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Summary

Failures in computer systems can be often tracked down to software anomalies of various

kinds. In many scenarios, it could be difficult, unfeasible, or unprofitable to carry out

extensive debugging activity to spot the causes of anomalies and remove them. In other

cases, taking corrective actions may led to undesirable service downtime. In this article,

we propose an alternative approach to cope with the problem of software anomalies in

cloud-based applications, and we present the design of a distributed autonomic framework

that implements our approach. It exploits the elastic capabilities of cloud infrastructures,

and relies on machine learning models, proactive rejuvenation techniques and a new load

balancing approach. By putting together all these elements, we show that it is possible

to improve both availability and performance of applications deployed over heterogeneous

cloud regions and subject to frequent failures. Overall, our study demonstrates the viability

of our approach, thus opening the way towards it adoption, and encouraging further studies

and practical experiences to evaluate and improve it.
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1 INTRODUCTION

Nowadays, software anomalies are recognized as some of the major problems affecting performance and availability of computer applications. As
an example, Pertet and Narasimhan 1 have shown that in web applications about 40% of anomalies are due to software errors such as memory
leaks or unreleased locks. These anomalies might well and vastly accumulate, possibly bringing computing systems into thrashing states, which
could generate performance loss and reduction of service availability. In the most severe circumstances, a system might also hang or crash due to
resource exhaustion caused by the excessive accumulation of anomalies.

When dealing with distributed applications deployed at a geographical scale—such as many modern applications which are deployed on multiple
cloud regions for availability/dependability reasons—addressing the aforementioned problems can be significantly complex. Indeed, many modern
distributed applications involve large amounts of computing resources, complex system architectures, and may be subject to high dynamic work-
loads. The same is true for microservice-based applications, which often involve tens of different services deployed on virtualized infrastructures,
which cooperatively implement the overall application. This makes it particularly hard to cope with failures of any nature, as well as to understand
the associated causes, or to promptly perform proper correcting actions. Also, it may be the case that a full development cycle to identify the root
cause of software anomalies, to fix them, and to deploy a new version of the application might require a long time span, ranging up to several
weeks or months. In the meanwhile, end users expect the application to run correctly and to promptly serve their requests, with no excuse.
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In this article, we explore an alternative and complementary approach to handle run-time errors in distributed cloud applications due to the
accumulation of software anomalies. The approach concentrates on the effects of anomalies rather than on their root cause, in order to take prompt
corrective actions. In particular, it relies on the well-know software rejuvenation 2 technique, which consists of forcing the state of the application/
system to a “clean” state, i.e. a state where the system/application is known to work correctly. Examples of basic actions for cleaning up the state
include restarting the application or rebooting the system.

Nevertheless, software rejuvenation as-is does not allow to properly meet some non-functional goals of applications which suffer from software
anomalies. Indeed, there are two common ways to use software rejuvenation: i) the application is detected to have reached a failure state, then it is
rejuvenated, or ii) the application is rejuvenated periodically, as a preventive action, independently of the actual health of the application. Both of
them are a naïve implementation of rejuvenation approaches, and generally result in sub-optimal resource exploitation and poor user experience.
Indeed, in scenario i) the effects of the anomalies can be perceived by the user since rejuvenation is triggered only after that the system reached
a failure state. On the other hand, in scenario ii), a too frequent rejuvenation might lead to unnecessary resource waste, and can increase the
operational costs of the system. Also, in both scenarios the rejuvenation procedure commonly generates a time window of non-responsiveness,
which might be unacceptable for users.

Therefore, to make proper exploitation of software rejuvenation techniques, two fundamental objectives should be targeted: 1) end-users of
the application shall not notice the rejuvenation procedure, and 2) an autonomic approach should be enforced, making the system able to identify
by itself the best-suited time instant at which the rejuvenation process should be carried out. Both these goals can be met via a smart proactive
rejuvenation approach, which consists of proactively trigger rejuvenation actions at the right time to avoid that the system reaches an undesired
health state. How to predict that the system is approaching an undesired state in an application-agnostic way is another aspect which requires
great care.

Thus, in this article, we present the Overlay-based Cloud-oriented Elastic and Self-Healing (OCES) framework, a holistic autonomic management
framework which implements the approach we propose, and that we designed targeting applications deployed on multiple cloud regions—hence,
also including hybrid cloud environments. The goal of OCES is to orchestrate the whole lifetime of distributed cloud-based applications to account
for software anomalies, with the aim of improving both availability and performance.

Overall, OCES can perform the following actions:

• Generating prediction models to determine when a Virtual Machine (VM) hosting an application is approaching a critical health state.

• Exploiting the generated models to monitor in real-time whether a VM should be deemed about to fail. In this case, OCES is able to
autonomously manage cloud resources to instantiate a new VM instance to replace the about-to-fail one, thus allowing to eliminate or
minimize the outage time of the application. Then, it silently (and consistently) runs the rejuvenation procedure to recover the failing instance,
leaving it in state to be ready to be (re)used.

• Balancing the workload across the multiple cloud regions to reduce the effects of frequent failures and to optimize the overall application
responsiveness. In this process, it also takes into account the possible heterogeneity of the available resources in the different regions.

We refer to OCES using the term holistic to emphasize that it is based on an approach that copes in a synergistic way with the different and
complementary aspects of the problem of run-time management of software anomalies. Indeed, rather that simply offering techniques or tools
to address separately each of them, OCES considers the problem as a whole. Indeed, it addresses all the related aspects and performs specific
resolution actions, from the systemmonitoring and prediction of incoming failures, to the proactive and automatic replacement of failing resources,
to the optimal load balancing for preventing or mitigate the effects of high failure rates in different cloud regions.

In this article, we presents the general organization of our framework, and the components which we have developed, in the attempt to make it
a reference design for practitioners which could be interested in the development of similar infrastructures. The level of the details in the discussion
has been explicitly balanced with this audience in mind. Overall, the novel contributions of our work can be considered the following ones:

• The evaluation of a proactive way to exploit software rejuvenation to prevent or mitigate the effect of software failures on cloud-based
applications

• The exploration of a new load balancing approach that takes into account the predictions about the time to failure of cloud resources and
their distribution over different cloud regions

• The development of a framework that, using in synergy the above-mentioned techniques, is able to autonomously manage the available
virtual resources to improve performance and availability of cloud-based applications distributed across multiple and heterogeneous cloud
regions

• An experimental study of our framework to demonstrate a practical exploitation of the framework and to evaluate it in a real-world setting.
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The ultimate goal of our work is to open theway towards a new holistic approach to copewith the problem of software anomalies in cloud-based
application.

We present the description of the methodologies and implementation choices which drove the creation of OCES, focusing on the single com-
ponents of the framework. Then we discuss how these components are glued together in the distributed environment to carry out the autonomic
management of the application. Therefore, the remainder of this article is structured as follows.We introduce theOCES approach in Section 2. Then
we describe in Section 3 how ML-based prediction models are constructed. The monitoring and rejuvenation phases are described in Section 4.
In Section 5 we discuss the methodology behind the controlling of VMs in a distributed Multi-Cloud environment. Finally, in Section 6 we present
and discuss experimental results using a real-world application. Related work is discussed in Section 7.

2 SOFTWARE ERRORS AND ANOMALIES MANAGEMENT IN COMPUTER APPLICATIONS:
INTRODUCTION TO THE OCES APPROACH

Performance and availability of computer applications may suffer from the presence of various software anomalies. For years, systematic research
is being conducted on this theme 3, trying to identify and classify the nature and the potential causes of software anomalies. We remark that
anomalies (or failures) are caused by the incorrect execution of a software system due to some fault, which is the manifestation of an error in
some software component 4. There is a variety of root causes of errors in computer applications. Generally, they are classified into four categories:
method, people, tool and requirement 5. The large number of potential root causes and the variety of effects of errors, which may be also very
different depending on the specific nature of the software application, led to the development of various approaches for copingwith this problem. In
the early stages of the application development, the problem can be addressed by targeting the identification and removal of root causes of errors,
e.g. by improving software development methods, or by using effective approaches for understanding and specifying the application requirements.
Once that a software release of the application or of some software component is available, approaches and tools for detecting errors can be
used (e.g. static analysis 6), with the aim of applying correcting actions to remove them (e.g. bug fixing). Finally, once that the application has been
deployed and is running, it is necessary to deal with anomalies which are manifested at run-time, and adopt some approach to try to resolve them
or to mitigate their effects. The latter is the goal of our framework. Indeed, the approach OCES is based on concentrates on the effects of anomalies
rather than on their root causes and the specific software errors which cause them. To this aim, OCES relies on an application-agnostic approach
for constructing ML-based prediction models of failures and to cope with them. The construction of the prediction models is composed of four
basic phases. In the following, we provides an overview of the different phases and the tools used by OCES in the different phases.

In the initial offline configuration phase, OCES provides automatic facilities to generate Machine Learning (ML) models that allow to predict
when some abnormal condition is expected to occur. This abnormal condition could be related to some resource exhaustion, to some violation in
the quality of service (QoS) or in a degraded perception of the quality of experience (QoE) by the end users of the application. We generically call
this time Remaining Time To Failure (RTTF). The condition(s) to be detected as a failure can be defined by the user on the basis of the values of one
or more selected system features, which can reveal that the system is approaching, e.g., a hanging/crashing point or it is working in a sub-optimal
way (e.g., it is showing poor performance).

The set of prediction models generated upon configuration are then used by a dedicated autonomic controller module to monitor the health
of the distributed/cloud-based application. This autonomic controller monitors the RTTF of each VM by relying on ad-hoc non-intrusive software
probes installed in each VM. If it determines that a VM is close to its failure point, it ignites a rejuvenation process. We note that, although OCES
is designed to target cloud-based applications deployed on VMs, the approach OCES is based on can potentially be used also in the case of other
forms of resources virtualization. For example, rejuvenation techniques are currently being studied also in the context of containers 7. Possible
successfully results achieved with these techniques would offer the chance to extend the exploitability of our framework also in other context,
like in container-based cloud applications 8

To minimize the outage of the application, OCES encloses special-purpose VMs which act as load balancers. These can be regarded as the
connection points from the application’s clients, but also serve a monitoring purpose. Indeed, they also collect information related to the processing
time of each request, in order to give OCES an additional estimation of the effect of the accumulating anomalies on the response time as perceived
by clients—this is a case of QoE threshold violation. This information is used in combination with the data gathered by the software probes to
construct a more comprehensive monitoring system of the health of the application.

To additionally account for the application’s response time, OCES also acts as a manager of cloud resources. Relying on the elastic nature of
cloud deployments, whenever the load on the VMs hosted in a cloud region increases or decreases too much, VMs are added or removed to/from
the pool. In this way, OCES tries to reduce the response time, to increase the availability of generic applications, and to keep low the overall cost
of the deployment.
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3 APPLICATION-AGNOSTIC CONSTRUCTION OF ML-BASED PREDICTION MODELS

As mentioned, one of the first targets of OCES is to enable monitoring of generic applications 9. To cope with the heterogeneity of software stacks
and runtime environments which characterize modern cloud applications, OCES uses system-level metrics. This choice is fundamental, because
it allows to fine tune the monitoring intrusiveness. Also, it enables to reduce possible side-effects on performance and availability by monitoring
tools, which might accelerate the degradation of the performance of the system 10 (the so-called Heisen-monitoring effect). In fact, requiring OCES
to interact with specific software stacks to probe the health of an application might make it of reduced applicability, or could introduce an overhead
which might affect the responsiveness of the application itself. For these reasons, our implementation of OCES uses probes that capture system-
level metrics rather than specific application metrics. Obviously, by using also specific application metrics, it would be possible to rely also on
specific information related to the internal software components of the application. This could provide an advantage in terms of reliability of models
for predicting failures. However, OCES can be easily extended to work also with other types of metrics, including metrics which measure specific
health parameters of an application captured through internal probes of the application. Indeed, it would be sufficient to provide data captured
by these probes to OCES as input features and that the user includes these features within the definition of failure condition(s). Ultimately, this
demonstrates the flexibility of our approach, which can be implemented using various metrics at different level of the software stack, according to
the user needs.

To make the prediction phase more general and applicable to a wide range of applications, OCES bases the construction of ML-based prediction
models on a preliminary monitoring phase. In this way, it is possible to generate prediction models on demand. This generation phase can be
carried out in-vitro (i.e., by relying on dedicated instances of the application), or also in production environments. The user of OCES can specify,
at configuration time, what is the combination of parameters, and possible threshold values, which instruct OCES to consider the application as
failed. This possibility allows the users to potentially account for any number of software anomalies, and any combination of them. Of course, the
construction of the models can be carried out incrementally, i.e. by carrying out a preliminary in-vitro construction of early models, which are then
continuously refined in the production environment.

In this phase, every time a failure condition (as defined by the user) is met, the OCES framework logs the occurrence time, and the system is
restarted—we will discuss later in the paper howwe perform a system restart, so as to consistently bring back the application in a correct operating
state. This operating scheme allows the OCES framework to collect the evolution of multiple system parameters over time, showing how they
inter-operate to reach the failure point. All these data are then used to build and validate a number of prediction models, which are generated by
using different ML algorithms.

To provide a more exhaustive analysis of the evolution of the application towards the failure point, OCES performs a preliminary data mangling
phase in which the collected system feature values are composed to generate an additional set of derived metrics. These metrics allow to capture
specific higher-level aspects of the application, and they can be used by the user of the framework to specify additional conditions which could
make OCES deem a VM as about-to-fail. This approach therefore gives more semantic power to the framework, making it easier to use for end
users.

All the data (both collected from the software probes and derived in the mangling phase) are automatically divided into different training sets,
composed of different sub-sets of the features. These training sets are then fed intomultipleML algorithms, whichwill generate different prediction
models of the RTTF of the application. We rely on multiple ML models at this stage because, intuitively, the large spectrum of applications and
software stacks which are the target of OCESmight show dynamics towards the failure point which can be significantly different from each other. In
this way, we can automatically compare the performance of the various generated prediction models against the actual application, thus selecting
the one which is more suitable to capture the evolution of the application and the definition of “failure” as described by the end user.

In the remainder of this section we provide more details about the overall process undertaken by OCES to build customized prediction models
in an application-agnostic way. The process is schematized in Figure 1, which shows the four basic phases to construct the ML-based models,
including: 1) collection of health data, 2) post-processing of data traces, 3) feature selection and 4) generation and validation of the models. All
these phases are described more in detail in the subsections 3.1, 3.2, 3.3 and 3.4.

3.1 Health Data Collection via Lightweight Software Probes

For the sake of simplicity, in our presentation we refer to the case of a generic client/server application, where we assume that software anomalies
are memory leaks and non-terminated threads (e.g., due to some synchronization error on some condition variable). These may occur at different
rates during the lifetime of the application. However, as we introduced, OCES is not limited to this kind of applications and this kind of anomalies.

OCES relies on a thin client/server monitoring architecture. The software probes installed in the monitored VMs generate measurements (in
the form of datapoints) in a way similar in spirit to other tools available on conventional systems, such as collectd 11. Nevertheless, the probes are
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FIGURE 1 The four phases of the ML-based model construction process
.

directly connected via standard TCP/IP sockets to a separate VM hosting the OCES data collection server, which allows to monitor multiple VMs
at a time, organizes, sorts, and stores on stable storage all the collected datapoints.

Each datapoint is timestamped with the elapsed time from system start, thus creating a data trace of the state of the system. When the user-
specified failure condition is met, a timestamped fail event is added to the data trace and the system is rejuvenated1, giving rise to a number of
runs of the system.

Two different execution histories (or even the overall collection phase) highly depends on the anomaly occurrence rate and the total amount
of available resources on the VMs. Indeed, for prediction models to be built with a significant degree of confidence, it is fundamental to collect
a dataset which is sufficiently large. This is the reason why, as discussed before, OCES allows for incremental construction of prediction models.
In particular, the client/server architecture which allows to monitor applications that can be run also in production environments. In case a new
failure, OCES will trigger the re-generation of the prediction models, in an incremental way, using also the previously-collected data.

OCES uses a set of baseline system metrics which are collected by software probes. However, this set of metrics cab be cus-
tomized by the end user according to its preferences. With the baseline configuration, each datapoint is a tuple in the form
〈Tgen, nth,Mused,Mfree,Mshared,Mbuff ,Mcached, SWused, SWfree,CPUus,CPUni,CPUsys,CPUiow,CPUst,CPUid〉, where:

• Tgen is the timestamp denoting the elapsed time since the system has started

• nth is the number of active threads in the system

• Mused is the amount of memory used by applications running in the system

• Mfree is the amount of memory freely available for usage by applications

• Mshared is the amount of memory used for buffers shared by applications

1In the case of a system deployed in a production environment, the rejuvenation process is subject to the responsiveness and consistency protocol which
we shall describe later.
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• Mbuff is the amount of memory used by the underlying operating system to buffer data

• Mcached is the amount of memory used to cache disk data

• SWused is the amount of swap space, which is currently used

• SWfree is the amount of swap space, which is currently free

• CPUus is the percentage of CPU time dedicated to userspace processes

• CPUni is the percentage of CPU time occupied by user-level processes with a positive nice value (lower scheduling priority), CPUsys is the
percentage of CPU time spent in kernel mode

• CPUiow is the percentage of CPU time spent waiting for a IO operations to complete

• CPUst is the percentage of time a virtual CPUwaits for a real CPUwhile the hypervisor is servicing another virtual processor (CPU steal time)

• CPUid is the percentage of CPU time spent doing unfruitful work (i.e., the system is underloaded).

We selected the above-listed system metrics as the default set because they potentially allow to measure the effect on the system of many
different anomalies typically affecting applications, such as memory leaks or threads stuck running on a spinlock due to some contention bug.

The output of the preliminary system monitoring phase includes a set of raw data representing the evolution of system features over time (in
multiple runs). After the collection phase (or incrementally, in case the user configures OCES to do so), data histories are post processed and finally
the prediction models are constructed.

3.2 Data Trace Post-Processing

The second phase undertaken by OCES to build prediction models is a post-processing of the data traces generated by the software probes. This
phase has a twofold goal: 1) performing a data munging operation on the raw generated data to correct some possible anomaly, and 2) enhancing
the set of data used to build the models by adding some derived metrics, which could better capture some system dynamics. One of motivations
for which the data munging phase is required is that we observed that the generation of original datapoints might incur in some skewing due
to, e.g., the scheduler of the guest operating system, depending on the current workload. Particularly, as soon as the system is approaching the
crashing point, this skew could have a higher impact, thus not providing a regular representation of the system behavior along the time axis. The
data munging phase essentially aggregates multiple datapoints by relying on a user-defined time window. Each raw datapoint j generated from the
software probes (shown in black in the figure) falls, according to its Tgen value, into one specific time window. All datapoints in one time window are
averaged into an aggregated datapoint. Additionally, for each member of the raw tuple j, we compute its slope according to the following formula:

slopej =
xend
j − xstartj

n
, (1)

where xstart
j and xend

j are the values of the feature j of the first and the last original datapoint falling in time window of the aggregated datapoint.
These slopes are added as additional elements to the aggregated datapoints. Slopes allow to extract further knowledge about the dynamics of the
system, which may show a highly variable behaviour. For example, some systems could show a constant increment of the resource usage over time
until the crash point is actually approaching. At that time, some parameters could grow very quickly, even exponentially. The slopes, which could
be interpreted as a simple approximation of a derivative, in such a scenario might be proven effective to promptly detect an upcoming crash point.
As a specific case, let us consider the above-specified SWused feature. If the system crashes due to memory exhaustion, SWused will start growing
faster when approaching the crash point. Therefore, the SWused slope can be used effectively to build the prediction model.

An additional metric introduced is the inter-generation time among two consecutive datapoints, computed starting from Tgen timestamps. This
additional information might allow to capture a possible delay at the level of software probes, which could be an indication of the increased load
of the system (and possibly of an upcoming failure).

The timestamped fail events are used to generate, for each datapoint in the history, the RTTF. This is the additional fundamental information
which will be used to construct the prediction models.

3.3 Feature Selection

Aggregated datapoints have a large number of features, including all the raw metrics gathered from the software probes, the slope for each of
them, the inter-generation time, and the RTTF. Since the end user is able to specify what is the set of metrics being traced by the software probes,
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this number could even increase highly, reaching thousands of features in some Cloud-related contexts 12. Depending on the specific application
(and its anomalies), they might not be necessary altogether to generate an accurate-enough prediction model. While building models using all these
features will unlikely produce a less-accurate model, it is quite sure that the training time will increase. As mentioned, this could be unacceptable
for the purposes that OCES intends to serve. Rherefore, OCES performs a selection phase on the features in the aggregated datapoints to identify
an optimal subset which will not likely affect the accuracy of the model. This allows us to keep low the time required to build the models. As shown
in Figure 1, the execution of this phase is optional, so that the user is able to choose whether in the next phase, the OCES Framework should
consider the whole set of features, or only the ones selected during this phase. We base the feature selection phase on Lasso regularization 13. For
an aggregated datapoint x̄ and a control variable λ, Lasso regularization generates a vector β̄ of factors β, whose elements are the weights of the
vector x̄, which minimizes the following objective function:

1

n

n∑
j=1

V (yj , 〈β, xj〉) + λ||β||1, (2)

where n is the number of data points from the aggregation step, each xj is an input feature from every data point, yj is the associated value of the
dependent variable (the RTTF in our case) for the specific data point, and V(yj, 〈β, xj〉) is equal to (yj − βTxj)

2.
The calculated vector β includes a (sub-)set of non-zero weights. All features associated with a zero weight can be therefore filtered out from

the training set. Generally, while increasing the value of λ, more elements of the vector β are likely equal to 0. Particularly, these elements are
likely those which have a smaller weight in the evaluation of the RTTF. Thus the effect of using higher values of λ is the reduction of the number
selected features to be used in theMLmodels. Of course, using too high values of λ could have the effect of overly reducing the size of the training
set, hence calling for a selection of the best-suited model, based on its accuracy. As the output of this phase, a number of training sets, each one
including a sub-set of selected features and added metrics, is produced.

3.4 Model Generation and Validation

Various ML methods exist to build prediction models. OCES is designed to generate multiple prediction models from the same datasets using
different MLmethods, and to compare their prediction accuracy, in order to select the best one.We have included in the default set of MLmethods
of OCES six linear and non-linear ML methods, namely Linear Regression 14, M5P 15, REP-Tree 16, Lasso as a Predictor, Support-Vector Machine
(SVM) 17, and Least-Square Support-Vector Machine 18. A description of these six methods is reported in the Appendix of this article. Of course,
the set can be customized by the user by adding other methods or removing some of them.

After having generated all the models, they are evaluated to determine which one offers the best accuracy for the prediction of the RTTF. To
this end, OCES computes a number of performance metrics by running predictions on a sub-set (validation set) of samples, possibly not used for
the model training. The performance metrics which are used by OCES to estimate models’ accuracy and overall goodness are:

• Mean Absolute Prediction Error (MAE): The average of the differences between predicted and real RTTF.

• Relative Absolute Prediction Error (RAE): It is relative to a simple predictor, namely the average of the actual measurement. RAE normalizes
the total absolute error by dividing it by the total absolute error of the simple predictor.

• Maximum Absolute Prediction Error (MAPE): It is the maximum prediction error.

• Soft-Mean Absolute Prediction Error (S-MAE): It is calculated as the MAE, except that it is left-bounded by 0.

• Training Time: The time required by the learning method to build the model.

• Validation Time: The time required to complete the validation process.

If there is a single winner on all the metrics, OCES automatically selects it as the best-suited prediction model. On the other hand, the end
user is asked to pick one of the models. This manual choice allows to trade off between accuracy and timeliness, depending on the nature of the
application and (possibly) the SLAs that the application has to offer to the end users—this latter point explicitly accounts for the incremental setup
for model generation by OCES.

4 MONITORING AND REJUVENATING VIRTUAL RESOURCES

OCES uses the prediction models to predict the RTTF of VMs that host the applications. Every time that OCES detects that a VM instance is
approaching a predicted failure point, it automatically spawns a new VM instance to replace the about-to-fail VM and redirects the load to the
new VM. In the while, it allows the about-to-fail VM to complete its pending requests and then triggers a rejuvenation procedure.
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We remark thatOCES is designed to be independent of a specific rejuvenation technique. It allows the user to decide themost suitable technique
to be used for each application. For example, often the simple VM restart (or restarting only the processes of the application) is a sufficient action
to report the application to an healthy state. In other cases, the user may decide to use more complex rejuvenation techniques, such as checkpoint-
based rejuvenation schemes 19. Obviously, the application should support these kinds of schemes. In Section 6.3, we discuss the technique that
we used in our experimental study.

To monitor the health of the VMs, OCES uses he same client/server architecture and software probes described in Section 3.1 used to gather
datapoints. An additional VM, which we call the Virtual Machine Controller (VMC) is in charge of monitoring and controlling k couples of VMs (the
slave VMs) acting as (replicated) servers. The slave VMs of a couple cx (with x ∈ [0, k− 1]) are named VM1x and VM2x, respectively.

The VMC client is composed of several softwaremodules, each one serving a different purpose for themonitoring/rejuvenation process, namely:

• A Communication Unit (CU), which interacts and exchanges data/control messages with all slave VMs;
• A Prediction Unit (PU), which evaluates the prediction model generated and selected in the previous phase of the lifetime of the OCES

framework, which estimates the RTTF of all slave VMs as soon as a new datapoint is generated by a software probe;
• A Load Balancing Unit (LBU), which acts as the entry connection points for the clients, which forwards requests to some slave VMs, and

which monitors the number of active connections to each slave VM;
• A Managing Unit (MU), which is in charge of rejuvenating, adding, and removing VMs from the pool of active cloud instances.

On the other hand, the architecture of the clients installed in the slave VMs to monitor the health and actuate the logic dictated by the VMC is
composed by the following software modules:

• A Communication Unit (CU), which interacts with the VMC;
• A Measurement Unit (MeU), which assembles health datapoints by relying on the software probes;
• A Local Managing Unit (LMU), which sends datapoints to the VMC and receives control commands from the VMC.

The MU maintains the set of slaves VMs organized in couples2, in order to determine, among the available resources, which should be active/
inactive at a given time instant. At system startup, for each couple a single VM is started and marked as active. The other VMs are placed in the
stand-by state. The LBU has access to the states of VMs, and upon a client connection, it will transparently redirect the request to one of the slave
VMs, therefore acting as a reverse proxy.

On each active VM instance, the MeU component will act in a way similar to the collection phase. Namely, system features will be recorded,
assembled into datapoints, and sent to the VMC. Upon the receipt of a datapoint, the PU will evaluate the prediction model, and generate a RTTF
estimation.

By using the RTTF estimates, the VMC can implement an on-line control loop for the health of each VM instance. For each couple x of VMs
currently managed by OCES, the control loop is implemented so as to execute the following steps:

1. If the predicted RTTF for VM1x is higher than a (user-tunable) threshold T, the instance is considered healthy, and no further action is taken.
2. On the other hand, the MU executes the following steps:

(a) VM1x is marked as stand-by;
(b) VM2x is marked as active and activates the VM instance—from now on, the LMU of VM2x will send health datapoints for the newly-

activated VM, and the LBY will direct connections towards VM2x;
(c) It instructs the the LBU to notify when no active connections towards VM1x are present;
(d) Once the LBU confirms that no active connections are in place (or if a user-tunable timer expires) it sends the rejuvenate command

to VM1x;

For the sake of clarity, we report in Figure 2 an example execution of the control loop when only two VMs belonging to the same couple are
managed andmonitored byOCES. At system startup, onlyVM1x is active. The LMUperiodically sends health datapoints to the VMC,which predicts
the estimated RTTF. After some time, VM1x is deemed to be about to fail, and the rejuvenation process begins. The VMC immediately activates
VM2x, but VM1x remains active still for a while, namely until the LBU notifies that no pending connections are present (or the timer expires). The
rejuvenation of VM1x then takes place, with the VM being shut down and rejoining the pool in the stand-by state. After some additional time,
VM2x might approach the failure point, and the same process takes place so as to rejuvenate VM2x.

2Of course, additional VM couples can be added to the pool at any time, if the application architecture or dynamics requires to do so, e.g. in the case
of microservice-based applications. Similarly, existing pairs can be removed, thus making an effective usage of the elastic capabilities of cloud environments,
also accounting for cost effectiveness.
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FIGURE 2MLSR-Framework control flow diagram with a couple of VMs.

We note that, depending on the application, it could be required to execute additional consistency-oriented tasks during the rejuvenation
process . As an example, some sessions tokens might required to be migrated to the new instance, or in-memory data could required to be flushed
to distributed or remote databases. Also, with applications that use distributed and replicated database, data synchronization may be required.
For example, this is the case of multiple copy databases 20 and with parallel accesses to shared data 21. In our context, if a VM instance hosts a
database, when the instance is replaced by a new one, data could require to be transferred to the new instance. Further, in same cases data may
require to be synchronized with other databases hosted by some other VM instance of the application. Indeed, there may be the possibility that
new data updates executed in parallel on other databases are not received during the data transfer process. These issues have been extensively
dealt with in the literature, and several solutions to address these aspects have been already presented, in particular to reduce the perception by
the end users of data synchronization 22,20. Basically, the proper technique to be used depends on the nature of the application. For this reason,
we designed OCES such that it is independent of the specific data synchronization techniques required by the application. Basically, OCES can
triggers a specific routine in charge of launching the data synchronization procedure that has to be used with each specific application.

The user-specified threshold T is a safety value, which takes also into account the average time required by the application to perform all
tasks necessary to shutdown consistently the VM, also accounting for pending requests processing. The companion control variable, namely the
expiration time, ensures that OCES is able to rejuvenate the machine also in case a too high workload is being experienced, at the cost of losing
some request. Of course, the dynamic management of VM pools which we describe later, in conjunction with the presence of reverse proxies
implemented in the form of an LBU, allows to reduce the likelihood that this scenario arises. With respect to T, a too high value might force a
too early rejuvenation, even though the VM is still running with an acceptable health. In Section 6, we discuss in more details the effects of T,
leveraging results of an experimental study.

5 MANAGEMENT OF VIRTUAL RESOURCES FOR INCREASED RESPONSIVENESS

TheOCES framework allows tomanage any number of VMs acrossmultiple cloud regions. Regions can also be heterogeneous in terms of computing
resources and distributed ate geographical scale 23,24. Each single region is managed according to the architecture described in Section 4. In this
section, we discuss the inter-region management of the application offered by OCES.

The cross-region management is based on two main components:

• Controllers, which manage local resources and communicate with controllers running in other cloud regions.

• LBUs, which are the same software components discussed in Section 4, but which can also redirect connections to LBUs hosted in different
cloud regions.

Having multiple LBUs is typical of several real-world scenarios, where geographically-distributed applications provide multiple entry points,
depending on the source location of the clients—DNS servers typically hide away the complexity of application reachability through multiple entry
points. In other words, the availability of multiple LBUs intrinsically enables the possibility to rejuvenate VM instances, even in case the new
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instances are assigned a different IP address. Indeed, clients will connect to one of the available LBUs, which will in turn forward the requests to
the destination VMs.

OCES implements a new load balancing approach that uses the Mean Time To Failure (MTTF) of VMs as an input parameter to decide how
redirect the incoming requests. The MTTF of each VM in each region can be straightforwardly calculated using the ML models (e.g. by predicting
the RTTF at time 0). The load balancing approach aims at balancing the load across the cloud regions in order to avoid that different regions are
subject to highly different failure rates (and consequently rejuvenation rates) of VMs. This may be caused, e.g., by overloaded and underloaded
regions. Highly different failure rates, in turn, can amplify the load unbalancing between overloaded and underloaded regions. Another cause of
unbalancing is often the heterogeneity of resources available for an application in different cloud regions (e.g. a different number of VMs, or VMs
with different computing power).

The specific goal of OCES is to balance the failure rates in the different regions, based on the so-called Region Mean Time To Failure (RMTTF)
of each region. More in detail, among all the VMCs of all regions, one works as a leader. The VMC of a region i periodically sends to the leader
VMC the last value of RMTTF, say lastRMTTFi, calculated as the average MTTF of all active VMs in the region i. When the leader VMC receives
lastRMTTFi at time t, the current RMTTF of the region i, say RMTTFt

i , is (re-)calculated by using the following weighted average:

RMTTF t
i = (1− β) ·RMTTF t−1

i + β · lastRMTTFi, (3)

where RMTTFt−1
i is the previous value of RMTTF and 0 ≤ β ≤ 1.

OCES ships with three different load balancing policies. The goal of the policies is therefore to decide the fraction fi of global incoming requests
to be forwarded to a cloud region i to ensure that the different values of the current RMTTF of all regions converge (fast) to the same value. We
present the three policies in the following. In Section 6.4 we present an experimental study to assessment of their capability in different application
scenarios.

Policy 1: Sensible Routing

The first policy shipped by OCES is based on the work by Wang and Gelenbe 25 , and is called sensible routing. Assuming to have N cloud regions,
the fraction fi of global incoming requests to be forwarded to cloud region i is calculated as:

fi =
RMTTF t

i∑N
j=1RMTTF t

j

. (4)

The intuition behind sensible routing is that the fraction i should be proportional to the weight of the RMTTF over the RMTTF as observed in
all regions.

Policy 2: Available Resources Estimation

A single numeric parameter is used by the available resources estimation policy, to abstract the amount of available resources in a cloud region. The
idea behind available resources estimation is that, while software anomalies accumulate, each resource is “consumed” in a linear fashion. This means
that if the accumulation of the anomalies is proportional to the number of incoming requests, then also resource consumption will be proportional
to the requests. Therefore, the estimation of the resources which are available, at a given time, in a given region i can be obtained by the following
equation:

Qi = RMTTF t
i · fi · λ, (5)

where λ is the global incoming request rate. The factor fi ·λ estimates the incoming request rate of region i. Equation (5) grounds on the assumption
that a higher RMTTF in the face of the same amount of incoming requests, under the proportionality assumption stated before, tells that that
region has a higher amount of resources which can be used to serve requests.

At this point, the fraction fi of requests to be forwarded to region i can be deemed proportional to the (estimated) number of available resources:

fi =
Qi∑N

j=1Qj

. (6)

Policy 3: Exploration

The exploration policy exploits a hill climbing 14-based search algorithm to estimate the Average RMTTF (ARMTTF) over all regions:

ARMTTF =

∑n
i=1RMTTF t

i

N
. (7)

A debit/credit approach is then used to increase/decrease the fraction of requests fi assigned to each cloud region. In particular, if RMTTFt
i >

ARMTTF, the value is decreased, while it is increased if RMTTFt
i < ARMTTF.
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The set of overloaded regions is then determined as OL = {i : RMTTFi < ARMTTF}. Each region in this set receives a new value of fi

computed as:
fnext
i =

RMTTFi

ARMTTF
· fi · k, (8)

where k is a constant scaling factor. Of course, the equality
∑n

i=1 fi = 1 must hold. To this end, the total variation of the flow of overloaded regions
is computed as:

∆f< =
∑

i∈UL

(fnext
i − fi). (9)

Then, the set of underloaded regions is determined as UL = {i : RMTTFi > ARMTTF}). Each region in this set received a new value of Fi

determined as:
fnext
i =

∆f<

N∑
i=1

RMTTFi

· fi · k, (10)

where k is the same scaling factor used before. Overall, new fractions are determined as:

fnext
i =



RMTTFi

ARMTTF
· fi · k if RMTTFi < ARMTTF

∆ft
<

n∑
i=1

RMTTFi

· fi · k otherwise
. (11)

5.1 Global Management of Resources

We now discuss how these policies are applied by OCES in order to orchestrate the available virtual resources hosted in multiple cloud regions.
The baseline assumption is that clients can connect to any cloud region, which is an assumption suitable for DNS-based geographical dispatching
of incoming requests, also in the case of microservice-based applications. We therefore assume that each client can connect to an LBU in some
region. The goal of the global management is to ensure the every region i processes the established fraction of request fi.

In OCES, we reach this goal by means of a global forward plan. Upon the calculation of a new value of fi by the leader controller—any of the
aforementioned policies can be selected by the end user—the amount of incoming requests to be forwarded to external LBUs is determined. We
note that this scheme basically implements a multi-level reverse proxy scheme, typically designed for simple load balancing purposes. In our case,
the ultimate goal is to reduce the impact of rejuvenation on the overall distributed virtualized infrastructure.

To determine a global forward plan, we implement a distributed state-machine approach, in which four different states are envisaged, namely:
Monitor, Analyze, Plan, and Execute. At system startup, all controllers are in the Monitor state. In this state, a controller enforces the actions
previously discussed in Section 4. After some time, the controllers enter the Analyze state, in which ML-based predictions are used to compute
the RMTTFi value for each cloud region. The leader VMC will then gather all the estimate from all the other VMCs.

At the end of the gather phase, VMCs enter the Plan state. This is a dummy state for slave VMCs, as all the computation takes place at the
leader. In this state, we apply the user-specified policy to compute the new value of ft

i , for all the regions i in the system, where t is the epoch
timestamp of the new workload distribution phase. At this point, the leader controller scatters the ft

i s to the other VMCs, and the system globally
transitions to the Execute state. In this state, each controller instructs their local LBU to forward incoming requests to other regions, so as to meet
the value specified by the new ft

i . It is the leader VMC that governs the state transitions, by means of control messages set to the other controllers,
and manages the advancement from one epoch to the next.

It could be the case that this policy is not enough to counteract a sudden spike of workload received by some cloud region. OCES can be
configured to instruct the VMCs to autonomically add new resources to the pool of locally-hosted VMs if the system observes a transient but
strong degradation. In particular, each LBU monitors the time which is required to serve a request from incoming clients. Explicitly neglecting the
network trip time, which is rarely an issue for modern cloud service providers, the VMC uses this additional measure by the local LBU to compute
an estimation of the response time as seen by the clients. If the response time falls above some user-defined threshold, the VMCwill add additional
pairs of VMs to the local pool.

6 EXPERIMENTAL ASSESSMENT

6.1 Benchmark Setup

We have conducted an extensive assessment of all the software components of the OCES framework, and their interactions, in order to study the
viability of our approach. We used a hybrid cloud environment, composed of a dedicated 32-core HP ProLiant server with 100 GB RAM located
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TABLE 1Weights assigned with λ = 109

Parameter Weight

Mused (slope) 0.000019235560086
Mfree (slope) 0.000236946638676

SWused (slope) 0.000263386541515
SWfree (slope) 0.000263386541515

Mfree 0.000263386541515
Mshared 0.000263386541515

in Munich (Germany), equipped with VMware Workstation 10.4 as the hypervisor, and a set of AWS EC2 instances in the Frankfurt and Ireland
regions, for a total of 3 geographically distributed cloud regions. We refer to the AWS instances in Ireland as Region 1, to the AWS instances in
Frankfurt as Region 2, and on the VMWare instances in Frankfurt as Region 3. In Region 1, we have used 6 m3.medium EC2 instances, while on
Region 2 we have used 12 m3.small EC2 instances. VMs in Region 3 have been provided with 2 virtual CPU cores, 1 GB of memory, and 4 GB of
virtual disk space. All VMs were equipped with Ubuntu 10.04 Linux Distribution (kernel version 2.6.32-5-amd64).

The real-world application being hosted by the VMs is a Java implementation 26 of the standard TPC-W benchmark 27, i.e. a multi-tier e-
commerce web application. TPC-W benchmark specifies an e-commerce workload that simulates the activities of a retail on-line store. In particular,
it emulates a number of users that browse and order books from the website. This is composed of 14 different web pages, each one dedicated to a
specific activity, such book searching, book detail visualization, book ordering, cart visualization, order checking, etc. Each VMs of our experimental
cloud environment hosts an implementation of the application tier.

We artificially introduced bugs in the TPC-W implementation to randomly generate software anomalies at run-time, in the form of memory leaks
and unterminated threads, which canmimic compute resources stuck in the access to a critical section. The anomaly generation is probabilistic with
respect to client connections—10% of requests generate a memory leak, 5% of requests generate an unterminated thread. This led to scenarios
where each VM (thus each cloud region) can show different anomaly-occurrence patterns. We varied the number of active clients (towards each
cloud region) in the interval [16, 512], ensuring that the clients connected to each LBU where significantly different in number. We have run our
experiments considering data traces associated with 200 different runs of the application. For consistency reasons, we have hosted the DBMS of
the application in a separate VM, not subject to artificial software anomalies.

We organize the experimental data into different subsection. In Section 6.2 we study the accuracy of the prediction models’ generation, which
has been previously presented in Section 3. Section 6.3 shows the behavior of OCESwhen a single cloud region is used, to stress test the autonomic
management which has been previously described in Section 4. Finally, Sections 6.4 and 6.5 present data related to the distributed management
of the incoming requests by OCES, as it has been previously presented in Section 5.

6.2 Prediction Models Accuracy

The first step in the model generation is associated with Lasso regularization to perform feature selection. We have carried out experiments to
evaluate model’s accuracy both when using the features selected during the regularization phase and when all the features are used. For the
specific setup which we have used to carry out our experimental assessment, we report in Table 1 the number of features associated with a non-
zero weight in the β vector when setting λ = 109. As mentioned, a higher value for λ determines a more strong selection of important features,
possibly with an effect on accuracy. his is exactly the reason behind the selection of this value for λ and for the comparison with models generated
when using all the features.

The first interesting aspect related to the data reported in Table 1 is that slopes play an important role in the construction of the prediction
model. In more details, slopes associated with memory usage and swap usage play the most important role. This is an expected result, considering
that one of the anomalies which we have injected in TPC-W is related to the generation of memory leaks upon each client connection. Therefore,
the regularizatino phase correctly identifies memory consumption as one of the root causes for a failure of our application. Nevertheless, a strong
regularization (λ is large) fails to capture the effects of other anomalies in the application, namely unterminated threads. Therefore, although the
generation of prediction models in this scenario could be expected to be faster, we also expect the accuracy of the generated models to slightly
drop.

To study this aspect, we report in Table 2 the accuracy obtained by training themodels using the variousML algorithms in the two aforementioned
scenarios, namely when using all the features in a datapoint and when using only the features which “survived” the regularization phase. For the
sake of brevity, we only show the Soft-Mean Absolute Error (S-MAE) performance metric (in seconds). As it can be seen, we find a confirmation of
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TABLE 2 Soft Mean Absolute Error—10% Threshold

Using all parameters Using only parameters selected by Lasso

Algorithm Error (seconds) Algorithm Error (seconds)

Linear Regression 137.600 Linear Regression 156.603
M5P 79.182 M5P 118.292

REP Tree 69.832 REP Tree 108.476
SVM 132.668 SVM 146.594
SVM2 132.675 SVM2 146.607

Lasso (λ = 101) 405.187 Lasso (λ = 101) 405.187
Lasso (λ = 103) 405.178 Lasso (λ = 103) 405.178
Lasso (λ = 105) 404.823 Lasso (λ = 105) 404.823
Lasso (λ = 107) 399.023 Lasso (λ = 107) 399.023
Lasso (λ = 109) 392.469 Lasso (λ = 109) 392.469

TABLE 3 Training Time

Using all parameters Using only parameters selected by Lasso

Algorithm Training (seconds) Algorithm Training (seconds)

Linear Regression 0.30 Linear Regression 0.08
M5P 3.10 M5P 1.58

REP Tree 0.56 REP Tree 0.17
SVM 417.41 SVM 164.96
SVM2 391.69 SVM2 205.65

our expectation: the too aggressive regularization phase has lost some information related to (secondary-order) anomalies, and therefore provides
an accuracy which is reduced. We note, anyhow, that the accuracy drop is not much elevate, and therefore a strong regularization can be viable
in case the end user wants to trade accuracy off timeliness of model generation—we will shortly discuss the impact of regularization on model
generation time.

An interesting preliminary result from this experimentation is that REP-Tree shows the best accuracy in both scenarios. In comparison with
REP-Tree, M5P increases the error in the order of 10%. All other ML methods show higher errors. We note that this could be due to the fact that
both REP-Tree and M5P divide the model space in smaller portions, and evaluate for each portion a different linear approximation. These could be
regarded, anyhow, as two of the best candidate models for now.

The final effect of regularization on the training time can be assessed by the data in Table 3, which shows the time (in seconds) required
to construct a prediction model starting from all the features or only the ones selected by the regularization phase. As expected, the effect of
regularization is that of significantly reducing the total time required to build a model. Again, the user can decide if this is a suitable trade-off for
their application—or also if a smaller λ value should be selected. By the results, the best models (in terms of generation time) are Linear Regression,
REP-Tree and M5P.

To assess in a different way the accuracy of the generated prediction models, we present a graphical representation of their behavior in Figure 3,
this time only in the scenario where all the parameters are used for model generation. The six plots in Figure 3 show, for each ML algorithm,
how much the generated model deviates from the ground truth. In particular, we show on the x-axis the actual RTTF, while the y-axis shows the
RTTF as predicted by each model. The 45◦-slope green line is the ground truth—intuitively, RTTF increases as we get father from the failure point.
Indeed, the failure point is at the origin. Therefore, these plots tell, for each actual RTTF value on the x-axis, what is the corresponding RTTF value
predicted by each model generated with the different algorithms (the red lines).

In general, we observe that prediction errors are higher when we are farther away from the failure point. We explain this behavior of the model
by the fact that, when the accumulation of anomalies is reduced (i.e., we are far from the failure point) the possible runtime dynamics of the system
are very varied. On the other hand, when the failure point is approaching, we observe a similar degradation of system features (e.g., the system
incurs thrashing due to high usage of the swap space). The OCES data collection and model generation infrastructure is therefore able to capture
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FIGURE 3 Fitted Models using all Parameters

these dynamics. However, we note that a higher prediction error is not a significant problem when we are far from the failure point, because
(provided that the threshold T is safely tuned) the likelihood that a prediction error will trigger a rejuvenation phase is low. Except when using
Lasso as the prediction model, the prediction error becomes very low when the actual RTTF value (on the x-axis) is lower than 600 seconds. We
consider 5 minutes to be more than enough to perform a clean rejuvenation of VMs, in practical environments.
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Also the results in Figure 3 confirm that REP-Tree and M5P are the best candidates in terms of accuracy. For all the consideration on the
performance on prediction models (also taking in account the generation time), we have used M5P in the latter part of our experimentation. We
have also used the models generated when relying on all the features in the datasets.

6.3 Evaluation of Monitoring and Rejuvenation Capabilities

To analyze the behavior of OCES in a single cloud region, we have conducted two sets of experiments, in two different scenarios. The first exper-
imental scenario involves only 2 VMs, so the VMC in the region can only trigger a rejuvenation phase without having the possibility to redirect
client requests to a different set of running instances. In the second scenario, a total of 3 couples (for a total of 6 VMs) is used, thus allowing the
VMC to redirect client requests to other instances. In the first scenario, VMs are subject to both memory leaks and non-terminated threads. In
the second scenario, the first couple of VMs is subject to both memory leaks and non-terminated threads, the second couple is only subject to
non-terminated threads, and the third couple is only subject to memory leaks. We note that, in the latter scenario, the rejuvenation process for
each about-to-fail VM is triggered independently of the other couples. As a rejuvenation action, we chose VM rebooting, since it is suitable to the
aim of our experimental study. Indeed, the effect of rebooting is to return the VM in its staring state, thus also restarting all the processes of the
application on that machine. Obviously, this leads to kill all unterminated threads and to remove memory leaks of the application.

In both scenarios, we have set the threshold T = 300 seconds. Every time that an instance is rejuvenated, the probability distribution used
to generate software anomalies (in the form of memory leaks and unterminated threads) is randomly generated from a Poisson process. As for
memory leaks, the size of the leaked memory buffers is randomly selected between 10 Kb and 1 Mb upon each generation of a memory leak. We
have used 32 concurrent clients in the first scenario, and 64 in the second one.

The first scenario has been run without interruption for one week. Figure 4 shows the data related to a short time window extracted from the
whole experiment. We show the trend of various system-level metrics, as captured by the software probes, namely the number of active threads,
free memory, used swap memory, and (total) CPU usage. Additionally, we report the response time measured by placing software probes in the
emulated web browsers which generate client requests—they have been installed in a separated and dedicated VM—and the predicted RTTF for
the VM that was activated upon each switching.

The results show that, as expected, the accumulation of anomalies leads to a continuous decrease in free memory, with a subsequent increase
in the usage of swap. This is an additional indication that the outcome of the regularization process, discussed in Section 6.2, delivers reliable
results. Similarly, the number of active threads grows. A direct effect of the anomalies on the end users is observed in the response time, which
grows proportionally with the accumulation of anomalies. This can be regarded as a side effect of the thrashing state in which the VM operates
in degraded mode, due to the accumulation of the anomalies. In the plots, we identify with vertical dotted red lines the time instant at which the
rejuvenation procedure is initiated. After a rejuvenation, thanks to the overtaking of the healthy VM, the available resources bring the application
in an anomaly-free state. The predicted RTTF immediately grows, and the response time (as observed by the users) drops down. These results
show that our approach is effective at keeping low the response time observed by the users (under a cap of 4.5 seconds), proving the viability
of our approach. During the whole experiment, less than 500 client requests were not served by the running VMs due to the rejuvenation phase
(triggered by expired user-defined timers), which can be regarded as an important result given the objectives of our work.

A for the second scenario, in Figure 5 we report for brevity the results for a limited time window. Given the stochasticity in the generation of
the anomalies, each VM suffers from a different accumulation phenomenon. Again, we indicate with vertical dotted red lines the time instants
in which the rejuvenation process (for one of the VMs in the pool) is initiated. The results show that the VMC is able to manage independently
the VMs without any loss of timeliness in the rejuvenation process initiation, and that the framework is able to effectively react to differentiated
distributions of anomalies.

6.4 Evaluation of Multiple Region Management Policies

In this section we report the results of the evaluation of the different policies we presented in Section 5 used to manage the virtual resources
distributed different cloud regions. We present the results with all the three policies using all the three regions of our experimental environment.

Figure 6 reports, for each policy, the evolution of the RMTTF for every region, the fraction fi for each region, and the average response time
measured by all clients. By the results, we can draw the following observations:

• Policy 1 does not make RMTTF values converge. Indeed, the RMTTF values stabilize to different values. Further, the values of fi are subject
to oscillations.

• Policy 2 exhibits a better performance. The values of the RMTTF converge quite quickly, and fi shows less-oscillating values. We associate
this better behavior with the explicit estimation, proper of Policy 2, of the available resources on each cloud region.

• Policy 3 converges better than Policy 1, however the values of RMTTF and fi are less stable with respect to Policy 2.
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FIGURE 4 System features, response time and predicted RTTF with 2 VMs.

The oscillation of the values of fi have the drawback, in the distributed scenario, that client requests could be repeatedlymigrated across different
regions. Depending on the organization of the database backing the application, this phenomenon could lead to sub-optimal performance levels—
we recall that we have do not explicitly deal with consistency of databases, thus requiring the application to rely on a (possibly distributed) database
infrastructure for data consistency. Overall, we can conclude that Policy 1, based on sensible routing, is more suitable for less-heterogeneous
environments. On the contrary, when heterogeneity is very high, the quickest convergence and the most stable results are provided by Policy 2,
which is based on explicit available resources accounting. Exploration approaches, such as Policy 3, are similarly valid, yet they can suffer more
from their intrinsic randomness.
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FIGURE 5 System features, response time and predicted RTTF with 6 VMs.

6.5 Evaluation of Multi-Cloud Management in Dynamic Scenarios

Weextended our study on the behavior of OCESwithmultiple cloud regions with three additional experiments which reproduce dynamic scenarios
regarding the composition of the cloud environment and the workload profile. In the first one, we show the effects on the RMTTF when a cloud
region joins the system. The results are reported in Figure 7(a). In this experiment, we have started our framework using only Region 1. After
about 50 seconds (the time is marked by a vertical dotted red line in the figure) Region 2 joins the system. At this point, the two controllers start
exchanging information. By the figure, we can see that, before Region 2 joins the system, the RMTTF of Region 1 is about 1000 seconds (also, it is
equal to the global RMTTF). After Region 2 joins the system, the RMTTF of Region 1 and Region 2 start to converge to comparable values. Overall,
the global RMTTF increases. This shows that OCES is able to distribute the global workload between the two regions, in a way to level out the
RMTTF of the two cloud regions and to reduce the global VMs failure rate.

In Figure 7(b), we show the results of an experiment in which Region 1 and Region 2 have been used to assess the behavior of the load balancing
approach of OCES. Emulated web browsers are connected only to Region 1, which is the only region managed by OCES at the beginning of the
experiment. All client requests are therefore initially processed by Region 1. After about 22 minutes (first vertical dotted red line in the figure),
Region 2 joins the system, and OCES Framework starts balancing the workload. Around minute 55 (second vertical dotted red line in the figure),
Region 2 leaves the system. By the results of this experiment with churn of regions, we note that when Region 2 joins, its RMTTF is higher than
Region 2—all VMs in this region are in a perfectly-healthy state, because no anomaly has accumulated yet—and the forward probability rapidly
increases for Region 2. At minute 34, the system reaches an equilibrium: the forward probability is constant (about 0.5 per region), and the RMTTF
of the two regions becomes almost the same. After that Region 2 leaves, the RMTTF of Region 1 returns to the same low value as in the first part of
the experiment. This synthetic experiment shows that OCES is able to take benefit from the elastic nature of cloud computing, and that the client
request forwarding approach is able to reduce the likelihood of a rejuvenation, provided that enough virtual resources are present in the system.

The third experiment tries to assess the behavior of OCES when the workload varies over time and is overall imbalanced. In the results reported
in Figure 7(c), the load generated by the emulated web browsers connected to Region 1 changes over time, while it is constant for Region 2. After
minute 22 (first vertical dotted red line in figure), the client request generation rate increases from 300 to about 700 requests per second. This
highest value is reached around minute 75. Initially, there are only Region 1 and Region 3 (Region 2 joins the system after about 90 minutes—
second vertical dotted red line in figure). We note that, while the incoming request rate increases, the RMTTF of both regions decreases. However,
although the incoming request rate increases only for Region 1, OCES is able to keep balanced the RMTTF of both cloud regions. Finally, when
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FIGURE 6 Results using 3 regions. The first row shows RMTTF, the second row shows the workload factor fi, the third row shows the response
time measured by the clients of the system.

Region 2 joins the system, the RMTTF of the all cloud regions starts to increase, as long as the forward probabilities changes and reaches an
equilibrium. This shows that OCES has been able to cope with different incoming client request rates in different cloud regions, as well as with
variations due to scale up/scale down of the system.

7 RELATED WORK

Cloud computing has become a fundamental asset for both the Academy and the Industry. Moreover, the overly-connected world in which we live,
requires applications to be available at all costs, independently of how complex their development lifecycle is 28. These aspects have generated
a new spark in the research literature to decide methodologies and tools to support a continuous operation of applications, in face of possible
problems they (or their supporting runtime environments) may experience 29.

A number of techniques proposed to mitigate the problem of software anomalies are based on the static analysis of code of the application 6.
Basically, they analyse the source code or the compiled code of the application, without requiring the its execution. As an output, they provide a list
of warnings, highlight potential weakness and/or provide useful software metrics, which may help programmers to address the potential anomalies
of the application. Various automatic static analysis tools have been proposed 6. Siavvas et. al. 30 provide a literature review of tools targeting two
important sub-fields of static analysis, i.e. (i) prediction of vulnerable software components, and (ii) optimum checkpoint recommendation. As for the
first type of tools, they aim at prioritizing testing and security inspection in order to find potential vulnerabilities in specific software components,
and to help programmers to fix them. They are typically based on vulnerability predictionmodels which rely onML techniques. Differently, optimum
checkpoint recommendation aims at identifying and suggesting to programmers the optimum locations the in source code of the applications where
checkpoints should be placed. An approach based on a mathematical model to estimate the optimum number of instructions of an application
that should be executed between two consecutive checkpoints is described by Siavvas et. al. 19. The model is designed for applications subject to
failures, which are addressed by re-executing a portion of the application instructions starting from the last checkpoint. The goal of the model is the
minimization of the total execution time of the application by identifying the optimal checkpoint placement. Siavvas et. al. also propose 31 another
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FIGURE 7 Experimental Results when using 3 Cloud Regions.

interesting application of statistical analysis. They use statistical analysis to assess the relationship between the so-called Technical Debt (TD) 32 and
software security. TD is a measure inspired by the financial debt and can be used to estimate long-term quality problems of software. The authors
show that an increase in the TD of software applications could indicate an increase of their vulnerabilities and vice versa. Consequently, TD may
help programmers to evaluate the potential vulnerability degree of their applications a then to try to mitigate them. Overall, all the solutions we
described above offer techniques aimed at the identification and the removal of the potential the software anomalies of an application. Differently,
the approach we presented in this article is a distinct way to address this kinds of problems, since it targets the improvement of availability and
performance of applications at the execution time. Accordingly, it can be considered a complementary approach, that can be used, e.g., before that
software anomalies are identified and removed in applications already in the production stage, or when their removals are unfeasible or too costly.

Several proposals have addressed the problem of detecting upcoming failures in cloud-hosted systems. Sahoo et al. 33 base their detection
on time series and rule-based classification, taking as input a set of logs collected over a year of execution. Adamu et al. 34 rely on ML-based
prediction models to detect hardware failures in real-time cloud environments. Liu et al. 35 propose a composite model-based approach to detect
aging of cloud resources, in the context of anomalies. A regression-based transaction model, which reflects the resource consumption model of
the application has been used by Cherkasova et al. 36, which notably does not require to explicitly probe the system as we do. Yin et al. 37 rely on
multi-layer neural networks in order to identify the state in which virtual instances are running, so as to determine the current quality of service. An
approach based on experiments to extract interaction-related failure indicators has been proposed by Li et al. 38. The calculation of derived metrics
has been also explored 39, although without the final goal of building multiple prediction models. Other approaches 40,41,42 have explicitly dealt with
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the detection of upcoming failures, also in the context of hybrid clouds 43. Overall, these works show the importance of promptly detecting what
we call “failure points” in virtualized applications—as discussed in the article, any QoS/QoE is handled as a failure point in our approach. Differently
from these contributions, we do not concentrate on a specific technique to detect an upcoming failure. Rather, we have proposed an extensible
framework which allows the user to specify what should be considered a failure point (thus increasing the applicability of our proposal) which can
autonomously derive a set of different prediction models, enabling the user to select the best-suited one.

A different research line has dealt with the construction of reliable prediction models when the data to be used for training is unreliable 44 or
when bias and variance in the data could cause inaccurate prediction 45. This important research line is orthogonal to the one carried in this article.
Indeed, we believe that such results could be easily embedded in our framework, provided its extremely modular nature.

There have been also been several proposals to detect anomalous behavior of applications running in distributed (cloud-based) environments
targeting cybersecurity 46,47. While we do not explicitly tackle security aspects in OCES, in principles the modular configuration of the failing
condition could be extended to account for metrics which exhibit anomalies also at the level of security. Nevertheless, we believe that a more
promptly response than the one required to rejuvenate VMs for performance/availability issues should be enforced, thus possibly requiring an
extension of the proposal in this article.

Autonomicity, self-* properties and real-time detection are also approaches which are well studied in the literature 48,49,50,51,52, also with a special
focus on resource monitoring 53,54. Capacity allocation has also been dealt with 55, although from the perspective of economic savings by choosing
the best-suited instances. Our proposal retains all the capabilities of the aforementioned works in the literature, although we propose a general
software architecture which embodies all aspects of the applications, independently of their deployments.

As for load balancing in the cloud, a number of techniques and tools have been presented in literature. A survey that classifies various techniques
has been published by Afza et al. 56. The basic goal of load balancing techniques in the cloud is ensuring that no (virtual) resource is either overloaded
or under-loaded compared to other ones. Load balancing can take into account various metrics, such as throughput, response time, resource
utilization, availability and energy consumption 57,58,59,60. One major challenge with cloud applications is distributing the workload over a dynamic
computing environment, also considering that the application deployment may span different and heterogeneous cloud regions. Load balancing
can be applied also to optimize the workload distribution in hybrid clouds, i.e. composed of both private and public cloud regions. As an example,
an approach based on a mathematical model designed to optimize the distribution over local and remote cloud services is proposed by Gelembe
et al. 60. Specifically, it uses a model that takes into account both performance and energy-related issues.

Compared to the techniques that have been presented in literature, the novelty that we introduced with OCES is that it takes into account a
new parameter in the load balancing decision process, i.e. the RMTTF of the different cloud regions. In our experimental study, we evaluated three
different load balancing policies that use this parameter. Independently of the specific results of the three policies, we showed that it is possible
to use RMTTF within load balancing techniques to mitigate the problem of high failure frequencies of some cloud regions compared to other
ones. Ultimately, this paves the way for investigating the integration of this kind of metric also within other load balancing techniques presented
in literature.

8 CONCLUSIONS

In this article, we explored a new holistic approach to cope with the problem of software anomalies in cloud-based applications. In particular, we
presented OCES, a framework that implements this new approach and offers specific tools to manage applications deployed over heterogeneous
cloud regions distributed at geographical scale. OCES offers a new way to handle run-time failures due to software anomalies, and represents a
complementary solution to other approaches which aim at detecting and removing software errors, such as static analysis. Indeed, OCES focuses
on the effects of anomalies at run-time rather than on their root cause, and promptly performs repairing actions.With our framework, we evaluated
a proactive way to exploit software rejuvenation to prevent system failures, and we introduced a new load balancing approach, based on the
predicted MTTF and RMTTF, to cope with the high failure rates in different and heterogeneous cloud regions.

The experimental results we observedwith a real-word setting show that, by putting together the potential advantages of proactive rejuvenation
and load balancing, we can be able to both prevent system failures and control the operation response time, keeping it below a given threshold. Also,
they show that is possible to prevent highly unbalanced failure/rejuvenation rates in different cloud regions, despite the heterogeneity of regions
in terms of anomalies occurrence and available computing resources. Ultimately, the results demonstrate an improvement of the overall system
performance, thanks to the overall reduction of the average global response time of operations, and an improvement of the system availability
perceived by the user, thanks to a reduction of the global failure rates.

Overall, our experience demonstrates the viability of our approach. We note that, on the one hand, OCES addresses various tasks related to
the problem of run-time management of software anomalies, and proposes a set of techniques and tools cope with them. On the other hand, it
represents only one of the possible implementations of our approach. Therefore, also different techniques and/or tools could be used and evaluated
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to address the different tasks. Accordingly, we believe that our experience opens the way to further studies to improve, extend or complement,
also with additional techniques and tools, the approach we proposed.
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9 APPENDIX

As discussed in Section 3.4, the basic set of ML methods of OCES includes six linear and non-linear methods, specifically: Linear Regression, M5P,
REP-Tree, Lasso as a Predictor, Support-Vector Machine (SVM), and Least-Square Support-Vector Machine. For completeness, in this section, we
provide a brief description of these ML methods. For a detailed description, the reader can refer to the references we report for each of them.

Linear Regression 14 is an approach for modeling the relationship between a (scalar) dependent variable and one or more explanatory variables.
Given a data set defined as {yi, xi1, . . . , sip}n

i=1 of n statistical units, a linear regression model assumes that the relationship between the dependent
variable yi and the p-vector of regressors xi is linear. This relationship is modeled through a disturbance term or error variable εi—an unobserved
random variable that adds noise to the linear relationship between the dependent variable and regressors. Thus the model takes the form:

yi = β1xi1 + · · ·+ βpxip + εi = xT
i β + εi, i = 1, . . . , n (12)

M5P 15 is a decision tree with the possibility of linear regression functions at the nodes. First, a decision-tree induction algorithm is used to build
a tree, but instead of maximizing the information gain at each inner node, a splitting criterion is used that minimizes the intra-subset variation in
the class values down each branch. The splitting procedure in M5P stops if the class values of all instances that reach a node vary very slightly, or
only a few instances remain. Second, the tree is pruned back from each leaf. When pruning, an inner node is turned into a leaf with a regression
plane. Third, to avoid sharp discontinuities between the subtrees a smoothing procedure is applied that combines the leaf model prediction with
each node along the path back to the root, smoothing it at each of these nodes by combining it with the value predicted by the linear model for
that node.

REP-Tree 16 is a fast decision tree learner. It builds a decision/regression tree using information gain/variance and prunes it using reduced-error
pruning (with backfitting). Only sorts values for numeric attributes once. Missing values are dealt with by C4.5’s method 61 of using fractional
instances.

Lasso as a Predictor 13 generates, depending on a parameter λ, a vector β whose elements are the weights of the vector xj, which minimizes the
objective function shown in Equation (2). The application of Lasso as a Predictor is grounded on the samemathematics used for Lasso Regularization,
but the goal is different. In fact, while during the regularization process we are interested in determining the β vector, during the prediction we
exploit the already-computed β vector to evaluate the prediction model, which is expressed as a closed-form equation.

Support-Vector Machine 17 constructs a hyperplane or a set of hyperplanes in a high- or infinite-dimensional space, which can be used for classi-
fication, regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training
data point of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier.

Least-Square Support-Vector Machine 18 Given a training set {xi, yi}N
i=1 with input data xi ∈ Rn and corresponding binary class labels yi ∈

{−1,+1}, the SVM classifier, according to Vapnik’s original formulation 17, satisfies the following conditions:

wTφ(xi) + b > 1, if yi = +1,

wTφ(xi) + b < −1, if yi = −1.
(13)

which is equivalent to yi

[
wTφ(xi) + b

]
≥ 1, i = 1, . . . ,N where φ(x) is the non-linear map from original space to the high (and possibly infinite)

dimensional space.
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