
IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 1

Adaptive Model-based Scheduling in
Software Transactional Memory

Pierangelo Di Sanzo, Alessandro Pellegrini, Marco Sannicandro, Bruno Ciciani, and Francesco Quaglia

Abstract—Software Transactional Memory (STM) stands as powerful concurrent programming paradigm, enabling atomicity and
isolation while accessing shared data. On the downside, STM may suffer from performance degradation due to excessive conflicts
among concurrent transactions, which cause waste of CPU-cycles and energy because of transaction aborts. An approach to cope
with this issue consists of putting in place smart scheduling strategies which temporarily suspend the execution of some transaction in
order to reduce the transaction conflict rate. In this article, we present an adaptive model-based transaction scheduling technique
relying on a Markov Chain-based performance model of STM systems. Our scheduling technique is adaptive in a twofold sense: (i) it
controls the execution of transactions depending on throughput predictions by the model as a function of the current system state, (ii) it
re-tunes on-line the Markov Chain-based model to adapt it—and the outcoming transaction scheduling decisions—to dynamic
variations of the workload. We have been able to achieve the latter target thanks to the fact that our performance model is extremely
lightweight. In fact, to be recomputed, it requires a reduced set of input parameters, whose values can be estimated via a few on-line
samples related to the current workload dynamics. We also present a scheduler that implements our adaptive technique, which we
integrated within the open source TinySTM package. Further, we report the results of an experimental study based on the STAMP
benchmark suite, which has been aimed at assessing both the accuracy of our performance model in predicting the actual system
throughput and the advantages of the adaptive scheduling policy over literature techniques.

Index Terms—Transactional Memory, Transaction Scheduling, Performance Models, Model-based Performance Optimization.

F

1 INTRODUCTION

T RANSACTIONAL Memory (TM) allows transparent syn-
chronization of shared-data accesses by concurrent

threads. It simplifies the software design/coding process.
However, a core issue to tackle is related to its intrinsic
speculative nature. TM keeps consistency—atomicity and
isolation—by relying on transaction abort, i.e. by squashing
the effects of a transactional code block each time a running
instance is detected to conflict with another transaction.
Abort events generate, in their turn, waste of CPU time
and consequently, energy. Therefore, TM systems require
to be complemented with methods aimed at reducing as
much as possible the negative impact of aborts, while still
enabling high exploitation of parallelism in the underlying
hardware. Two main techniques have been exploited in the
literature to cope with performance and energy efficiency
in TM systems: transaction scheduling and thread scheduling.
In the former (e.g. [1]), a TM-scheduler may delay the
execution of a transaction depending on the expectation of
conflicts’ occurrence. Thread scheduling techniques (e.g. [2])
are instead based on controlling the number of threads used
to run the application. The objective is therefore the one of
regulating the thread-level parallelism so as to maximize the
transaction throughput. In any case, given that the workload
profile of the applications can be unknown and/or may
change along the application lifetime, scheduling techniques

• P. Di Sanzo, A. Pellegrini, M. Sannicandro and B. Ciciani are with
the Department of Computer, Control, and Management Engineering,
Sapienza University of Rome.E-mail: {disanzo, pellegrini, sannicandro,
ciciani}@dis.uniroma1.it

• F.Quaglia is with Dipartimento di Ingegneria Civile e Ingegneria Infor-
matica, Università di Roma“Tor Vergata”.
E-mail: francesco.quaglia@uniroma2.it

Manuscript received 10 Oct. 2018; revised 5 Oct. 2019; accepted 6 Nov. 2019

should generally entail on-line adaptive strategies.
For what concerns Software TM (STM) systems, litera-

ture scheduling techniques [3] can be separated into two
groups: (a) the ones based on performance prediction mod-
els (e.g. [2]) and (b) the ones based on heuristic approaches
(e.g. [4]). Existing model-based techniques have the draw-
back of requiring the a-priori profiling of the applications
for collecting data needed to instantiate the performance
models. Heuristic-based techniques typically require the
user to configure parameters (e.g. conflict rate thresholds)
based on which the scheduler takes its decisions. As a
consequence, the effectiveness of these techniques depends
on the suitability of the selected configuration with respect
to the actual workload profile.

In other cases (e.g. [5], [6]), the heuristics require to
periodically alter the current system configuration to under-
stand if better configurations exist. This may lead to work
with suboptimal settings along the exploration phase.

To cope with the limitations of the existing techniques,
we developed a novel performance model for STM systems,
which uses a Markov Chain to capture the system evolution
as a function of the number of concurrent transactions. Also,
we designed an adaptive transaction scheduler that exploits
the performance model for taking on-line decisions about
the number of transactions to be allowed to simultaneously
reside in the processing stage, with the aim of maximizing
the transaction throughput. To operate, the scheduler peri-
odically estimates at runtime a few system parameters and
(re-)instantiates on-the-fly the Markov Chain-based perfor-
mance model. The performance predictions by the model
are then used by the scheduler for adaptively tuning the
number of transactions that are allowed to run concurrently.

Compared to literature proposals, our approach offers

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 2

the following main advantages: (a) it does not require a-
priori (e.g. off-line) workload profiling; conversely, profiling
is carried out at runtime in a very lightweight manner (since
instantiating the model requires to sample a set of only 4
parameters, which does not include transaction read/write-
sets) (b) it is extremely simple to be configured, given that
the only parameter to be set by the user is the time interval
after which (re-)sampling the system target parameters and
(re-)instantiating the performance model.

To evaluate the effectiveness of our model-based adap-
tive scheduler, we have implemented it within the open
source TinySTM package [7] and report experimental re-
sults that demonstrate the performance advantages of our
solution compared to literature schedulers for STM. Further,
we present experimental data showing that our scheduler is
able to counteract the detrimental effects caused by exces-
sive transaction aborts on energy waste.

The remainder of this article is organized as follows.
Related work is discussed in Section 2. In Section 3 we
present an experimental study motivating the need for
innovative scheduling techniques like the one we introduce.
The Markov Chain-based performance model is presented
in Section 4. A model validation study is reported in Section
5. In Section 6 we provide an overall discussion on our
modeling approach. The model-based adaptive transaction
scheduling technique is described in Section 7. The imple-
mentation of our adaptive scheduler within TinySTM and
its experimental assessment are presented in Section 8.

2 RELATED WORK

The heuristic-based scheduling techniques in [1], [4], [6],
[8] use feedback control to decide how to carry out their
scheduling decisions. The solution in [1] blocks transactions
in order to serialize their execution when the conflict rate ex-
ceeds a pre-configured threshold. The scheduler presented
in [4] dynamically changes the number of active threads
with the aim of keeping the transaction conflict rate (TCR)
within a target range. This technique was revised in [9] by
using a specific target value for TCR (rather than a range).

The work in [8] introduces a scheduling technique in-
spired to the hill-climbing search, where the number of
transactions allowed to run concurrently is continuously
incremented or decremented in order to find the value that
maximizes the throughput. The techniques in [5], [6] use a
similar hill-climbing search to regulate the number of active
threads.

The scheduling technique in [10] relies on the assump-
tion of temporal locality, according to which the probability
that a new transaction to be executed by some thread
accesses the same data accessed by the most recent trans-
actions executed by the same thread is high. Based on this
assumption, the scheduler predicts data conflicts among
transactions that are going to be executed, thus possibly
serializing them.

In the heuristic-based techniques in [11], [12], [13], the
scheduler acts in response to transaction aborts. When a
transaction a is aborted due to a conflict with a transaction
b that is being executed by some thread T, the schedulers
in [11], [12] move a to a queue of transactions that are
bound to T. This avoids that a is again executed concurrently

with b, preventing repeated conflicts between them. In [13],
the scheduler tracks, for each transaction, the transactions
it conflicted with, and the transactions that, in turn, con-
flicted with them (second-hop transactions). After an abort,
a transaction is serialized if the wounding transaction or
a fraction of second-hop transactions are still running. In
[14], the authors present a heuristic-based approach that
changes the scheduling strategy depending on the average
length of transactions. For short running transactions, the
scheduler applies the strategy based on the transaction
commit rate presented in [1]. Otherwise it decides which
transactions can be executed concurrently on the basis of
the recent conflict history. The proposal in [15] uses two
different strategies in combination, one for short and the
other for long transactions. The concurrency level of short
transactions is increased/decreassed on the basis of whether
the wasted time is below/above a threshold. Differently,
long transactions are allowed to run concurrently if there
is no intersection between their predicted write and read
sets.

The reliance on heuristic methods makes all the afore-
mentioned techniques very different from our proposal,
since we use a model-based approach.

For what concerns performance models of STM applica-
tions, in the literature we find alternative proposals. The
model in [16] aims at predicting the speed-up of STM
applications as a function of the number of concurrent
threads. This is achieved via the identification of a function
that approximates the speed-up curve. The approximation
is based on fitting methods that exploit a set of speed-up
measurements collected by executing the application with
different numbers of concurrent threads. The proposals in
[17], [18], [19], [20] exploit Continuous Time Markov Chains
(CTMC) to model the evolution of concurrent threads that
execute transactions. Also, in [17], the execution of a trans-
action is modelled through a Discrete Time Markov Chain.
The transaction throughput is estimated by calculating the
steady state probability vector of the CTMC. All these
performance models have limited (if not null) applicabil-
ity to the problem of on-line performance forecasting and
adaptive transaction/thread scheduling, thus mostly repre-
senting tools for off-line analysis since they require a non-
lightweight and detailed workload profiling phase to be exe-
cuted in advance. Also, the size of the Markov Chains used
by these models grows quadratically with the number of
concurrent threads and the number of operations executed
by transactions, thus their calculation can become costly.
Differently, in our approach we purposely developed a
lightweight Markov Chain-based model with very reduced
instantiation cost, whose size—which is independent of the
number of operations by transactions—grows linearly with
respect to the number of concurrent threads.

The model-based scheduling techniques presented in the
literature use analytical models or Machine Learning (ML)
models. The analytical model used by the thread schedul-
ing technique in [21] is instantiated via regression analysis
applied to a family of reference functions, based on mea-
surements preventively collected by profiling the workload.
Similarly, the neural network model used in [2] requires
a wide training set built via a workload profiling phase.
This technique was improved in [22] through a dynamic

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 3

feature selection mechanism. The work in [23] proposes
a solution for instantiating a performance model via the
combination of analytical and ML approaches. Overall, all
these proposals still need preliminary workload profiling
phases in order to instantiate the performance models. This
is a problem only partially addressed by the pure analytical
approach in [21] or the mixed (analytical/ML) one in [23].

3 PRELIMINARY EXPERIMENTAL ANALYSIS

In this section, we report experimental data showing the
impact of transaction concurrency on performance and en-
ergy consumption. They also demonstrate the effects of the
variation of the configuration parameters in some litera-
ture STM schedulers. These effects motivate the need for
more effective solutions like ours. The data we show have
been collected by executing experiments with two different
applications taken from the STAMP benchmark suite [24],
i.e. Intruder and Vacation. We have run these applications
on a 16-core machine exploiting the TinySTM package [7]1.
Each application was run with two different configurations
of its input parameters, which generate different workload
profiles. Figure 1 shows the variation of the normalized
application execution times as a function of the number
of threads. For Vacation, the thread-level concurrency ex-
actly corresponds to the transaction-level concurrency since
threads only run transactions. For Intruder, the transaction-
level concurrency is a fraction of the thread-level concur-
rency since threads alternate between transactions and non-
transactional code blocks. In any case, increasing the num-
ber of threads leads to an increase of the actual transaction-
level concurrency. For each application, the curves related
to the different configurations of the input parameters are
quite different. For Configuration A of Intruder, the minimum
is reached with 8 concurrent threads. With more than 8
threads the execution time increases because of an increase
of the incidence of transaction abort/retry events. For Con-
figuration B of Intruder, the minimum is achieved with 4
concurrent threads. As for Vacation, with Configuration A
the execution time constantly decreases while increasing
the number of concurrent threads up to 16. On the other
hand, with Configuration B the optimal number of concurrent
threads is 6.

Overall: i) TM applications’ performance is highly af-
fected by the degree of actual concurrency among transac-
tions, ii) the optimal concurrency level changes depending
on the application, and iii) it may be different when an
application runs with different workload profiles. Finally,
we observe that, since in general settings the workload
profile may vary along the application lifetime, the optimal
concurrency level among transactions may vary as well.

The level of concurrency among transactions also affects
the amount of energy required for running the applica-
tions. We also report the normalized energy consumption

1. The used machine is a HP ProLiant server equipped with two
2GHz AMD Opteron 6128 processors—each one having 8 cores, for
a total of 16 cores—64 GB RAM NUMA, and Linux kernel 3.2, with
support for NUMA allocation. The actual memory allocator used by
TinySTM is malloc-glibc (v2.26), configured to rely on the first-touch
NUMA policy offered by the kernel. When scaling up the number
of threads in any experiment, the threads are pinned to CPU-cores
residing as much as possible in a same NUMA node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 6 8 10 12 14 16N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Concurrent threads

Appplication execution times

Intruder - Conf A
Intruder - Conf B

Vacation - Conf A
Vacation - Conf B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

Concurrent threads

Energy consumption

Intruder - Conf A
Intruder - Conf B

Vacation - Conf A
Vacation - Conf B

Fig. 1. Normalized application execution time and energy consumption
of Intruder and Vacation. Input parameters for ”Intruder - Configuration
A”: -a8 -l176 -n109187”, Input parameters for ”Intruder - Configuration
B”: -a20 -l16 -n32768”, Input parameters for ”Vacation - Configuration
A”: -n2 -q90 -u98 -r1048576 -t2097152”, Input parameters for ”Vacation
- Configuration B”: -n2 -q60 -u90 -r32768 -t1048576”.

(see Figure 1) that we measured while running the above-
mentioned benchmark applications2. The plot shows that
the energy consumption curves are quite similar to the ones
related to the execution time. However, there is one point
worthy to note. If the applications run with a number of
threads greater than the optimal one (in terms of perfor-
mance) then the energy consumption tends to degrade even
more rapidly with respect to performance—see the curves
with more than 8 concurrent threads and Configuration A,
or 4 concurrent threads and Configuration B of Intruder,
and more than 6 concurrent threads and Configuration B of
Vacation.

In summary, the need for solutions allowing STM ap-
plications to keep the actual transaction-level concurrency
close to the optimal value is crucial for the application per-
formance, and it is still more important for energy efficiency.

As mentioned in our literature survey, the optimization
of the actual transaction-level concurrency can be addressed
via transaction scheduling approaches. However, existing
schedulers based on performance models have the draw-
back of requiring the a-priori profiling of the applications
in order to build their underlying performance model. On
the other hand, heuristic-based schedulers, although being
more lightweight to instantiate, show an effectiveness that
depends on the user ability to properly configure specific
scheduling parameters—alternatively they require explo-
ration phases that may lead the system to work with subop-
timal settings for a while. To provide examples showing the
effects on performance by different user-tunings of schedul-
ing parameters, we report data referring to Configuration
A of Intruder and Vacation for the case of two literature
heuristic-based transaction schedulers, namely ATS [1] and
Shrink [10], both integrated in TinySTM. As outlined in
Section 2, ATS temporary blocks transactions when the abort
rate oversteps a given threshold, referred to as Contention In-
tensity. Differently, Shrink uses a prediction-based strategy,
and activates the scheduling algorithm only if the transac-
tion success rate is lower than a so-called Success threshold.
We focus on the impact on performance while varying the
values of these thresholds, which can in principle be set
by the user to any value in the interval between 0% and
100%. Reported data—plotted in Figure 2—are related to
executions with 8 concurrent threads. Nevertheless these

2. Energy consumption is related to the CPU-memory subsystem,
and has been measured through the “Power Gov” tool [25].

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 4

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 20 30 40 50 60 70 80 90

N
o

rm
a

liz
e

d
 A

p
p

lic
a

ti
o

n
 E

x
e

c
u

ti
o

n
 T

im
e

Contention Intensity / Success Threshold (%)

Execution Time with Intruder and Vacation

Intruder with Shrink
Intruder with ATS

Vacation with Shrink
Vacation with ATS

Fig. 2. Performance variation for Intruder and Vacation with different
values of Contention Intensity or Success Thresholds.

outcomes are a consistent representation of what we have
observed with different numbers of concurrent threads. The
plot shows the execution time of Intruder and Vacation
while changing the values of the Contention Intensity and
Success thresholds between 10% and 90%. As we can see,
the execution time remarkably changes as a function of the
values of these thresholds. For Intruder, 70% is the optimal
value for both thresholds. For Vacation, the optimal values
of the two thresholds are different. The optimal threshold for
the Contention Intensity in ATS is 90%, while the optimal
value of the Success threshold in Shrink is 50%. Overall,
the results show that the effectiveness of these schedulers
strongly depends on the ability of the user in selecting the
values of the scheduler parameters for each specific applica-
tion (and its configuration). This is a non-trivial task, espe-
cially for unknown/unforeseen workloads, and may require
to preventively execute various runs of an application to ex-
plore different choices. The scheduling approach we present
in this article exactly aims at overcoming the need for (i)
executing pre-profiling phases of the application workload
and (ii) configuring (complex) scheduling parameters that
may require experienced users and/or preventive studies to
identify well-suited values. Also, it does not require altering
the system configuration for carrying out exploration phases
aimed at driving scheduling decisions.

4 THE MARKOV CHAIN-BASED MODEL

4.1 Modeled Scenario
We assume an STM application running with N concur-
rent threads. At any point in time, a thread can execute a
transaction or a non-transactional code (ntc) block. Hence,
our model copes with general scenarios where the actual
number of concurrent transactions can vary over time.

If a transaction is aborted because of conflicting data
accesses with concurrent transactions, the thread executes a
new run of the same transaction. The transaction execution
time is therefore the elapsed time between the beginning
of the first run of the transaction and the completion of its
finally successful run—the one that commits. We assume
the presence of a transaction scheduler that admits up to
m concurrent transactions to their processing stage. Thus,
a thread that starts a new transaction is blocked by the
scheduler if m transactions are already being processed. We
denote with k the number of threads that have started the
execution of a transaction (including the blocked ones, if
any) and have not yet committed the transaction. When a
thread starts a transaction and k ≥ m the transaction is

temporarily blocked, thus it enters a waiting phase. When
one of the m non-blocked transactions is committed, one
blocked transaction (if any) is unblocked—FIFO unblocking
can be used to guarantee fairness. Clearly, the actual number
of concurrently running transactions can vary over time
between 0 and m, just because threads can execute either
transactions or ntc blocks along time. The objective of our
scheduling technique is the one of determining the optimal
value of m depending on the application execution profile,
which may vary over time. This is achieved by exploiting
the performance model we introduce in the next section,
which is aimed at predicting the transaction throughput as
a function of the value of m.

4.2 The Model
We model the execution of the STM application via a dis-
crete state-space model with N + 1 states. In state k, with
0 ≤ k ≤ N , there are k (out of N) threads processing trans-
actions, including both running and blocked transactions.
Clearly, k assumes the value 0 when none of the N running
threads is currently executing a transactional code block.
When the system is in state k and a thread starts a new
transaction, the system transits to state k + 1. Conversely,
if one of the k threads running transactions successfully
executes the commit operation, the system transits to state
k−1. We note that in each state k ≤ m exactly k transactions
are running. Differently, for k > m then m transactions are
running and k −m transactions are blocked.

We assume the residence times within the states (the time
spent continuously within a state after entering it) to be
exponentially distributed. The validity of this assumption
is analyzed in Section 6 by the means of experimental
data. Based on this assumption, we model the STM appli-
cation execution via a time-homogeneous Continuous Time
Markov Chain (CTMC) [26]. A representation of our CTMC-
based model is shown in Figure 3.

4.2.1 State Transition Rates
We denote with tntc the average time for executing some
ntc block. Thus, the transaction inter-arrival rate along any
thread is λ = 1

tntc
. Consequently, denoting with λk the

transition rate from state k to k + 1, we have

λk = (N − k) · λ (1)

As for the transition rate from state k to k − 1, it depends
on k and m—we remark that m represents the maximum
number of transactions that are allowed to run concurrently
by the scheduler. Denoting with tk the average transaction
execution time when there are k executing transactions, the
transaction execution rate in state k is equal to µk = 1

tk
. Ac-

cordingly, for any state k ≤ m, since exactly k transactions
are running (i.e. none of them is blocked), the transition rate
from state k to k − 1 is

γk = k · µk (2)

Conversely, for any state k > m, the running transactions
are m, while the remaining k −m transactions are blocked.
Hence, for k > m, the transition rate to state k − 1 is

γk = m · µk (3)

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 5

N-1m+1mm-2m-210

γ
1

γ
2

γ
m-1

γ
m

γ
m+1

γ
m+2

γ
N

Fig. 3. The CTMC-based model.

4.2.2 Transaction Execution Time

In this section, we focus on determining the average transac-
tion execution time tk when the system is in state k. We note
that tk is affected by the number of times a transaction is
aborted (hence re-executed) before successfully committing.
We refer to as wasted time, which we denote with wt,k, the
average time spent for executing all the aborted runs of a
transaction (including the time to execute abort operations
and transaction restarts) while the system is in state k.
Further, we refer to as useful time, which we denote with
ut,k, the average time to execute the last transaction run
(i.e. the successfully committing one), when the system is in
state k. Hence, we have that tk = wt,k + ut,k by definition.

Further, we also have that the wasted time wt,k is equal
to the product between the average time wrt,k to execute a
transaction run that is aborted while the system is in state k
and the average number of times rk a transaction is aborted
while the system is in that same state, say

wt,k = wrt,k · rk (4)

Assuming that, for a given state k, the transaction abort
event is independent of previous abort events affecting the
same transaction, the probability distribution of the number
of runs of a transaction, before a successful commit takes
place, is geometric3. Thus, if pk is the transaction abort
probability when the system is in state k, we have

rk = pk/(1− pk) (5)

Finally, we can safely assume that all the abort probability
values pk for k > m are equal to pm, given that in any
state k > m, exactly m transactions are running (they are
not blocked). Also, for this subset of states, we can assume
that wrt,k and ut,k are equal to wrt,m and ut,m, respectively,
since none of them depends on the number of blocked
transactions. Consequently, for each state k ≥ m, we have

wt,k = wrt,m · rm (6)

which implies

tk = wt,m + ut,m (7)

and finally

γk = m · µm (8)

For clarity, in Figure 4 we show the CTMC with transi-
tion rates expressed as a function of N , λ, m, and µm.

3. The reasonableness of this assumption has been already demon-
strated via experimental results proposed to validate various literature
analytical performance models of transactional systems (see, e.g., [18],
[19], [27], [28]).

Fig. 4. The CTMC-based system model with transition rates as a func-
tion of N , λ, m, and µm.

4.2.3 System Throughput
The system throughput thrm when the scheduler admits at
most m transactions to the running stage can be estimated
through the CTMC stationary distribution. Specifically, de-
noting with qk the stationary probability of state k, we have

thrm =

N∑
i=1

qk · γk = q1µ1 + q22µ2 + ...

...+ qmmµm + qm+1mµm + ...+ qNmµm (9)

In order to compute qk, with 0 ≤ k ≤ N , we can use the
CTMC general-equilibrium solving equations [26]

qk = q0

k−1∏
i=0

λi
γi+1

(10)

q0 =
1

1 +
∑N
k=1

∏k−1
i=0

λi

γi+1

(11)

We define, for any k ≤ m

ak =

k−1∏
i=0

(N − i)λ
(i+ 1)µi+1

(12)

and, for any k > m

bk =

k−1∏
i=m

(N − i)λ
mµm

(13)

Hence, by Equation 10, for any state k ≤ m we have

qk = q0 · ak, (14)

and for any state k > m we have

qk = q0 · am · bk (15)

Finally, Equation 11 can be rewritten by spitting the sum at
the denominator into two sums, where k varies from 1 to
m− 1 and from m to N , respectively. Thus we have

q0 =
1

1 +
∑m−1
k=1 ak +

∑N
k=m am · bk

(16)

By relying on Equations 12-16 we can finally calculate qk, for
any k from 0 to N . Hence, we can calculate the throughput
values thrm via Equation 9 for any value of m.

We note that instantiating our model only requires
knowing the values of the four parameters listed in Table
1, which can be easily and non-intrusively measured at
runtime (or even approximated as we shall discuss). Further,
by construction of the CTMC-based model, once fixed a
value for m, for any state k > m the aforementioned
parameters have the same values (given that pk does not
change for k ≥ m). This further contributes to keep the
number of observations to be collected for instantiating the
CTMC-based model small.

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 6

ut,k average transaction useful time in state k
wr

t,k average time for an aborted transaction run in state k
pk transaction abort probability in state k
tntc average execution time of ntc blocks

TABLE 1
Input parameters for instantiating the performance model.

5 MODEL VALIDATION

In this section, we present experimental data for an assess-
ment of the accuracy of our performance model. Further,
we illustrate how the model can be used to perform what-if
analysis vs the number of concurrent transactions admit-
ted to run by the scheduler. What-if analysis constitutes a
building block on top of which the adaptive scheduler we
present in this article is built. In this study, we exploit three
applications of the STAMP benchmark suite [24], Intruder,
Yada and Vacation4. We selected them since they show very
different workload features (as reported in [24]), such as the
transaction length, the percentage of time spent in trans-
actions (vs non-transactional code blocks), the contention
intensity and the read/write set size. We have run these
applications using the TinySTM open source package [7],
deploying them on the 16-core HP ProLiant machine de-
scribed in Section 3. We augmented TinySTM with profiling
capabilities to estimate the parameters listed in Table 1 and
with the possibility to admit a given maximum number of
concurrent transactions to the running stage.

5.1 Throughput Prediction
In order to assess the model accuracy, we compared the
predicted system throughput and the real one measured
while executing the selected benchmark applications. The
throughput prediction has been made at runtime, every
1000 executed transactions, by dynamically re-instantiating
the model. This has been done by exploiting samples for
estimating the parameters listed in Table 1, collected along
the execution interval of those 1000 transactions. In these
experiments we varied the number of threads N used to
run the applications, and the number m of concurrent
transactions admitted to the running stage.

The results are shown in Figure 5. By the plots, we ob-
serve an accurate throughput prediction by the performance
model in all the tested configurations, including the one
with 16 threads—corresponding to the maximum number of
CPU-cores available in the underlying machine—all of them
allowed to execute their transactions concurrently (m = 16).
This is a relevant achievement when considering that, for
two of the three benchmarks, m = 16 is a configuration
leading to thrashing (repeated transaction aborts). In fact,
with such settings, the execution times of both Intruder
and Yada are definitely stretched (compared to settings with
lower levels of transaction parallelism) just due to trashing
phenomena. These phenomena, as well as more favorable
runtime dynamics, are reliably captured by our performance
model. Also, the predictions by the model are accurate
independently of the stability of the real throughput curve
associated with the different settings.

4. The corresponding configurations are ”Intruder: -a8 -l176 -
n109187”, ”Vacation: n4 -q90 -u98 -r1048576 -t4194304”, ”Yada: -a10
ttimeu1000000.2”

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25T
h

ro
u

g
h

p
u

t
(t

ra
n

s
./

m
s
e

c
)

Application Progress Time (seconds)

Intruder

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14 16 18

Application Progress Time (seconds)

Yada

Predicted - 4 threads, m=2

Measured - 4 threads, m=2

Predicted - 8 threads, m=4

Measured - 8 threads, m=4

Predicted - 12 threads, m=8

Measured - 12 threads, m=8

Predicted - 16 threads, m=16

Measured - 16 threads, m=16

Fig. 5. Predicted vs measured throughput.

 0

 200

 400

 600

 800

 1000

 1200

 0 400 800 1200

P
re

d
ic

te
d

 t
h

ro
u

g
h

p
u

t

Measured throughput (trans./msec)

Intruder

 0
 20
 40
 60
 80

 100
 120
 140

 0 40 80 120

Measured throughput (trans./msec)

Yada

 0

 100

 200

 300

 400

 0 100 200 300 400

Measured throughput (trans./msec)

Vacation

Fig. 6. Prediction accuracy.

Overall, the average relative throughput prediction error
by our model (across all the configurations) falls in the
intervals between 5.5% and 8.5% (with standard deviation
between 0.032 and 0.071) for Intruder, 2.4% and 5.9% (with
standard deviation between 0.0072 and 0.019) for Yada, and
1.3% and 3.3% (with standard deviation between 0.011 and
0.041) for Vacation.

5.2 What-if Analysis
In our adaptive scheduler, the performance model is ex-
ploited to predict the transaction throughput for any arbi-
trary value of m while the application is running with some
other value of m (what-if analysis).

In more detail, when the application runs with m = x,
the transaction throughput for m = x′ (with x 6= x′) is pre-
dicted by 1) measuring the values of the parameters listed
in Table 1, 2) instantiating the model using the measured
values, and then 3) solving the model for m = x′. The
last step provides as output the predicted throughput for
m = x′.

If the throughput has to be predicted for m = x′,
with x′ > x, the set of transaction abort probabilities

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 7

{pk : x < k ≤ x′}, which are required to solve the
model for x′ > x, cannot be determined on the basis of the
measurements collected when running with m = x. This
is because the application is not allowed to run with more
than x concurrent transactions, leading to the impossibility
to sample pk with k > x. To estimate the missing probability
values we rely on the following considerations. When there
are x running transactions, a transaction can conflict with
any of the other x − 1 transactions. Denoting with pa the
probability that a transaction conflicts with one of the other
transactions, the probability for a transaction to experience
no conflicts with the other x−1 running transactions is equal
to (1− pa)x−1. Thus, the abort probability when there are x
running transactions can be calculated as

px = 1− (1− pa)x−1 (17)

Solving by pa the above equation we have

pa = 1− (1− px)
1

x−1 (18)

and if we know the transaction abort probability px for
a generic state x, we can calculate pa using Equation 18.
Hence, we can calculate pk for any k 6= x, thus also for any
k > x, using k in place of x in Equation 17.

To estimate the accuracy of what-if analysis, we per-
formed a set of experiments with the selected benchmark
applications. We ran each application by randomly changing
the value of m between 1 and 16 for each interval of
1000 consecutive transaction commits. At the end of each
interval, the model was instantiated using the collected
measurements and was used to predict the throughput for
the next interval, during which the application runs with
the new randomly selected value of m. At the end of each
interval, the real throughput was measured and compared
with the throughput previously predicted by the model. In
Figure 6, we report the scatter plots that show the prediction
accuracy for all throughput values measured for all intervals
along the execution of the three benchmark applications.
For each point, the closer the black line, the smaller the
error. The average prediction errors we measured are 10.8%
(standard deviation 0.069) for Intruder, 9.9% (standard devi-
ation 0.057) for Yada and 6.4% (standard deviation 0.064) for
Vacation, which demonstrate good matching of predicted
and measured throughput.

6 DISCUSSION ON THE MODELING APPROACH

Our performance model recalls a queuing system model
where: (i) the number of concurrent transactions k corre-
sponds to the number of customers in the system, (ii) the
transaction inter-arrival times correspond to the customer
inter-arrival times, and (iii) the transaction execution times
correspond to the service times. Based on these similarities,
the most suited stochastic process to describe the evolution
of the system we target in our analysis is one accounting
for both the customer inter-arrival time distribution and
the service time distribution. For STM systems, these dis-
tributions may change depending on the application, and,
generally, they may be arbitrary. Hence, using Kendall’s
notation, the STM system behaves, in our analogy, like a
G/G/m/N queuing system, where: a) the first and the

0 2000 4000 6000

0
0
,0
0
0
6

0
,0
0
1
2

Time

D
e
n
s
it
y

Time

D
e
n
s
it
y

0 10000 20000 30000

0
0
,0
0
0
1

0
,0
0
0
2

Fig. 7. Residence times (microseconds) in state k = 8 for Vacation and
Kmeans.

second G represent general distributions for inter-arrival
times and service times, respectively, b) m represents the
maximum number of concurrently-served customers (i.e.
the number of transactions allowed to run concurrently
by the scheduler), c) N represents the population size (the
number of threads). One aspect that makes the STM system
we target in our analysis more complex with respect to
the above-mentioned queuing system is that the average
transaction service time may change depending on state k,
just because of (potentially) different conflict probabilities
leading to aborts. Anyway, even neglecting this aspect, little
is known about exact resolution methods for queuing sys-
tems with general inter-arrival/service time distributions.

On the other hand, a model easily solvable at runtime,
and having closed-form solution, can be built using some
assumption, like our assumption of exponential residence
times in the different states.

In fact, we observed by experimental data that this
assumption well matches the behavior of actual STM ap-
plications. To provide the reader with some example data,
in Figure 7 we show the histograms of the state residence
times that we measured with the Vacation and Kmeans
applications5, which have been still taken from the STAMP
benchmark suite, running with 16 concurrent threads on
our reference computing system. Data refer to the residence
times in the state k = 8 (measured via rdtsc), but similar
results were observed for other values of k. We also plot
the calculated probability density functions (red curves) of
the exponential distributions whose rate is equal to the
average of the measured residence times. The shape of the
histograms well reflects the plotted curve. This indicates
that our modelling approach based on a CTMC is a prag-
matic and effective alternative to less tractable models like
the G/G/m/N one. On the other hand, the suitability of
the CTMC modelling choice is confirmed by the validation
study of our model (see Section 5).

7 MODEL-BASED TRANSACTION SCHEDULING

In this section, we describe the adaptive transaction sched-
uler based on the performance model presented in Section
4.2, which we call MCATS (Markov Chain-based Adaptive
Transaction Scheduler). MCATS targets the maximization of
the system throughput by dynamically regulating the num-
ber of concurrent transactions admitted to the running stage
(which we denoted as m) along the application lifetime.
MCATS works by initially setting m to some default value,

5. The corresponding configurations are ”Vacation: -n2 -q90 -u98 -
r1048576 -t2097152” and ”Kmeans: -m10 -n10 -t0.05”.

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 8

e.g., the number of threads running the application. Then, it
iteratively performs the following two steps:

Step 1: Sampling. The workload is sampled for a given
time interval (keeping fixed the selected value of m) so as
to evaluate via measurements the four parameters listed
in Table 1, whose values are needed for instantiating the
CTMC-based performance model (see Section 4.2).

We remark that, since m is the maximum number of
transactions allowed to run concurrently, the actual number
of concurrent transactions can vary between 0 and m. How-
ever this does not guarantee that samples can be collected
for every k such that 0 ≤ k ≤ m. For example, this can
happen when λk values are relatively higher than γk values.
In fact, this causes the system to work mostly in states closer
to m, rather than 0, thus reducing the possibility to collect
samples for values of k closer to 0.

If no measurements are available for some state k, the
following fall-back sub-step is executed: the missing values
of the parameters ut,k, wrt,k are set equal to the average
values of these same parameters as observed for all the
other states for which measurements were available (while
pk is estimated through Equations 17 and 18). This ap-
proximation likely causes a very low (or null) error on the
throughput estimation by the CTMC-based model. In fact,
if measurements for some state k are missing, this means
that the system is expected to work in state k with very low
probability, or even not to enter that state under the current
workload. Hence, the corresponding qk values in Equation
9 will be low (or negligible), thus contributing in a very
marginal manner to the weighted sum in that equation.

Step 2: Tuning. The throughput thrm, for any m such that
1 ≤ m ≤ N , is predicted via what-if analysis, and the
maximum number of concurrent transactions admitted to
the running stage by the scheduler is set to the value of m
for which the predicted thrm is maximal.

8 EXPERIMENTAL ASSESSMENT

8.1 Implementation Details

We developed a Posix compliant implementation of MCATS
integrated within TinySTM, which is targeted at x86 plat-
forms6. We used a shared global variable c, managed atom-
ically by all the threads, to count the number of active
transactions. A thread is allowed to process its current
transaction only if the value of c after the increment is
less than the value of m that has been lastly selected as
the maximum transaction concurrency level by MCATS.
Otherwise, the thread enters a spinlock phase which ends
when the condition c < m becomes true. The duration of
the workload sampling phase (Step 1) corresponds to the
execution of T subsequent committed transactions7.

To collect timing-samples to estimate ut,k, wrt,k and tntc,
we used the rdtsc machine instruction, which provides

6. Code available at https://github.com/HPDCS/stmMCATS
7. The value of T can impact the statistical goodness of the parame-

ters that need to be estimated via sampling for instantiating the CTMC-
based model—thus it can somehow impact the effectiveness of MCATS.
However, as we have shown via model validation data, T can be set to a
few thousands of transactions independently of the managed workload
while still guaranteeing reliable outcomes.

the number of CPU-cycles since the machine was started8.
The abort probability pk is estimated by computing the ratio
between the number of aborted transaction runs and the
sum of aborted and committed transaction runs when the
system resides in state k. To compute the different values
of the parameters that depend on k (ut,k, wrt,k and pk), all
the collected samples are managed within N distinct sets. A
sample falls in the set Sk if the value of c when the sample
is taken is found to be equal to k. The values managed
within Sk are those that are used to estimate any parameter
value related to state k of the CTMC-based model. We note
that, given a value of m, the values of all the parameters
depending on k for which k > m are equal (see Equation 8).

8.2 Performance Results
We assessed the performance of MCATS by relying on
seven (out of eight) benchmark applications taken from
the STAMP suite, i.e. Genome, Vacation, Intruder, Kmeans,
Labyrinth, Yada and Ssca29.

We exploited the computing environment already de-
scribed in Section 5. For each STAMP application, we
present results for three different workload profiles, de-
termined by different configurations of the application in-
put parameters. We refer the reader to [24] for details
on the parameter-configuration space of these applications.
We compared MCATS with the baseline implementation
of TinySTM (which is devoid of transaction scheduling
support) and with two literature schedulers, i.e. Shrink and
ATS, still integrated within TinySTM10. For the configura-
tion parameters of these schedulers we used the values
suggested by the authors in [10] and [1], respectively. For
completeness, we also report data with F2C2 [6], which fol-
lows the orthogonal approach of thread scheduling, rather
than transaction scheduling11.

The results are reported in Figure 8, where we plot the
application execution time as a function of the number N
of concurrent threads used to run the application, (we used
the same thread-to-core pinning scheme for all the tested
schedulers)12. Even though we explore withN ≥ 2, MCATS,

8. This approach allows measuring wall-clock-time intervals’ du-
rations. Cross-thread interference caused by time-sharing with, e.g.,
kernel-level housekeeping threads, can be tackled via the elimination
of spike values from the statistics.

9. We excluded Bayes since, as also evidenced by the authors of
STAMP [29], it shows large variability of the execution times along
different runs, thus not allowing a reliable statistical evaluation of the
experimental results.

10. In [14] the authors have presented a transaction scheduler that
appears as a good alternative to Shrink and ATS. However, the actual
advantages from this scheduler especially appear when running with
more threads than CPU-cores, a configuration that we avoid since it is
suboptimal because of cross-thread interference on CPU usage. For this
reason we keep Shrink and ATS as reference schedulers in our study.

11. Thread scheduling is not always transparently applicable, since
modifications of the application source code could be necessary to
avoid anomalies, such as thread stuck [6]. This problem is particularly
relevant in applications where different threads process differnet types
of tasks. In fact, blocking a thread because of a scheduling decision
would lead a specific type of tasks bound to the thread to remain
unprocessed until the thread is eventually unblocked. Overall, the data
with F2C2 are reported just to include in the analysis a scheduling
technique that stands aside from the one we pursue.

12. Each reported sample is the average over 10 runs, and a maxi-
mum distance of 3% has been measured between any pairs of samples
related to the same settings.

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 9

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Genome - Configuration 1
input: -s64 -g24576 -n16777216

TinySTM
MCATS
SHRINK

ATS
F2C2

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Genome - Configuration 2
input: -s96 -g16384 -n16777216

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 10
 20
 30
 40
 50
 60
 70

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Genome - Configuration 3
input: -s32 -g32768 -n8388608

TinySTM
MCATS

SHRINK
ATS

F2C2

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Vacation - Configuration 1
input: -n2 -q60 -u90 -r32768 -t1048576

TinySTM
MCATS
SHRINK

ATS
F2C2

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Vacation - Configuration 2
input: -n4 -q60 -u90 -r32768 -t524288

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 5

 10
 15
 20
 25
 30
 35
 40

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Vacation - Configuration 3
input: -n4 -q90 -u98 -r1048576 -t4194304

TinySTM
MCATS

SHRINK
ATS

F2C2

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Intruder - Configuration 1
input: -a8 -l176 -n109187

TinySTM
MCATS
SHRINK

ATS
F2C2

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Intruder - Configuration 2
input: -a2 -l16 -n262025

TinySTM
MCATS
SHRINK

ATS
F2C2

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Intruder - Configuration 3
input: -a20 -l256 -n262025

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Kmeans - Configuration 1
input: -m10 -n10 -t0.05

TinySTM
MCATS
SHRINK

ATS
F2C2

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Kmeans - Configuration 2
input: -m10 -n10 -t0.00005

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Kmeans - Configuration 3
input: -m5 -n5 -t0.00005

TinySTM
MCATS
SHRINK

ATS
F2C2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Labyrinth - Configuration 1
input: -i random-x32-y32-z3-n64

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Labyrinth - Configuration 2
input: -i random-x64-y64-z3-n64

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Labyrinth - Configuration 3
input: -i random-x32-y64-z5-n48

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Yada - Configuration 1
input: -a15 ttimeu100000.2

TinySTM
MCATS
SHRINK

ATS
F2C2

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Yada - Configuration 2
input: -a10 ttimeu1000000.2

TinySTM
MCATS
SHRINK

ATS
F2C2

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Yada - Configuration 3
input: -a15 ttimeu1000000.2

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Ssca2 - Configuration 1
input: -s18 -i1 -u1 -l3 -p3

TinySTM
MCATS
SHRINK

ATS
F2C2

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Ssca2 - Configuration 2
input: -s19 -i1 -u1 -l9 -p9

TinySTM
MCATS
SHRINK

ATS
F2C2

 0

 0.4

 0.8

 1.2

 1.6

 2

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Concurrent threads

Ssca2 - Configuration 3
input: -s17 -i1 -u1 -l9 -p9

TinySTMSTM
MCATS

SHRINK
ATS

F2C2

Average performance increment with MCATS vs. other techniques

Baseline TinySTM Shrink ATS F2C2

Genome +6% +12% +17% -1%

Vacation +321% -10% -9% -2%

Intruder +58% +64% +40% +16%

Kmeans +38% +59% +41% +6%

Labyrinth +2% +11% +25% +2%

Yada +80% +128% +135% +4%

Ssca2 -8% +2% +3% +3%

Fig. 8. Comparison of the application execution times with all the benchmark applications.

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 10

as well as other schedulers, might decide to allow a single
transaction to be processes at any time, thus temporar-
ily blocking the transactions that would be run by other
threads. On the other hand, experimenting with N = 1 is of
no interest. In fact, a scenario where at most one transaction
can be running at anytime leads transaction schedulers
to offer no useful optimization in relation to transaction
conflicts and their effects on the runtime dynamics.

For almost all the test cases, the best performance (i.e.
the minimum application execution time) with the baseline
TinySTM is achieved with less than 16 concurrent threads—
exceptions are noted for Ssca2 and for Configuration 3 of
Vacation.

In other words, there is a point beyond which increased
transaction parallelism does not pay off. Therefore, in our
analysis, we span between two antithetical scenarios: one
where the application runs with more threads than the
optimal concurrency level, and one where it runs with
fewer threads than the optimal concurrency level. In the
former case, a scheduler is expected to reduce the trans-
action conflict/abort rate in order to prevent performance
loss. Conversely, in scenarios with fewer threads than the
optimal number, the scheduler should not penalize per-
formance by temporarily blocking (too many) transactions.
When running with more threads than the optimal con-
currency level, MCATS avoids the performance loss of the
baseline TinySTM. In fact, for those application configura-
tions where the execution time with the baseline TinySTM
remarkably grows (i.e. all the configurations of Genome,
Intruder, Kmeans and Yada, and Configurations 1 and 2
of Vacation), MCATS keeps the execution time close to
the values achieved with the optimal number of threads,
independently of the actual number of threads used to run
the applications. The other two schedulers, ATS and Shrink,
do not consistently achieve the same results. For example,
with all the configurations of Intruder, Labyrinth and Yada,
both ATS and Shrink show poor performance and, in some
cases, execution times that are even worse than those of the
baseline TinySTM. Generally, ATS and Shrink ensure better
performance than the baseline TinySTM only in scenarios
where the number of threads is relatively high (see, e.g., In-
truder and Kmeans). One motivation for these non-optimal
results stands in the setting of the configuration parame-
ters of these schedulers, whose default values suggested
by the authors are suitable for some application profiles,
but are largely sub-optimal for others. In other words, for
these schedulers there is no one-size-fits-all settings of their
parameters. This imposes to pre-tune them depending on
the specific workload (if known). MCATS overcomes this
drawback since it is based on a runtime adaptive strategy
that allows tailoring its scheduling decisions on the basis of
the current workload profile.

We note that a similar problem of performance degrada-
tion when the number of threads is larger than the optimal
concurrency level is noted for F2C2, as for the case of
Configuration 1 of Intruder, Configuration 1 of Kmeans, and
all the configurations of Yada. This shows how MCATS
provides a better way of contrasting thrashing phenomena
caused by excessive transaction aborts in these scenarios.

As for the scenario where the used number of threads
is smaller than the optimal number, all the schedulers,

including MCATS, give rise to execution times that are
(slightly) worse than the baseline TinySTM. Essentially, this
is due to the overhead caused by the implementation of
the schedulers, and to the fact that, with lower than optimal
concurrency, a transaction scheduler has no real opportunity
to improve performance via transaction parallelism regula-
tion and conflicts/aborts avoidance. The only exception is
for F2C2 in a few cases (like for example Configuration 1 of
Yada), just thanks to its very reduced overhead. However,
MCATS shows execution time no more than 11.3% worse
than the baseline TinySTM, a value only reached with Yada.

Figure 8 also shows (in tabular form) the average per-
formance improvement of MCATS for each application—
evaluated across all the different values of the used number
of threads. We list the percentage speedup by MCATS with
respect to the baseline TinySTM, ATS, Shrink and F2C2.
MCATS shows better speedup for 23 out of 28 test cases,
and up to the value 321%. On the other hand, worse
speedup—which is although limited to no more than 10%—
is observed for the other three cases, which are essentially
related to scenarios where the applications run with under-
parallelism (namely, when performance would still increase
with additional threads because of the scarce incidence of
transaction conflicts and consequent aborts). As said, in such
a situation no transaction scheduler has opportunities to
regulate transaction parallelism for consistently optimizing
performance via the avoidance of thrashing.

8.3 Energy Efficiency
We report in Figure 9 results for a comparison of the energy
consumption achieved with MCATS and with the baseline
TinySTM13. For brevity, we only show results referring to
Configuration 1 of each considered application. They are
representative of what we observed with other configu-
rations. Energy consumption trends are similar to the al-
ready discussed performance trends. In more detail, without
a scheduler, the energy consumption of an STM system
generally grows very fast when using more threads than
the optimal number (see the plots for Genome, Vacation,
Intruder, Kmeans and Yada). Conversely, with MCATS the
energy consumption is not (or marginally) influenced when
increasing the number of threads beyond the optimal value.

We conclude this section providing data revealing that
the negative impact of over-parallelism on energy efficiency
in STM systems can be even more drastic than on perfor-
mance, a phenomenon that is effectively counteracted by
MCATS. The plots in Figure 10 show the difference between
the normalized energy consumption and the normalized
execution time of each benchmark application. Specifically,
each curve is calculated as En(x) − Tn(x), where En(x)
is the normalized energy consumption, x is the number of
concurrent threads and Tn(x) is the normalized execution
time (normalization is made with respect to the energy con-
sumption/execution time with one thread). When the curve
grows (or decreases) it means that the energy consumption
grows more (or less) rapidly than the execution time. With
five out of seven applications the baseline TinySTM shows a
point beyond which the curves rapidly grow. With MCATS,

13. These measures have been collected by using “Power Gov” tool
[25].

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 11

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 2 4 6 8 10 12 14 16

E
n

e
rg

y
 (

J
)

Concurrent threads

Genome - Configuration 1
input: -s64 -g24576 -n16777216

TinySTM
MCATS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 4 6 8 10 12 14 16

E
n

e
rg

y
 (

J
)

Concurrent threads

Vacation - Configuration 1
input: -n2 -q60 -u90 -r32768 -t1048576

TinySTM
MCATS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12 14 16

E
n

e
rg

y
 (

J
)

Concurrent threads

Intruder - Configuration 1
input: -a8 -l176 -n109187

TinySTM
MCATS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 2 4 6 8 10 12 14 16

E
n

e
rg

y
 (

J
)

Concurrent threads

Kmeans - Configuration 1
input: -m10 -n10 -t0.05

TinySTM MCATS

 0
 1
 2
 3
 4
 5
 6
 7

 2 4 6 8 10 12 14 16

E
n

e
rg

y
 (

J
)

Concurrent threads

Labyrinth - Configuration 1
input: -i random-x32-y32-z3-n64

TinySTM MCATS
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

 2 4 6 8 10 12 14 16

E
n

e
rg

y
 (

J
)

Concurrent threads

Yada - Configuration 1
input: -a15 ttimeu100000.2

TinySTM MCATS 0
 200
 400
 600
 800

 1000
 1200
 1400

 2 4 6 8 10 12 14 16

E
n

e
rg

y
 (

J
)

Concurrent threads

Ssca2 - Configuration 1
input: -s18 -i1 -u1 -l3 -p3

TinySTM
MCATS

Fig. 9. Energy consumption (Joule) with different benchmark applications.

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

E
n
(x

)
-

T
n
(x

)

Concurrent threads

Genome - Configuration 1
input: -s64 -g24576 -n16777216

TinySTM
MCATS

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

E
n
(x

)
-

T
n
(x

)

Concurrent threads

Vacation - Configuration 1
input: -n2 -q60 -u90 -r32768 -t1048576

TinySTM
MCATS

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

E
n
(x

)
-

T
n
(x

)

Concurrent threads

Intruder - Configuration 1
input: -a8 -l176 -n109187

TinySTM
MCATS

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

E
n
(x

)
-

T
n
(x

)

Concurrent threads

Kmeans - Configuration 1
input: -m10 -n10 -t0.05

TinySTM
MCATS

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

E
n
(x

)
-

T
n
(x

)

Concurrent threads

Labyrinth - Configuration 1
input: -i random-x32-y32-z3-n64

TinySTM
MCATS

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

E
n
(x

)
-

T
n
(x

)

Concurrent threads

Yada - Configuration 1
input: -a15 ttimeu100000.2

TinySTM
MCATS

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

E
n
(x

)
-

T
n
(x

)

Concurrent threads

Ssca2 - Configuration 1
input: -s20 -i1 -u1 -l3 -p3

TinySTM
MCATS

Fig. 10. Difference between normalized energy consumption and normalized execution time with different benchmark applications.

this phenomenon tends to disappear. In the worst cases (e.g.
Intruder and Kmeans) the energy consumption growth is
mild and constant. In the other cases, there is no noticeable
increment. Such a positive impact on energy consumption
by MCATS in over-parallelism scenarios is essentially due
to the reduction of the application execution time.

9 CONCLUSIONS

We presented an adaptive model-based scheduler for Soft-
ware Transactional Memory, which controls transaction con-
currency by regulating the maximum number of transac-
tions that are allowed to simultaneously run. One of the
key aspects of our proposal is that the performance model
can be easily (re-)instantiated on-the-fly, therefore allow-
ing its continuous adaptation to the workload profile. We
demonstrated the effectiveness of our approach via an ex-
perimental study carried with a real implementation of our
scheduler and a set of benchmark applications. Results show
that our technique is effective over a wide range of workload
profiles in terms of improvement of both performance and
energy efficiency.

REFERENCES

[1] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling
for transactional memory systems,” in Proc. 20th Symposium on
Parallelism in Algorithms and Architectures, 2008, pp. 169–178.

[2] D. Rughetti, P. D. Sanzo, B. Ciciani, and F. Quaglia, “Machine
learning-based thread-parallelism regulation in software transac-
tional memory,” J. Parallel Distrib. Comput., vol. 109, pp. 208–229,
2017.

[3] P. Di Sanzo, “Analysis, classification and comparison of schedul-
ing techniques for software transactional memories,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 28, no. 12, pp. 3356–
3373, dec 2017.

[4] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, and I. Watson, “Adap-
tive concurrency control for transactional memory,” presented
at MULTIPROG 1st Workshop Programmability MultiCore Comput.,
2008.

[5] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker,
“Identifying the optimal level of parallelism in transactional mem-
ory applications,” in Networked Systems, ser. Lecture Notes in
Computer Science, V. Gramoli and R. Guerraoui, Eds., vol. 7853.
Springer Berlin Heidelberg, 2013, pp. 233–247.

[6] K. Ravichandran and S. Pande, “F2c2-stm: Flux-based feedback-
driven concurrency control for STMs,” in Proceedings of the 28th
Int. Parallel and Distributed Processing Symp., 2014, pp. 927–938.

[7] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of
word-based software transactional memory,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2008, pp. 237–246.

IEEE TRANSACTIONS ON COMPUTERS - ACCEPTED ARTICLE 12

[8] K. Chan, K. Tin Lam, and C.-L. Wang, “Adaptive thread schedul-
ing techniques for improving scalability of software transactional
memory,” in Proceedings of the 10th PDCN, 2011, pp. 91–98.

[9] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and
I. Watson, “Advanced concurrency control for transactional mem-
ory using transaction commit rate,” in Proc. 14th Int. Euro-Par
Conference on Parallel Processing, 2008, pp. 719–728.

[10] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh, “Preventing
versus curing: avoiding conflicts in transactional memories,” in
Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, 2009, pp. 7–16.

[11] S. Dolev, D. Hendler, and A. Suissa, “Car-stm: scheduling-based
collision avoidance and resolution for software transactional mem-
ory,” in Proceedings of the 27th ACM symposium on Principles of
distributed computing, 2008, pp. 125–134.

[12] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and
I. Watson, “Steal-on-abort: Dynamic transaction reordering to re-
duce conflicts in transactional memory,” in Proceedings of the 4th
International Conference on High Performance Embedded Architectures
and Compilers, 2009, pp. 4–18.

[13] D. Sainz and H. Attiya, “Relstm: A proactive transactional mem-
ory scheduley,” in Proceedings of the 8th ACM SIGPLAN Workshop
on Transactional Computing, 2013, pp. 1–8.

[14] D. Niccio, A. Baldassin, and G. Arajo, “Transaction scheduling
using dynamic conflict avoidance,” International Journal of Parallel
Programming, vol. 41, no. 1, pp. 89–110, 2013.

[15] H. Rito and J. a. Cachopo, “Adaptive transaction scheduling for
mixed transactional workloads,” Parallel Comput., vol. 41, no. C,
pp. 31–49, Jan. 2015.

[16] A. Dragojević and R. Guerraoui, “Predicting the scalability of an
STM: A pragmatic approach,” 5th ACM Workshop Transactional
Comput., 2010.

[17] P. di Sanzo, B. Ciciani, R. Palmieri, F. Quaglia, and P. Romano,
“On the analytical modeling of concurrency control algorithms
for software transactional memories: The case of commit-time-
locking,” Performance Evaluation, pp. 187–205, 2012.

[18] Z. He and B. Hong, “Modeling the run-time behavior of transac-
tional memory,” in Proc. 18th Int. Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, 2010, pp.
307–315.

[19] X. Yu, Z. He, and B. Hong, “An analytical model on the execution
of transactional memory,” in Proceedings of the 22nd International
Symposium on Computer Architecture and High Performance Comput-
ing, 2010, pp. 175 –182.

[20] A. Heindl and G. Pokam, “An analytic model for optimistic STM
with lazy locking,” in Proceedings of the 16th International Conference
on Analytical and Stochastic Modeling Techniques and Applications,
2009, pp. 339–353.

[21] P. Di Sanzo, F. Del Re, D. Rughetti, B. Ciciani, and F. Quaglia,
“Regulating concurrency in software transactional memory: An
effective model-based approach,” in Proceedings of the 7th IEEE
International Conference on Self-Adaptive and Self-Organizing Systems,
2013, pp. 31–40.

[22] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Dynamic
feature selection for machine-learning based concurrency regu-
lation in STM,” in Proceedings of the 22nd Euromicro International
Conference on Parallel, Distributed and Network-Based Processing,
2014, pp. 68–75.

[23] ——, “Analytical/ML mixed approach for concurrency regula-
tion in software transactional memory,” in Proceedings of the 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, May 2014, pp. 81–91.

[24] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in Proc.
4th Int. Symposium on Workload Characterization, 2008, pp. 35–46.

[25] 2012. [Online]. Available: https://software.intel.com/en-
us/articles/intel-power-governor.

[26] L. Kleinrock, Queueing Systems. Wiley Interscience, 1975, vol. I:
Theory.

[27] P. S. Yu, D. M. Dias, and S. S. Lavenberg, “On the analytical
modeling of database concurrency control,” Journal of the ACM,
pp. 831–872, 1993.

[28] Z. He and B. Hong, “Modeling the run-time behavior of transac-
tional memory,” in 18th Annual IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, 2010, pp. 307–315.

[29] W. Ruan, Y. Liu, and M. Spear, “Stamp need not be considered
harmful,” 9th ACM Workshop on Transactional Comput., 2014.

Pierangelo Di Sanzo received a M.S. degree
and a Ph.D. degree in Computer Engineering
from Sapienza University of Rome. He worked
as a researcher at the Italian National Interuni-
versity Consortium for Informatics. Currently he
is a postdoctoral researcher at DIAG (Sapienza
University of Rome). His research interests lie in
the area of concurrent programming and trans-
actional systems.

Alessandro Pellegrini received a B.S. degree
and a M.S. degree and a PhD in Computer
Engineering at Sapienza, University of Rome.
His main research area is on parallel and dis-
tributed architectures and applications, where he
has published more than 50 technical articles.
In 2015 he won the Sapienza prize for the best
PhD thesis of the year. He has worked as a
researcher at some national and international
research centers (CINI, CINFAI and IRIANC).

Marco Sannicandro received a B.S. degree and
a M.S. degree in Computer Engineering from
Sapienza University of Rome. His master the-
sis was focused on performance modelling of
STM systems. His research interests include dis-
tributed and parallel computing systems, cyber-
security and artificial intelligence.

Bruno Ciciani is Full Professor of Computer
Engineering at Sapienza University of Rome. His
research interests include fault tolerance, com-
puter architectures, distributed systems, manu-
facturing yield prediction, performance and de-
pendability evaluation. In these fields he has
published more than 130 papers. He spent more
than two years as visiting researcher at the IBM
Thomas J. Watson Research Center (N.Y.).

Francesco Quaglia received his MS in Elec-
tronic Engineering in 1995 and his PhD in Com-
puter Engineering in 1999, both from Sapienza
University of Rome, where he has worked as As-
sistant Professor and then Associate Professor
from September 2000 till June 2017. Currently
he works as a Full Professor at the University
of Rome Tor Vergata. His research interests
include parallel/distributed computing systems,
operating systems, and HPC.

