
Machine Learning for Achieving
Self-* Properties and Seamless Execution of

Applications in the Cloud

Pierangelo Di Sanzo
disanzo@dis.uniroma1.it

DIAG – Sapienza, University of Rome

Alessandro Pellegrini
pellegrini@dis.uniroma1.it
DIAG – Sapienza, University of Rome

Dimiter R. Avresky
autonomic@irianc.com
IRIANC – Munich, Germany

Abstract—Software anomalies are recognized as a major prob-
lem affecting the performance and availability of many computer
systems. Accumulation of anomalies of different nature, such as
memory leaks and unterminated threads, may lead the system to
both fail or work with suboptimal performance levels. This prob-
lem particularly affects web servers, where hosted applications
are typically intended to continuously run, thus incrementing the
probability, therefore the associated effects, of accumulation of
anomalies. Given the unpredictability of occurrence of anomalies,
continuous system monitoring would be required to detect possi-
ble system failures and/or excessive performance degradation in
order to timely start some recovering procedure. In this paper,
we present a Machine Learning-based framework for proactive
management of client-server applications in the cloud. Through
optimized Machine Learning models and continually measuring
system features, the framework predicts the remaining time to the
occurrence of some unexpected event (system failure, service level
agreement violation, etc.) of a virtual machine hosting a server
instance of the application. The framework is able to manage
virtual machines in the presence of different types anomalies
and with different anomaly occurrence patterns. We show the
effectiveness of the proposed solution by presenting results of a
set of experiments we carried out in the context of a real world-
inspired scenario.

I. INTRODUCTION

Performance and availability of computer systems can be
affected by the accumulation of anomalies of different nature,
such as memory leaks, unterminated threads, unreleased locks,
and/or file fragmentation. Most of the times, occurrences of
anomalies are complex to predict. Further, discovering the
related causes and eliminating errors via software debugging
may be hard. In [1], it has been shown that in web appli-
cations an average of 40% of anomalies is due to software
errors. As a consequence, these kinds of problems need to be
addressed by run-time management of systems. This would
require continuous monitoring of a system to detect and
manage unexpected behaviours, such as excessive performance
degradation or service outage. In many cases (such as 24/7 web
applications), the ability to timely recovery the system from
failures, and/or to restore adequate performance level, is of
paramount importance.

An approach to cope with the problem of accumulation of
anomalies consists of periodically performing recovery actions
forcing the system to a “clean” state (namely, a state where
the system works without—or with a reduced number of—
anomalies). This prevents the occurrence of further anomalies
from (quickly) leading the system to unexpected behaviours.
An example of recovery action is the so-called software
rejuvenation [2], which is typically performed by restarting

the application responsible of generating anomalies, or even
the hosting machine.

A recovery action can be performed at pre-established time
instants (time-based approach), or proactively, i.e. when the
system is predicted to approach an undesired state. In the
first case, actions are performed independently of the actual
working state of the system. Conversely, in the second case,
they are performed based on run-time system monitoring. A
proactive approach requires more complex techniques than the
time-based counterpart. In fact, estimating the best-suited time
for recovering the system from failures, or to restore adequate
performance level, can be non-trivial, given that predicting
the occurrence of anomalies and their effects on the system
is typically hard. On the other hand, benefits of proactive
management can be significant, in terms of both system service
downtime and system performance.

Recently, in [3], it has been shown that the proactive
management of software anomalies can efficiently exploit
Machine Learning (ML) algorithms to predict the time to crash
of applications. In the proposed approach, the system has been
trained until crashing in the presence of anomalies, and values
of some system feature have been collected (CPU utilization,
memory usage, etc ...) After having been collected, values of
system features are fed to the a ML algorithm for building a
model to predict the Remaining Time to Crash (RTTC) of the
system. The benefits of this approach are related to the fact that
a recovery action can be executed before the (predicted) failure
time, or even before that the system performance goes below
a given level. As well, actions could take place before some
Service-Level Agreement (SLA) levels are violated, e.g. the
response time increases over a given threshold, or availability
is below a certain percentage.

In [4], we showed that ML-based approaches can be used
to predict the occurrence of both system crashes and other
events, such as violations of performance thresholds, also in
the presence of different kinds of software anomalies.

In this paper, we present a ML-based framework for
Proactive Client-server Application Management (PCAM) in
the cloud. PCAM exploits failure prediction models produced
by a ML framework that we presented in [4], called F2PM.
PCAM targets a client-server application model, with repli-
cated server instances. We assume that server instances are
deployed on virtual machines (VMs) provided by a cloud
IaaS (Infrastructure as a Service) [5]. Server instances can
be added/removed at run-time (by adding/removing VMs),
in order to dynamically scale the server pool according to
the system workload. Also, server instances are subject to



software anomalies, which can lead VMs to fail, as well as
to cause degraded performance level over time. PCAM is able
to trigger recovery actions for any VM on the basis of run-time
predictions of the its Remaining Time to Failure (RTTF) and
on VM performance measurements. The RTTF of a VM is
predicted based on the time when a given failure condition
is expected to be true. The failure condition corresponds
to a system crash or to the violation of some user-defined
thresholds related to system performance requirements (e.g.
when the average response time exceeds a user-defined value).
PCAM uses RTTF prediction models generated according to
the scheme used in F2PM.

Particularly, with respect to previous literature studies (as
we discuss in more detail in Section II), our approach advances
in several directions: i) we target more complex and largely
common application deployments, where multiple server in-
stances are replicated on different hosting machines, and where
different kinds of anomalies can occur, also with different
occurrence patterns; ii) we use both ML-based predictions and
run-time system performance measurements to decide when
a recovery action has to be executed; iii) we evaluate our
framework in the case of a test-bed application reproducing
a real-world scenario, where we run the system with different
configurations and by injecting different anomaly patterns.

The PCAM approach, on the one hand, aims at improving
both the system availability (by reducing the system downtime
due to failures) and the system performance (by keeping it
up to user-established levels). On the other hand, it allows
to reduce significantly the management effort for keeping
the system operational, supporting self-* (healing, optimizing,
configuring) system properties . PCAM is not bound to specific
applications, because it only requires to monitor parameters at
hosting machine and operating system level. Therefore, besides
our target experimental web applications, PCAM can be used,
as well, in other kinds of client-server applications, acting in
a completely application-agnostic way.

The remainder of this paper is organized as follows. In
Section II we discuss related work. The architecture of PCAM
is presented in Section III. Section IV presents experimental
data to assess the validity of our proposal. In Section IV-C we
highlight the achievements by this paper.

II. RELATED WORK

In [6], the authors propose a proactive prediction and
control system for large clusters. The proposal relies on logs
containing six types of events categorized into classes (e.g.
the availability of specific systems, or performance violation
thresholds) and collected during one year of activity of a
large (350 nodes) system. By using time series, rule-based
classification, and Bayesian networks, the authors filter the
initial data, selecting only the entries, which are useful to carry
on a prediction. Essentially, as opposed to the above-mentioned
work, in this paper we present a framework, which is able to
autonomously rejuvenate systems in a complete application-
agnostic way, relying on a differentiated set of prediction
algorithms, generated by using different ML methods.

In [7], it has been shown that virtualization can be used
to implement effective software rejuvenation approaches. The
authors address the case of an application server. It is replicated
in two VMs. One VM is active and serves all incoming
requests, while the other one is in standby mode. When the
active machine needs to be rejuvenated, incoming requests are

forwarded to the other VM, which becomes active. The active
VM is rejuvenated when the application performance goes
down a given threshold. The authors present an experimental
study, where they evaluated the overall system availability,
showing that user can perceive zero downtime time. Further,
they show that the overhead introduced by using a VM is about
14% with respect the case of a real machine. Our framework
also targets virtualized environments. However, we focus on
orthogonal problems with respect to the study presented in [7].
Indeed, we aim at designing and evaluating a framework based
on proactive self-rejuvenation for ensuring high availability
and improving the system performance.

Proactive rejuvenation in the case of a virtualization-based
framework has been studied in [3]. In the proposed solution,
rejuvenation of a VM is executed on basis of predictions of
the Remaining Time to Failure (RTTF) derived from run-time
measurements of a number of system features. Predictions are
based on a linear regression model, where Lasso Regulariza-
tion is used to reduce the number of system parameters to be
monitored. The proposed approach has been evaluated in the
case of (artificially-injected) memory leaks, assuming that the
RTTF is the remaining time for the system to reach a state
where the virtual memory is exhausted. Differently from the
approach in [3], PCAM can rely on a differentiated set of ML
algorithms. Additionally, PCAM—by its reliance on F2PM—
can easily address both a differentiated set of anomalies and
user-defined decision rules to identify the failure point, e.g. to
account for specific SLA levels. Furthermore, in our present
proposal we consider a set of distributed VMs in the Cloud,
while in [3] only a couple of locally-hosted VMs is considered.

III. THE PCAM FRAMEWORK

In this section, we provide a detailed description of the
PCAM Framework. As we discussed in Section I, we assume
a client-server application model, where client requests are
served by a set of replicated servers deployed on virtual
machines (VMs) of a cloud IaaS. In our implementation, when
a VM is predicting to approach the failure condition, PCAM
exploits software rejuvenation to restore a proper working state
of the VM. This is simply achieved by restarting the VM.
However, we remark that PCAM can be used to trigger any
other kind of recovery action, which can be customized by the
user.

In the rest of this section, we first describe the architec-
ture of PCAM, then we describe the ML-based approach to
predict RTTF of VMs and we discuss the on-line control loop
performed by PCAM.

A. Framework Architecture

The PCAM architecture (Figure 1) includes a VM acting as
a controller (VMC) and k couples of VMs (slave VMs) acting
as (replicated) servers. The slave VMs of a couple cx (with
x ∈ [0, k − 1]) are named VM1x and VM2x, respectively.
VMC and the slave VMs communicate via message exchange.

On the VMC side, the following components of PCAM are
installed:

• A Communication Unit (CU), which is in charge of
communicating with all slave VMs;

• A Prediction Unit (PU), which provides RTTF predictions
of slave VMs;

• A Load Balancing Unit (LBU), which forwards (remote)
clients’ requests to slave VMs;



Fig. 1. The PCAM Architecture.

• A Managing Unit (MU), which manages the set of VMs,
processes incoming messages from VMs and decides
when to trigger the rejuvenation of a slave VM.

On all slave VMs, the following components are installed:

• A Communication Unit (CU), delegated to communicat-
ing with VMC;

• A Measurement Unit (MeU), which collects local mea-
surements of the system features;

• A Local Managing Unit (LMU), which sends collected
measurements to VMC and receives commands from
VMC to start rejuvenating the (local) slave VM.

MU keeps a list of the couples of slave VMs. When the
system starts up, the MU activates one slave VM for each
couple of slave VMs, then it marks as active the activated
slave VMs and as stand-by the other ones. The LBU forwards
client requests only to the active slave VMs. The pool of VMs
can be re-sized at run-time by adding or removing new couples
of VMs.

In the PCAM architecture, as shown in Figure 1, dashed
lines represent information exchanged among VMs and VMC.
In particular, they enable VMC to implement the On-line
control loop, by receiving values of monitored features by
VMs, and sending to them the rejuvenate command. Solid lines
represent requests coming from remote clients. These requests
pass through the LBU, which forwards them to active the VMs.

B. Machine Learning-based RTTF Prediction

As we pointed out, the PU of VMC provides the predicted
RTTF of a slave VM as a response to a query executed by
the MU. The PU leverages on ML-based models, which are
generated by using our previous result in [4], namely F2PM, to
predict the RTTF. F2PM builds predictions model by exploiting
a dataset of system feature measurements collected while
monitoring VMs running in the presence of anomalies. For
the sake of clearness, we provide a brief description of F2PM.
We nevertheless refer the reader to [4] for a comprehensive
discussion on F2PM.

F2PM is based, as well, on a client-server architecture,
namely on the Feature Monitor Client (FMC) and the Feature
Monitor Server (FMS). FMS is installed on the VM that
acts as a server, and it continuously collects system feature
measurements of slave VMs. Further, upon a VM meets the

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200 1400 1600 1800

P
re

d
ic

te
d

 R
T

T
F

 (
s
e

c
o

n
d

s
)

Real RTTF (seconds)

Fig. 2. Accuracy of the RTTF prediction model generated by F2PM using
M5P algorithm.

failure condition, a failure event is registered and the VM is
restarted. All these data are collected into a database. Then,
in order to reduce the training time and the amount of data
to be sent from LMUs of VMs to MU, system features are
filtered using Lasso Regularization [8], so that only a subset of
system features having stronger impact on the RTTF prediction
of VMs are selected. The set of selected features is then
enhanced with additional information (such as system feature
slopes and the time to the next failure event) to capture more
accurately the evolution of resource usage on slave VMs and
the relation with the RTTF of VMs. Finally, the obtained
dataset is fed into WEKA [9], in order to generate RTTF
prediction models based on several ML techniques, including
on Linear Regression [10], M5P [11], REP-Tree [12], Lasso
as a Predictor [8], Support-Vector Machine (SVM) [13], and
Least-Square Support-Vector Machine [14]. As an example, in
Figure 2, we report a plot showing the accuracy of a RTTF
prediction model generated by F2PM using M5P algorithm.
The figure shows a comparison between the real RTTF (ground
truth, green line) with the predicted RTTF (red line). On the x-
axis, we report the real RTTF, while on the y-axis we report the
predicted RTTF. By the plot, we can see that, while the system
is approaching the failure point (at time 0), the prediction
accuracy of the model increases.

After generating the RTTF prediction models, F2PM pro-
vides a number of indicators for each model, also including the
mean and the relative absolute prediction error. In PCAM, we
use these indicators to allow the user to select the most accurate
model to be exploited for RTTF estimation. The selected model
is therefore fed into PU of PCAM to be used at run-time.

F2PM allows the user to customize the set of features
that should be monitored. In our experimental study, we have
selected the following ones:

nth is the number of active threads in the system,
Mused is the amount of memory used by applications,
Mfree is the amount of free memory in the system,
Mshared is the amount of used memory in buffers shared by

applications,
Mbuff is the amount of memory used by the underlying

operating system to buffer data,
Mcached is the amount of memory used for caching data,
SWused is the amount of used swap space,
SWfree is the amount of free swap space,
CPUuser is the percentage of CPU time spent by normal



processes executing in user mode,
CPUni is the percentage of CPU time spent by high priority

processes executing in user mode,
CPUsys is the percentage of CPU time spent by processes

executing in kernel mode,
CPUiow is the percentage of CPU time spent by processes

waiting for I/O to complete,
CPUst is the percentage of CPU time spent by processes

waiting for services of other processes,
CPUid is the percentage of CPU idle time.

Of course, system features used by PCAM are the same
which are used by F2PM to build the prediction models.

C. On-line Control Loop

Once the selected RTTF prediction model has been fed in
PU, PCAM can preform the on-line control loop. Specifically,
for each couple x of VMs, PCAM executes the following steps:

1) The LMU of the active slave VM, say VM1x, collects
local measurements of the set of system features and
sends them to VMC.

2) Upon receiving measurements from the LMU of VM1x,
the MU of VMC queries the PU by using measurements
as input, and retrieves the predicted RTTF of VM1x. If
the predicted RTTF is smaller than a (tunable) threshold
T , then the MU performs the following actions:

a) In the list of VMs, it marks VM1x as stand-by and
the other slave VM of the same couple, i.e. VM2x, as
active;

b) It communicates to the LBU the new list of active slave
VMs;

c) It sends to VM1x the rejuvenate command in order to
start the rejuvenation procedure;

d) It starts to receive measurements from VM2x .

The diagram in Figure 3 provides an example of control
flow to illustrate the on-line control loop control of PCAM in
the case of one couple of VMs.

When a slave VM receives the rejuvenate command, it
completes pending requests and starts the rejuvenation action.
We remark that the MU switches the active VM of a couple
before to send the rejuvenate command, thus new incoming
request are immediately forwarded to the other VM of the
couple. We further note that, when the active VM of a couple
changes, it may be required, depending on the application, to
execute some specific procedures before forwarding requests
to the other VM, such as migrating data sessions, flushing in-
memory data to shared databases, etc. Solutions for addressing
these issues without affecting system availability as perceived
by users have been discussed in [7]. We do not further deal
with these issues, because they are orthogonal to the scope of
this paper.

The threshold T used by MU can be specified by the user.
Essentially, T defines a safety value, which is used by PCAM
to determine the time instant when a VM has to be rejuvenated
before the predicted failure time. On the one hand, this safety
value allows to ensure that the VM can still execute pending
requests before the actual failure time. Consequently, T has
to be set at least in the same magnitude order of the request
response time. On the other hand, we note that the value of T
can be used to reduce the effect of MTTF prediction error on
system availability. As an example, a low value of T entails
that a VM is rejuvenated a few time before the predicted failure

time. In such a scenario, even a very small overestimation of
MTTF could prevent PCAM from rejuvenating a VM before
the actual failure time. We note that, to cope with such a
situation, some failure detection or SLA violation detection
technique can be used to activate the other slave VM of
the same couple. However, since these kinds of failures can
be detected via standard failure detection and SLA violation
techniques, we do not focus on this specific problem in our
presentation. Indeed, the main goal of PCAM is to prevent the
system from the occurrence of these kinds of events. As for a
too high value of T , it might force too early rejuvenation a VM,
even though it would still run with an acceptable performance
for a long time. In Section IV, we discus in more details the
effect of T leveraging results of an experimental study.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental study we carried
out to the evaluate of the effectiveness of PCAM. We first
describe the experimental environment used in our tests. Then,
in order to select the machine ML to be used in our study, we
briefly describe the results achieved in [4], where different ML
models have been trained and evaluated using the methodology
described in Section III-B. Finally, we show and discuss
results of experiments carried out in the case of two different
system configurations in terms of number virtual machines and
combination of injection of anomalies.

A. Experimental Setting

We built our experimental environment in Amazon EC2, in
Frankfurt region. In particular, we use m3.large instances,
which offer 2 virtual CPUs, and 7.5 GB of RAM. Ubuntu
Server 12.04 LTS is used as the virtualized operating system.

In our experimental study we use the well-know TPC-W
Benchmark [15]. TPC-W is a transactional web e-Commerce
benchmark. The system workload is generated by a number of
users, which interact with the web shop through web browsers
for searching, browsing and ordering books. TPC-W, in addi-
tion to mimic user behavior through a web page navigation
graph, also defines the structure of all web pages, including
images, and the database schema. The system workload can be
configured by changing the number of concurrent users, and
other parameters, such as the transaction execution mix or the
database size. A comprehensive description of the benchmark
can be found in the TPC-W specification document [16].

As discussed in Section III-A, PCAM includes a VM acting
as a controller (VMC), and a number of slave VMs. In our
experimental setting, slave VMs are equipped with Java SE
Runtime Environment version 1.6. Each slave VM runs a
Java implementation of the TPC-W benchmark [17], hosted
by Apache Tomcat version 6.0. As for the database server,
we use MySql version 5.1. The workload is generated via
emulated web browsers. An emulated web browser simulates
the presence of a user accessing web pages through a web
browser. We run emulated browsers on an external 32-cores
server in Munich, connected to the Amazon instances through
the Internet.

We implemented the MU of VMC, the LMU of slave VMs
and the CU in C language. The LMU relies on Linux proc
filesystem to collect system features. CUs use TPC/IP sockets.
As for the LBU, we used the open source load balancing tool
Crossroads [18].



Fig. 3. MLSR-Framework control flow diagram with a couple of VMs.

We injected two kind of anomalies in slave VMs, i.e.
memory leaks and unterminated threads. To this aim, we
modified the Java implementation of the TPC-W. Specifically,
when a user request was received by a slave VM, a new
(dummy) Java object and/or a thread entering an infinite loop
was generated with a given probability. In order to evaluate
the ability of the framework to cope with scenarios with
variable anomalies’ injection rates, probabilities of generating
a new object/unterminated thread in each VM, as well the size
of generated objects, were randomly changed every time the
VM was restarted after a (predicted) failure. This led to en
execution scenario where VMs have been showing different
anomaly occurrence patterns.

In our experiments, the failure condition of a VM was true
if at least one of the following conditions was true: 1) both free
memory amount and free swap space amount were less then
5% of the total memory and total swap space, respectively,
2) the average response time was higher than 4.5 seconds
along 10 consecutive measurements by emulated web browser,
and 3) the VM had not been sending measurements to FMS
of F2PM for more than 1 minute (which might suggest that
the VM has crashed). We evaluated three supervised learning
models for implementing MLP, i.e. Linear Regression, M5P
(decision tree with the possibility of linear regression functions
at the leaves), and the regression model achieved through Lasso
regularization as a predictor. By our results, M5P has been
proven as the most effective ML algorithm (both in terms of
training time and prediction accuracy).

B. Framework Evaluation Results

We present experimental results for the cases of two scenar-
ios. In the first one, we used only one couple of slave VMs, say
c1. In this scenario, client requests are processed by one active
VM. Both memory leaks and unterminated threads are injected
in slave VMs. When the predicted RTTF of the active VM is
smaller than the threshold T , the MU executes the procedure

for switching the active machine from VM11 to VM21 or
viceversa (as related to the flow diagram in Figure 3). In the
second scenario, we used three couple of VMs, say c1, c2
and c3. Thus, in this case, client requests are processed by
three active VMs (one per couple of VMs). The active VM
of a couple is switched independently of the other couples of
VMs. In this scenario, we injected both memory leaks and
unterminated threads in VM11 and VM21. Conversely, we
injected only unterminated threads (memory leaks) in VM12
and VM22 (VM13 and VM23). In both experiments, we used
the prediction model generated by M5P algorithm.

Initially, in both scenarios, we set the threshold T equal
to 300 seconds. Upon restarting a VM, the probability of
generating anomalies for the VM is randomly selected in the
interval (0, 1], and the size of objects is randomly selected
between 10 Kb and 1 Mb. As for the number of clients
(emulated web browsers), we used 32 concurrent clients in the
first scenario, and 64 in the second one. For both scenarios,
we collected data related to all system features of the VMs,
the response time measured by the clients and the predicted
time to crash provided by the MLP.

We run the first experiment with 2 VMs for one week.
In Figure 4, we show some results related to a time window
extracted from the whole experiment for this first scenario.
We report various measured features, namely number of active
threads, free memory, used swap memory, and (total) CPU
usage. Additionally, we report the response time measured
by placing software probes in the Emulated Browsers, and
the predicted RTTF for the VM that was activated upon each
switching. By the plot, we can see that the accumulation of
anomalies leads to a continuous decrease in free memory,
with a subsequent increase in the usage of swap. Similarly,
the number of active threads grows. The effects of these
anomalies on the end users is shown by the response time,
which grows as long as the effects of accumulated anomalies
produce a performance degradation of the active VM. Further,



 0

 5

 10

 15

 20

 25

300 420 540

F
al

se
 N

eg
at

iv
es

 (
pe

rc
en

ta
ge

)

Rejuvenation Threshold (seconds)

Lasso Linear Regression M5P

19.7

14.91

11.71

5.05

1.5
0.31

2.22
0.78

0.16

Fig. 6. Percentage of false negatives using different thresholds in the case
of memory leaks and unterminated threads.

the predicted RTTF for the active VM shows a decreasing
trend while increasing the amount of accumulated anomalies.
Vertical red lines, in Figure 4, represent rejuvenation points,
namely time instants where the active VM is switched. Indeed,
after the occurrence of each vertical red line, we can see
that the amount of available resources (e.g., memory free,
threads, swap used) of the new active VM shows an anomaly-
free state, and the predicted RTTF immediately increases. Yet,
the response time measured by end users (emulated browsers)
drops down. Particularly, we note that PCAM ensured an upper
bound value of the average response time equal to 4.5 seconds
(as we set in the VM failure condition).

In Figure 5, we plot measurements related to a time
window of the experiment for the second scenario, where three
couples of VMs are managed by VMC. As mentioned, the
three couples of VMs are subject to different combinations
of anomalies. Also in Figure 5, vertical dashed red lines
represent rejuvenation points. By the results, we can see that
the injection of different kinds of anomalies lead the different
VMs to reach the failure point at different wall-clock time
instants. Nevertheless, VMC is able to manage independently
these different couples without any loss of timeliness in the
rejuvenation action.

To complete the study, and to show the accuracy of PCAM,
we measured the number of false negatives. As mentioned
in Section III-B, F2PM allows the user to define criteria to
determine whether the system under monitoring should be
considered as failed or not. This criteria are used, during the
datapoints collection of the training phase, to mark specific
datapoints as system failure points. At run-time, when VMC
detects that the predicted RTTF is lower than the threshold T , a
rejuvenation action of the active VM takes place. Nevertheless,
due to prediction errors, it could be possible that the system
fails although the predicted RTTF is greater then T . This is
exactly what we consider as a false negative. Namely, VMC
treats the system as still working at an acceptable level, while
it is actually not (i.e. it has already failed). In order to count
the number of false negatives, we modified VMC in order to
check if, based on values of features received by the active
VM, the failure condition has been met.

In Figure 6, we report the percentage of false negatives
we measured, for T equal to 300, 420 and 540 seconds,

respectively, and related to prediction models generated using
M5P, Lasso as a predictor and Linear Regression. Results
show that the most-effective ML algorithm is M5P, providing a
lower percentage of false negatives with respect to both Lasso
and Linear Regression, confirming our previous prediction
accuracy evaluation results in [4]. Nevertheless, in Figure 6,
we can see that the higher the threshold T , the lower the
number of false negatives. This is an expected result. In fact,
as already mentioned in Section III-A, if T is set to a too
low value, the effect of even small prediction errors might
bring the system to the failure point, preventing VMC from
performing a rejuvenation action before the system failure.
Based on the results, we can see that with different values of
T the percentage of false negatives significantly changes. This
demonstrates that the value of T can be used for reducing the
number of false negatives (possibly for eliminating them at all)
and, as a consequence, for increasing the overall availability
of the system. The counterpart of high values of T consists
of increasing the overall system overhead due to the increase
of the VM switching frequency and rejuvenation actions.
However, in all our experimental scenarios, we observed that,
also with higher value of T (i.e. 540 seconds) the increase of
response time due to the higher VM switching frequency was
negligible with respect to the overall response time reduction
achieved with PCAM with respect the case when VMs are
switched after a failure occurs.

C. Major Results

Results we discussed above show that PCAM can improve
some system properties, including ones belonging to the cate-
gory of self-* properties:

• self-healing: this property is guaranteed by timely forcing
the system to an anomaly-free state, relying on the self-
rejuvenation capabilities of PCAM;

• self-optimizing: this property is guaranteed by ensuring a
response time of the system below an acceptable thresh-
old, even in the case of accumulation of anomalies;

• self-configuring: this property is guaranteed by allowing
an automatic reconfiguration of the system, also when
couples of VMs are added/removed to/from the managed
pool of virtual resources.

As shown, these three properties enable PCAM to support
seamless execution of client-server applications deployed on a
cloud infrastructure.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a ML-based framework to effi-
ciently implement autonomic self-* properties and seamless
execution of cloud applications in the case of client-server
applications hosted in virtualized infrastructures. The frame-
work uses prediction models that are generated using various
ML algorithms, and can manage a cluster (with an arbitrary
number) of virtual machines. PCAM works with applications
that can be subject to different types of anomalies—as well
as to different combinations of them—and applications that
might be required to satisfy given SLA levels. By our results,
we have shown that the direct effect on end users of PCAM
is to ensure a response time below a given threshold, as well
as to provide high availability.

In our future work we explicitly target the investigation of
autonomic techniques to control (directly at run-time) the value



 100
 150
 200
 250
 300
 350
 400
 450
 500

Threads

0
 2⋅105 4⋅105 6⋅105 8⋅105 1⋅106 1⋅106 1⋅106 2⋅106 2⋅106

K
B

Mem Free

0
 1⋅105
 2⋅105
 3⋅105
 4⋅105
 5⋅105
 6⋅105

K
B

Swap Used

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

Cpu Used (Total)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

S
ec

on
ds

Response Time

0
200
400
600
800

1000
1200
1400
1600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

S
ec

on
ds

Seconds

Predicted Time To Failure

Fig. 4. System features, response time and predicted RTTF for the scenario with 2 VMs and Lasso (with reduced parameters) as a predictor.



0
 2⋅10

5 4⋅10
5 6⋅10
5 8⋅10
5 1⋅10
6 1⋅10
6 1⋅10
6 2⋅10
6 2⋅10
6

 140
 160
 180
 200
 220
 240
 260
 280
 300

K
B

VM11 and VM21 system features

Mem Free
Swap Used

Threads

0

 5⋅10
1

 1⋅10
2

 2⋅10
2

 2⋅10
2

 2⋅10
2

 3⋅10
2

N
u

m
b

e
r 

o
f 

T
h

re
a

d
s

VM12 and VM22 system features

Threads

0
 2⋅10

5
 4⋅10

5
 6⋅10

5
 8⋅10

5
 1⋅10

6
 1⋅10

6
 1⋅10

6
 2⋅10

6
 2⋅10

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

K
B

Seconds

VM13 and VM23 system features

Mem Free
Swap Used

Fig. 5. System Features for the scenario with 6 VMs and Lasso (with reduced parameters) as a predictor.

of the threshold T , which plays a fundamental role in the self-
optimization ability of PCAM. The goal will be to address
various execution scenarios so as to significantly reduce the
percentage of false negatives in order to meet SLA levels in
terms of both availability and response time.

ACKNOWLEDGEMENTS

The research presented in this paper has been supported
by the European Union via the EC funded project PANACEA,
contract number FP7 610764.

REFERENCES

[1] S. Pertet and P. Narasimhan, “Causes of failure in web applications,”
Carnegie Mellon University, Tech. Rep. CMU-PDL-05-109, Dec. 2005.

[2] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software rejuvena-
tion: analysis, module and applications,” in Fault-Tolerant Computing,
1995. FTCS-25. Digest of Papers., Twenty-Fifth International Sympo-
sium on, June 1995, pp. 381–390.

[3] D. Simeonov and D. Avresky, “Proactive software rejuvenation based
on machine learning techniques,” in Cloud Computing, ser. Lecture
Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering. Springer Berlin Heidelberg, 2010,
vol. 34, pp. 186–200.

[4] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “A machine learning-
based framework for building application failure prediction models,” in
Proceedings of the 20th IEEE Workshop on Dependable Parallel, Dis-
tributed and Network-Centric Systems, ser. DPDNS. IEEE Computer
Society, 2015.

[5] W. Dawoud, I. Takouna, and C. Meinel, “Infrastructure as a service
security: Challenges and solutions,” in Proceedings of the 7th Inter-
national Conference on Informatics and Systems (INFOS). IEEE
Computer Society, March 2010, pp. 1–8.

[6] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam, “Critical event prediction for
proactive management in large-scale computer clusters,” in Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD. ACM, 2003, pp. 426–435.

[7] L. M. Silva, J. Alonso, and J. Torres, “Using virtualization to
improve software rejuvenation,” IEEE Trans. Comput., vol. 58,
no. 11, pp. 1525–1538, Nov. 2009. [Online]. Available: http:
//dx.doi.org/10.1109/TC.2009.119

[8] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society, Series B, vol. 58, pp. 267–288,
1994.

[9] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, and S. J.
Cunningham, “Weka: Practical machine learning tools and techniques
with java implementations,” 1999.

[10] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[11] Y. Wang and I. H. Witten, “Inducing model trees for continuous classes,”
in Procedings of the 9th European Conference on Machine Learning,
1997, pp. 128–137.

[12] H. A. Chipman, E. I. George, and R. E. Mcculloch, “Extracting
representative tree models from a forest,” in IPT Group, IT Division,
CERN, 1998, pp. 363–377.

[13] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[14] J. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[15] W. D. Smith, “TPC-W: Benchmarking an ecommerce solution,” 2000.
[16] Transaction Processing Performance Council, TPC BenchmarkTM W,

Standard Specification, Version 1.8. Transaction Processing Perfo-
mance Council, 2002.

[17] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin, C. McCurdy,
R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti, “Characterizing a Java
implementation of TPC-W,” in Proceedings of the Third Workshop On
Computer Architecture Evaluation Using Commercial Workloads, 2000.

[18] [Online]. Available: http://crossroads.e-tunity.com/


