be processed by the cache server;

• get, used to notify that a read operation on some data

object has been issued by the client within a transac-
tion;

• put, used to notify that a write operation on some data
object has been issued by the client within a transac-
tion;

• commit, used to indicate that the client ended issuing
operations within a transaction, which can therefore
attempt to commit.

The handling of the begin event at the side of TM in our
framework automatically triggers the internal function se-

tupTransaction, which simply takes as input the current
simulation time and pointers to two records of type TxInfo

and TxStatistics, which are both automatically allocated
by the framework and linked to the corresponding records
for already active transactions. The actual internal structure
of both the TxInfo and TxStatistics records is simulation-
modeler defined, in fact the framework provides a proper
header file, named transaction.h, where the modeler can
specify the structure. The only constraint is that the top
standing field of TxInfo, must be of type TxId. It keeps
the transaction unique identifier, automatically generated
by the cache server just to facilitate the actual management
within model execution.
This is one of the core modules on top of which flexibil-

ity of actual model implementation within the framework
lies. In fact, with this organization, the modeler can keep
track of management information (i.e. TxInfo) and statis-
tics information (i.e. TxStatistics) associated with active
transactions within whichever modeler-defined data struc-
ture, which gets automatically allocated and managed by
the framework into the heap. The reason for allowing the
modeler to exploit two different data types lies on that the
content of TxInfo is made valid according to a cross cache-
server scheme. In fact, it is automatically transferred to
remote cache servers when cross scheduling of events is ac-
tuated, as we shall discuss. This is relevant in any sim-
ulated scenario where some transaction set-up information
needs to be made available to remote cache servers for, e.g.,
distributed contention management purposes. On the other
hand, the content of TxStatistics is not transferred across
different simulation objects, being instead locally handled by
the cache server acting as the coordinator of the transaction.
In particular, upon finalization of a transaction, TM auto-
matically invokes the module finalizeTransaction, which
receives in input the current simulation time, and again
pointers to both TxInfo and TxStatistics records so to
allow to update them (particularly the statistics). The re-
lease of these buffers within the framework is again han-
dled automatically. However, before releasing any of them,
a special module statisticsLog is called, passing in input
pointers to both of them, hence the modeler can finally log,
e.g. onto the file system, any provided statistical data. We
note that the identification of output operations related to
the committed portion of the simulation is done within the
framework by exploiting proper ROOT-Sim facilities. Hence,
only committed output calls area actually reflected within
output files.
As for get and put simulation events, they cause the TM

module to simply query (via synchronous procedure invo-
cation) the DM module. This is done in order to get in-
formation about what cache servers figure as the owners of

the data object to be accessed. In our architecture, the
DM module provides this information back in the form of a
pointer to a list of cache server identifiers (hence simulation
object identifiers), where each record also keeps additional
information specifying whether a given cache sever is (or
is not) the primary owner of a copy of the data object to
be accessed. Once TM gets this information, it then de-
termines the pattern of additional simulation events to be
scheduled. More in detail, primary ownership has relevance
for put (namely write) operations on data objects. Instead,
get operations are not affected by the presence of a primary
owner, if any. Let us discuss this aspect in detail.

In case of get simulated events, the cache sever deter-
mines whether it is the owner of a copy of the data object.
In the positive case, the read operation on the data object
will simply result in an invocation of the CC module on this
same cache server instance. Otherwise, remote get simula-
tion events are scheduled (at later time, which models the
corresponding request transmission delay) for all the cache
servers figuring out as owners of a copy of the data object.
Upon their execution at the destination cache severs, which
will still entail passing through the simulated CPU process-
ing stage, these events will trigger CC invocations on those
cache server simulation objects.

One important aspect associated with the above scheme
is that the get operation may be blocked at the level of
CC, depending on the actual policy for controlling concur-
rency. On the other hand, even in case of CC simulated
algorithms implementing non-blocking read access to data
(as is the case for most data grid products guaranteeing
weak data consistency, such as read committed or repeat-
able read semantics [12], as well as for some optimized data
grid architectures providing more strict consistency levels,
like update-serializability [16]), the read operation may any-
way be blocked in case no local copy exists and needs to be
fetched by some remote cache sever. This is automatically
handled by our framework since the TM module records in-
formation on any pending simulated read operation within
a proper data structure. When setting up the record for
a given operation, information on the remotely contacted
cache servers, if any, is also installed. That record will be
removed only after processing the corresponding reply sim-
ulation events from all those cache servers, which is done for
allowing an optimized execution flow for those reply events.
On the other hand, the operation is unlocked (and a reply
event is scheduled towards the corresponding client) upon
the first copy of the data becomes available from whichever
cache server, hence after processing the first simulation event
associated with a read-reply. Note that this architectural
organization automatically covers the case where the trans-
action operation is blocked locally, due to the current state
of CC. In such a case, the contacted-server list will be filled
with the identifier of the local cache server, and a read-reply
event from this same server (which will be scheduled by the
local CC module, as we shall discuss) will be used to un-
lock the request and schedule the reply towards the client
simulation object.

In case of put operations (namely data object updates) the
corresponding simulation events only trigger the update of
some meta-data locally hosted by the cache server, which are
embedded into records treated at the same manner as the
above mentioned modeler definable TxInfo record. These
data include the operation identifier, and the key associated

with the data object to be updated. This behavior simulates
a simple local update of the transaction write set, which is
again reflected into a cross cache sever valid record (in case
cross server events for that transactions are scheduled) which
we name TxWriteSet. On the other hand, these meta-data
are queried upon simulating a get operation to determine
whether the data object to be read already belongs to the
transaction write set (hence whether the get operation can
be served immediately via information within the write set).
In such a case, the simulation-event pattern for handling the
get is different from the general one depicted above since it
only entails simulating local CPU usage required for provid-
ing the value extracted from the transaction write set to the
client.
More complex treatments are actuated when handling com-

mit simulation events incoming from the clients. In particu-
lar, differentiated simulation event patterns are put in place
by TM depending on whether the simulated scheme entails
a primary owner for each data object or not. For primary
ownership scenarios, the prepare will result in scheduling re-
mote prepare events towards all the primary cache servers
that keep copies of the data to be updated (each event car-
ries the keys associated with the data objects to be updated,
which are again retrieved via the TxWriteSet data structure
maintained by the cache server acting as transaction coor-
dinator). TM can determine this set of cache servers by
exploiting the keys associated with the written data objects
(which are kept within the transaction write set). If one
of these cache servers corresponds to the server currently
processing the prepare request, then, after passing through
the CPU processing stage, the local CC module is immedi-
ately invoked. At this point we are in a similar situation
as the one depicted above for the case of read access to
remote data. In particular, for the preparing transaction,
the framework logs the identities of the contacted servers,
and then waits for the occurrence of prepare reply simulation
events scheduled by any of these servers. For homogeneity,
even in case one of the contacted CC module is the local
one, the reply from this module occurs via the scheduling of
such a prepare_reply event, thus giving rise to the situation
where the CC module exhibits the same simulated behavior
(in terms of notification of its decisions) independently of
whether the prepare phase for the transaction needs to run
local tasks on the same cache server, or remote tasks. Hence,
the CC module operates seamless of any simulated data dis-
tribution/replication scheme. The above simulation-event
pattern is only slightly varied in case of non-primary owner-
ship of data objects since the framework will schedule these
prepare events for all the servers keeping copies of the data
to be updated. This again allows the CC module to operate
transparently to the ownership scheme. On the other hand,
for both the schemes, in case the prepare reply events are pos-
itive from all the contacted servers, final commit events are
scheduled for all of them, which will ultimately result in in-
vocations of the CCmodule. On the other hand, abort events
are scheduled in case of negative prepare outcome. Further,
for the case of primary ownership, the commit events are
propagated to the non-primary owners, in order to let them
reflect data update operations.
Let us now come to details related to the CC simula-

tion module, which represents one core component for our
framework architecture. By the above description, this mod-
ule gets invoked upon the occurrence of get or remote get

events, remote prepare events, and commit events. However,
all the above events are actually intercepted and initially
processed by the TM module, which, as said, is the front
end simulation-handler within the cache server simulation
object. Hence, ultimately, the CC module does even not
know whether a requested action is associated with some
local or remotely executed transaction. It only acquires as
input parameters:

• a pointer to the TxInfo record (recall that, in the sim-
ulation flow, the field TxId within this record has been
automatically setup by TM upon processing the begin
event, while additional transaction information can be
defined by the modeler by setting it up via the setup-
Transaction module);

• a pointer to TxStatistics (or null if the cache server
is not the transaction coordinator);

• the type of the operation to be actuated (read, prepare
or commit);

• the key of the data object to be involved in the oper-
ation (this is for read operations);

• the TxWriteSet to be used for CC purposes (this is for
the prepare case).

On the other hand, CC can reply to invocations by raising
to TM the generation of one or more of the below listed
events:

• TX_WAIT, indicating that the currently requested oper-
ation leads to temporary block the transaction execu-
tion;

• READ_DONE, indicating that the data object can be re-
turned to the reading transaction;

• PREPARE_DONE, indicating that the transaction is suc-
cessfully prepared;

• PREPARE_FAIL, indicating that the transaction prepare
stage has not been correctly completed;

• COMMIT_DONE, indicating that the transaction commit
request has been processed.

Each of the above events is not directly routed towards
the destination simulation object (hence these events are
not proper simulation events, but only event generation in-
dications), right because CC is not aware of whether they
must represent replies for the local cache server or remote
cache servers, or even the client. Hence, within the frame-
work they are intercepted by a proper layer, which buffers
these CC triggered event-generation requests so to make
them available for actual scheduling (towards the correct
destinations), which is actuated by the TM module once
it takes control back upon the return of CC. As such, the
events triggered by CC can be re-mapped onto actual sim-
ulation events to be exchanged across different simulation
objects. As an example, PREPARE_DONE and PREPARE_FAIL

events are re-mapped and actually scheduled as the afore-
mentioned prepare_reply events, with proper payload (in-
dicating positive or negative prepare outcomes). Further,
the CC module can raise the request for issuing TIMEOUT

events, which can be useful in scenarios where CC actions
are also triggered on the basis of passage of time.
Overall, the simulation modeler can implement different

concurrency control algorithms by completely ignoring data
distribution and replication schemes. He only needs to deal
with transaction identifiers, basic transaction setup infor-
mation and relations across different transactions, on the
basis of the actual data objects locally hosted. To deter-
mine what are the locally hosted data objects, hence the
locally hosted keys, CC can access a hash table, that gets
automatically setup upon simulation startup. On the other
hand, the meta-data required to keep relations across active
transactions, (e.g. wait-for relations), and the correspond-
ing data structure is completely left to programming by the
simulation-modeler. It can be again defined, in terms of
types, within the transaction.h header file. On the other
hand the actual instance of this data structure, can be ac-
cessed via a special pointer which gets passed to the CC
module by the framework as an additional input parameter.
We note that if the pointer value is NULL, then CC has not
yet allocated and initialized the structure, hence this must
be done, and the actual pointer to be used in subsequent
calls to CC can be setup and returned upon completion of
the current CC execution.
Let us go bach to the TxInfo record. As we have said, this

is modeler defined and can keep track of per-transaction
meta-data, which can be exploited by the CC module in
order to support the actual concurrency control logic. Let
us consider two different examples of how to model via the
framework different CC algorithms. One is a classical 2PC
based data-grid CC algorithm where every transaction is
successfully prepared at any site in case the target data ob-
ject to be updated is not currently locked upon the prepare
request. On the other hand, the second scenario shows how
to model cases where the transaction is prepared only in case
the target data has a timestamp lower than the transaction
timestamp. The examples are presented via pseudo-code for
simplicity.

Example One. In Figure 2 we show the pseudo-code defin-
ing the entries of TxInfo and some part of the core logic
at the level of CC. In this case, TxInfo is not required to
keep transaction control information targeted at contention
management. Basically it keeps transaction identification
information. On the other hand, the base setup for concur-
rency management can be actuated by simply setting up a
wait-for table where transaction identifiers are queued in dif-
ferent rows depending on what other transaction holds the
lock they would like to get on a given data object (the top
standing transaction is therefore the one to which the lock
has been granted). In the pseudo-code we show a scheme
where, upon the handling of any prepare request, the asso-
ciated transaction always gets queued. On the other and
upon commit or abort events for a pending transaction, the
subsequent one in the wait-for list gets reactivated, with
positive reply to the original prepare request.

Example Two. In Figure 3 we show the pseudo-code defin-
ing the entries of TxInfo and some parts of the core logic at
the level of CC, where this time we have a variation that
leads the TxInfo record to keep cross-server control infor-
mation specifically targeted at data contention management,
namely a timestamp value. In this case, differently from the
previous scenario, a transaction for which a prepare event

record TxInfo{
TxId
...

} //end record

CC-logic(input: task T, pointer CC-Table){

if (CC-table == NULL)
allocate and initialize [wait-for,active-tx] table;
// keys are data object identifiers or TxId values
// entries are lists of TxInfo records or TxId values
set CC-table point to the allocated table

case T.type
prepare:

link T.TxInfo.TxId to CC-Table.active-tx
AllPrepareKeys = T.TxWriteSet
link T.TxInfo to CC-Table.wait-for[AllPrepareKeys]
if T.TxInfo not top standing for some key

generate event TX_WAIT[T.TxInfo]
generate event TIMEOUT[T.TxInfo]

else generate event PREPARE_DONE[T.TxInfo]
....
timeout:
commit:

unlink T.TxInfo.TxId from CC-Table.active-tx
unlink T.TxInfo from CC-Table[AllOccurrences]
if (T.type == commit) generate COMMIT_DONE[T.TxInfo]
else generate PREPARE_FAIL[T.TxInfo]
for all TxInfo top standing in CC-Table[AnyPresenceRow]

generate event PREPARE_DONE[TxInfo]
....

return CC-Table
} //end CC

Figure 2: Example One.

has been issued can get successfully prepared only in case its
timestamp is greater than the timestamp of any data object
accessed in write mode. We note that this time, the CC
module, upon setting up the CC-Table needs to take care
of setting up meta-data for the explicit maintenance of data
object timestamp values.

3.2 The Client Simulation-Object
Client simulation objects have an internal structure that

does not need to be changed by the simulation-modeler. In
fact, the modeler only needs to specify, via proper configu-
ration files within the framework, what type of distribution
must be used for determining the data to be accessed, and
what distribution needs to be used for determining the num-
ber of operations to be executed within a transaction and
the type (read or write) of each operation.

As for this aspect, the framework already offers the pos-
sibility to use differentiated access distributions, some of
which are analytical, while others have been determined by
relying on traces of known benchmarks. Further, the clients
can be configured in order to simulate either an open or a
closed system. Fort the former case, the simulation modeler
needs to specify the rate of generation of transactions at the
client side.

As a final note, our clients also embed the possibility to
generate the workload by directly relying on traces (rather
than on distributions derived from the traces). This was
not straightforward given the optimistic nature of the un-
derlying simulation engine. Specifically, the ROOT-Sim op-
timistic engine manages transparent rollback operations for
any in-memory data structure (even if allocated via malloc

services), and supports rollback operations for I/O interac-

record TxInfo{
TxId
timestamp
...

} //end record

CC-module(input: task T, pointer CC-Table){

if (CC-Table == NULL)
allocate and initialize [wait-for,DOT] table;
// DOT stands for data-object-timestamp
// table access keys are data object identifiers
// entries are lists of TxInfo records or DOT values
set CC-Table point to the allocated table

case T.type
prepare:

AllPrepareKeys = T.TxWriteSet
if T.TxInfo.timestamp > CC-Table.DOT[AllPrepareKeys]

link T.TxInfo to CC-Table[AllPrepareKeys]
else generate event PREPARE_FAIL[T.TxInfo]

goto out
if T.TxInfo not top standing for some key

generate event TX_WAIT[T.TxInfo]
generate event TIMEOUT[T.TxInfo]

else generate event PREPARE_DONE[T.TxInfo]
....

out:
return CC-Table
} //end CC

Figure 3: Example Two.

tions only in case of output. Instead, input operations are
not automatically rollbackable (since this would entail, in
principle, facilities for management of input data from, e.g.,
an interactive user, which are still not present in ROOT-
Sim). This would lead to problems when subsequent por-
tions of the trace on file are dynamically acquired during the
simulation run. To bypass these problems, we have adopted
a scheme, that operated transparently to the modeler, which
is based on logging onto an apposite temporary file informa-
tion on the amount of bytes read from the trace, which is
also logged into a volatile memory variable. If upon the need
for reading the next fraction of the trace the two values are
not identical, it means that some previous read from the
trace file has been undone by a rollback. In this case the
client simulation object seeks the file pointer to the trace to
the correct position in order to re-execute the correct read
operation for the given portion of the trace, and then up-
dates the two counters to make them coherent again. Again
we note that this mechanism is completely transparent to
the modeler, and hence to the final user.

4. EXPERIMENTAL RESULTS

4.1 Validation
Validating a whole framework is not an easy task since it

would entail validating any possible model that is feasible to
be implemented via the framework. On the other hand, for
our framework, feasible models need to rely on specific skele-
ton operations, such as 2PC for coordinating the distributed
caches servers. Hence, validating at least one model that ex-
ploits such a skeleton would anyhow represent a significant
step. This is exactly the choice we have taken, since we
present validation data obtained by comparing simulation
results with the corresponding results achieved when run-
ning a real-world data grid system, exploiting 2PC, namely

Infinispan by JBoss/Red-Hat [12], on top of a cloud based
infrastructure hosted by Amazon EC2. The used benchmark
for validation is a port of TPC-C [18] (already exploited in,
e.g., [16]) that has been performed in order to allow this
benchmark to be adapted to the < key, value > data model
(rather than the original relation model used in the bench-
mark specification).

As for Infinispan, this is a popular open source in-memory
data grid currently representing both the reference data plat-
form and the clustering technology for JBoss, which is the
mainstream open source J2EE application server. Infinis-
pan exposes a pure key-value data model (NoSQL), and
maintains data entirely in-memory relying on replication as
its primary mechanism to ensure fault-tolerance and data
durability. As other recent NoSQL platforms, Infinispan
opts for weakening consistency in order to maximize per-
formance. Specifically, it does not ensure serializability [3],
but only guarantees the Repeatable Read ANSI/ISO isola-
tion level [2]. At the same time, atomicity of distributed
updates is achieved via 2PC. Particularly, in the version
selected for the experiments, namely V5.1, the 2PC proto-
col operates according to a primary-owner scheme. Hence,
during the prepare phase, lock acquisition is attempted at
all the primary-owner cache servers keeping copies of the
data-objects to be updated. If the lock acquisition phase is
successful, the transaction originator broadcasts a commit
message, in order to apply the modifications on these remote
cache servers, which are then propagated to the non-primary
owners.

In presence of conflicting concurrent transactions, the lock
acquisition phase may fail due to the occurrence of (possi-
bly distributed) deadlocks. Deadlocks are detected using
a simple, user-tunable, timeout based approach. In our ex-
perimental assessment, we consider the scenario in which the
deadlock detection timeout is set to few milliseconds (rang-
ing from 2 to 5 depending on the actual size of the infrastruc-
ture, namely number of virtualized hosts, on top of which
cache servers run). Very small timeout values, as the one
we have selected, are typical for state of the art in-memory
transactional platforms [7] since distributed deadlocks rep-
resent a major threat to system scalability, as highlighted
by the seminal work in [10].

The whole test-bed architecture has been deployed onto
an Amazon EC2 environment where both clients and cache
servers run on top of small EC2 instances equipped with 1.7
GB of memory and one virtual core providing the equivalent
CPU capacity of 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processors. Each machine runs Linux Ubuntu 10.04 with
kernel 2.6.32-316-ec2. We have varied the number of cache
servers between 2 and 4. Also, the number of clients de-
ployed on the infrastructure has been set up to 64. We note
that, although one might think that this is a configuration
with a reduced number of clients, our clients issue TPC-
C transactions towards the cache servers with zero-think
time, which gives rise to sustained workload. Hence we are
emulating the scenario where the clients we deployed onto
the EC2 platform mimic the behavior of front-end servers,
which access the Infinispan in-memory data layer ultimately
hosted by the cache servers (acting as back-end servers).
In other words, we mimic a scenario where they would be
handling multiple non-zero think time interactions by ac-
tual end-clients. As for the transaction access pattern is-
sued by the clients, we have used a model expressing the

 0

 50

 100

 150

 200

 250

 300

8 16 24 32 40 48 56 64

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Clients

Throughput - 2 Servers

Simulator
Real System

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 24 32 40 48 56 64

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Clients

Throughput - 4 Servers

Simulator
Real System

Figure 4: Comparison Between Simulation and Real Data.

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6 7 8

%

Wall-Clock-Time (sec)

Confidence Interval (95%) for the Estimated Throughput - 2 Servers

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12

%

Wall-Clock-Time (sec)

Confidence Interval (95%) for the Estimated Throughput - 4 Servers

Figure 5: Confidence Interval for the Estimated Throughput with Respect to the Wall-Clock-Time with 64
Clients.

corresponding data distribution access specified within the
TPC-C benchmark. As a final preliminary note, in these ex-
periments we have considered replication degree of the data
objects set to the value 2, which is a typical settings [1].
We have traced the execution of the benchmark in order

to determine both (a) the parameters to be used within the
simulation model (such as the CPU demand for specific op-
erations, and the average transmission delay between the
hosts) and (b) the actual statistics used for validating the
simulator. As for point (a), the exact list of measured pa-
rameters is reported in Table 1. They all refer to the CPU
demand for specific operations at the cache servers, except
for the transmission latency. In relation to the latter pa-
rameter, in the simulation framework we have adopted a
message delay model based on an exponential distribution
where the average transmission delay reported in Table 1
expresses the corresponding mean value. We note that such
a delay refers to what is observable at the application (e.g.
data platform) level, not at the level of actual host-to-host
delay (as typical of when pinging the hosts). Hence, it in-
cludes, e.g., marshalling/unmarshalling costs at the level of
the JGroups group communication layer used by Infinispan.
As for point (b) the validation has been based on the system
throughput, for which we report in the plots in Figure 4 both
the simulation results and the real measurements taken on
the test-bed platform.
By the results we observe good matching between simu-

lated values of the throughput and real ones, with a discrep-

Table 1: Measured Parameter Values.
Parameter Value
Name (msec)
local_tx_get_cpu_service_demand 0.027
local_tx_put_cpu_service_demand 0.022
local_tx_get_from_remote_cpu_service_demand 0.015
tx_send_remote_tx_get_cpu_service_demand 0.022
tx_begin_cpu_service_demand 0.004
tx_abort_cpu_service_demand 0.369
tx_prepare_cpu_service_demand 0.129
distributed_final_tx_commit_cpu_service_demand 0.077
cross_node_transmission_latency 36

ancy that is bounded by 16%. Such a bound is reached only
for the configuration with 2 cache servers and 64 clients. In-
stead, for all the other considered configurations, the actual
discrepancy between real and simulated data is even lower
(typically on the order of no more than 10%).

In Figure 5 we provide data related to how the statistical
significance of the throughput values computed by the sim-
ulator varies vs the wall-clock-time of the simulation run.
These data refer to serial executions of the simulation mod-
els, carried out on top of the same platform we have em-
ployed for demonstrating efficiency and scalability of the
parallel runs, whose details will be provided in the next sec-
tion. The reported data refer to 64 clients, and show how
the wall-clock-time requested for achieving high confidence
of the produced statistics is on the order of 8 to 12 seconds
(depending on the amount of simulated cache servers). For

(much) scaled up model sizes, this requirement would likely
be significantly higher thus demanding for parallel compu-
tation. This point is the objective of the study in the next
section.

4.2 Simulation Performace and Scalability
Another aspect of relevance for the presented framework is

the actual performance and scalability it can provide while
carrying out model resolution. To address this issue and
provide quantitative data in relation to this aspect, we have
carried out an experimentation based on simulation models
with scaled up size. In particular, we have run experiments
with up to 1024 simulation objects where 1/8 of them are
cache servers, and the remaining ones are clients.
The simulation runs have been carried out on a clustered

architecture relying on a couple of HP Proliant servers. Each
server is a 64-bit NUMA machine, equipped with four 2GHz
AMD Opteron 6128 processors and 64GB of RAM. Each
processor has 8 CPU-cores (for a total of 32 CPU-cores)
that share a 10MB L3 cache (5118KB per each 4-cores set),
and each core has a 512KB private L2 cache. The operating
system is 64-bit Debian 6, with Linux kernel version 2.6.32.5.
Overall, across the two servers a total number of 64 CPU-
cores have been used.
We have performed experiments where we have measured

the event rate, namely the cumulated amount of commit-
ted events per wall-clock-time unit, which is a typical in-
dicator for the speed of model execution in the context of
optimistic parallel/distributed simulation engines. We have
measured this parameter while increasing the size of the sim-
ulation model (as said up to 1024 simulation objects) and
while adopting two different deploy strategies of the simu-
lation objects across the cluster. Particularly, in one strat-
egy we hosted the simulation objects on different simulation
kernels that are deployed as much as possible on the same
machine. When no more CPU-cores on this machine are
available for additional simulation kernel instances, then the
second machine starts to be used (we refer to this deploy as
block-deploy). In the other hand, in the second strategy the
different kernel instances that are added while the simula-
tion platform is resized are deployed onto the two machines
according to a round robin scheme. The two different de-
ploys allow us to observe the simulation system performance
while varying the ratio between local (inter-machine) event
scheduling and remote one.
The achieved results are shown in Figure 6, where the

symbol K indicates the number of used simulation kernel
instances (hence the number of CPU-cores exploited in the
run). Also, we have reported the data by providing different
curves that are representative of iso-scaling in terms of both
model complexity (total number of simulation objects) and
underlying computing power (number of used CPU-cores).
By the results we see how while the iso-scaling factor grows,
the performance delivered by the simulator tends to stay
stable or to get reduced by no more than 25%, which is an
indication of how the simulation framework tends to scale
well while hosting larger models onto larger computing plat-
forms. This is true for both the considered deploy strategies,
which further supports robustness of the deliverable perfor-
mance in differentiated architectural setting.
Beyond the above results, indicating absolute execution

speed and its variations (vs variations of the iso-scaling fac-
tor), we also report results for a comparison between par-

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

S
pe

ed
up

Kernel Instances

Speedup with respect the Serial Execution

Figure 7: Speedup wrt Serial Execution (Block-
Deploy).

allel execution speed and serial execution speed. The lat-
ter parameter has been evaluated when running the same
application level software (that was originally run on top
of ROOT-Sim) on top of a calendar queue based [4] serial
engine. The achieved speedup results for the case of block-
deploy are shown in Figure 7, where the x-axis indicates
the number of simulation kernel instances used (hence the
number of CPU-cores exploited in the run). As for the
above data, these speedup values still refer to iso-scaling
in terms of both model complexity (total number of sim-
ulation objects) and underlying computing power (number
of used CPU-cores). By the results we see how while the
iso-scaling factor grows, the speedup delivered by the sim-
ulator increases linearly, which is an additional indication
of how the simulation framework tends to scale well while
hosting larger models onto larger computing platforms. Al-
though not explicitly plotted, quite similar speedup values
have been observed with the less favorable round-robin de-
ploy.

5. CONCLUSIONS
In this paper we have addressed the issue of simulating in-

memory data grid platforms on high performance simulation
engines. This is relevant when considering that these plat-
forms are commonly adopted in cloud based environments,
thus being good candidates for integration with dynamic re-
configurations strategies. In this context, our framework can
provide supports for timely what-if analysis and validation
of specific reconfiguration strategies. Also, the framework is
flexible, in terms of ability to model differentiated data grid
systems (e.g. characterized by different concurrency control
schemes). Experimental data for validating the framework
skeleton and for assessing the actual performance while sup-
porting model execution are also reported.

6. REFERENCES
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. SIGOPS
Operating Systems Review, 41:159–174, 2007.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. In Proceedings of the 1995 ACM

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-clock-time (seconds)

Throughput (Block Deploy)

1024 Simulation Objects / 64 K
256 Simulation Objects / 16 K

64 Simulation Objects / 4 K
16 Simulation Objects / 1 K

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-clock-time (seconds)

Throughput (RR Deploy - 2 machines)

1024 Simulation Objects / 64 K
256 Simulation Objects / 16 K

64 Simulation Objects / 4 K
16 Simulation Objects / 1 K

Figure 6: Event Rate Achieved by the Parallel Runs.

SIGMOD International Conference on Management of
Data, SIGMOD ’95, 1995.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addison-Wesley Longman Publishing Co., Inc., 1986.

[4] R. Brown. Calendar queues: a fast O(1) priority queue
implementation for the simulation event set problem.
Communications of the ACM, 31:1220–1227, October
1988.

[5] O. Dalle and E. Mancini. Integrated tools for the
simulation analysis of peer-to-peer backup systems. In
5th International ICST Conference on Simulation
Tools and Techniques (SIMUTools), pages 178–183,
2012.

[6] P. Di Sanzo, D. Rughetti, B. Ciciani, and F. Quaglia.
Auto-tuning of cloud-based in-memory transactional
data grids via machine learning. In Proc. 2nd IEEE
International Symposium on Network Cloud
Computing and Applications (NCCA), NCCA ’12.
IEEE Computer Society, 2012.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional
locking ii. In In Proc. of the 20th Intl. Symp. on
Distributed Computing, 2006.

[8] D. Didona, P. Romano, S. Peluso, and F. Quaglia.
Transactional auto scaler: elastic scaling of in-memory
transactional data grids. In Proceedings of the 9th
International Conference on Autonomic Computing,
ICAC ’12, pages 125–134, New York, NY, USA, 2012.
ACM.

[9] R. M. Fujimoto and W. B. Campbel. Direct execution
models of processor behavior and performance. In
Winter Simulation Conference, pages 751–758, 1987.

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proceedings of
the 1996 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’96, 1996.

[11] HPDCS Research Group. ROOT-Sim: The ROme
OpTimistic Simulator - v 1.0.
http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/,
Oct. 2012.

[12] JBoss Infinispan. Infinispan Cache Mode.
http://www.jboss.org/infinispan, 2011.

[13] S. Kounev, K. Bender, F. Brosig, N. Huber, and
R. Okamoto. Automated simulation-based capacity
planning for enterprise data fabrics. In 4th

International ICST Conference on Simulation Tools
and Techniques (SIMUTools), pages 27–36, 2011.

[14] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44, 2010.

[15] Oracle. Orache Coherence.
http://www.oracle.com/technetwork/middleware/co-
herence/overview/index.html,
2011.

[16] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and
L. Rodrigues. When scalability meets consistency:
Genuine multiversion update-serializable partial data
replication. 2012 IEEE 32nd International Conference
on Distributed Computing Systems, 0:455–465, 2012.

[17] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and
R. Buyya. A toolkit for modelling and simulating data
grids: an extension to gridsim. Concurrency and
Computation: Practice and Experience,
20(13):1591–1609, 2008.

[18] TPC Council. TPC-C Benchmark, Revision 5.11. Feb.
2010.

[19] WMware. VMware vFabric GemFire.
http://www.vmware.com/products/application-
platform/vfabric-gemfire/overview.html.

