
OS-based NUMA Optimization: Tackling the Case of Truly Multi-Thread
Applications with Non-Partitioned Virtual Page Accesses

Ilaria Di Gennaro, Alessandro Pellegrini, Francesco Quaglia
DIAG–Sapienza Università di Roma, Italy

Abstract—A common approach to improve memory access
in NUMA machines exploits operating system (OS) page
protection mechanisms to induce faults to determine which
pages are accessed by what thread, so as to move the thread
and its working-set of pages to the same NUMA node. How-
ever, existing proposals do not fully fit the requirements of
truly multi-thread applications with non-partitioned accesses
to virtual pages. In fact, these proposals exploit (induced)
faults on a same page-table for all the threads of a same
process to determine the access pattern. Hence, the fault by
one thread (and the consequent re-opening of the access to the
corresponding page) would mask those by other threads on
the same page. This may lead to inaccuracy in the estimation
of the working-set of individual threads. We overcome this
drawback by presenting a lightweight operating system support
for Linux, referred to as multi-view address space, explicitly
targeting accuracy of per-thread working-set estimation in
truly multi-thread applications with non-partitioned accesses,
and an associated thread/data migration policy. Our solution
is fully transparent to user-space code. It is embedded in a
Linux/x86 64 module that installs any required modification to
the original kernel image by solely relying on dynamic patching.
A motivated case study in the context of HPC is also presented
for an assessment of our proposal.

I. INTRODUCTION

Nowadays, computing systems are continuously increas-
ing their number of processors and the overall size of RAM
storage, which makes increasingly difficult and economically
non-convenient to support uniform memory access latency.
Non Uniform Memory Access (NUMA) represents therefore
the reference architectural organization.

NUMA platforms are configured to have different RAM
banks close to specific CPU-cores, hence providing low
latency and high throughput of memory access, while other
banks are far from these same CPU-cores, thus inducing
higher access latency and reduced throughput. This archi-
tectural paradigm has a clear reflection on the efficiency ac-
cording to which both application and system-level software
is executed, given that accessing data from a far NUMA
node does not favor performance and leads to reduced energy
efficiency (because of the need for more clock cycles).

The baseline mechanism for optimizing memory access
in NUMA platforms consists in (dynamically) migrating
a thread and its working-set of virtual pages to a same
NUMA node. However, one major barrier to the adoption
of this technique is represented by the lack of a-priori
guarantees (or assumptions) on how slices of logical memory
are accessed at runtime, as typical of non-deterministic
code/execution. This is an aspect that cannot be fully tackled

or resolved when solely relying on off-line code analysis
techniques [2].

A few solutions targeting the runtime determination of
the access pattern can be roughly classified in user-level and
system-level ones. User-level proposals are based on nesting
(e.g. via instrumentation schemes or third party library
profiling) monitoring code within the application software,
which is used to track the memory (page) references issued
by a thread. System-level solutions rely on operating-system
support for memory management, which is used to induce
and trap segmentation faults so as to capture page accesses
via signaling mechanisms. This is achieved by temporarily
denying the access to valid memory, and then re-granting
the possibility to access as soon as a segmentation fault is
trapped and the accessed virtual page is identified as one
belonging to the current working-set of the faulting thread.

Generally speaking, user-level approaches look more in-
trusive for a set of reasons. They may induce overhead
(e.g. due to the execution of user-space monitoring routines
statically nested within the application code) along execution
phases where the current working-set of a thread has already
been determined. Also, they may lead to sub-optimal runtime
behavior (even for highly optimized application code) due
to secondary effects such as cache-efficiency reduction [11].

On the other hand, current system-level approaches (see
[8], [27]) do not fully cope with truly multi-thread appli-
cations, namely those based on threads living in the same
process (i.e. within a same address space), where threads
exhibit non-partitioned virtual page accesses. This is a
noticeable lack, given that truly multi-threading is nowadays
recognized as a core technology in a lot of contexts, ranging
from multi-thread servers’ implementations (e.g. [20]) to
HPC platforms to be run on top of multi-core shared memory
systems [16], [28]. Also, shared data access across multiple
threads along specific wall-clock time windows has been
shown to provide a base for the design of (distributed)
protocols exalting the benefits from locality [14].

The point is that existing system-level approaches rely on
conventional address space management schemes, where a
single page-table is used as the core memory management
data structure for all the threads living within a same
process. As a consequence, once the access to a virtual
page is temporarily closed within the page-table, a single
fault by whichever of the concurrent threads leads to re-
granting the access to that same virtual page to all the
other threads. In fact, the unique instance of the page-table
gets modified upon fault handling by implicitly making the



page re-accessible to all those threads. Consequently, any
thread other than the faulting one can access the same page
without being identified as one actually using that page
(hence having it within its current locality of references).

Some proposals (e.g., [27]) suggest to tackle this problem
by increasing the frequency according to which memory
access is denied. However, this may lead to the adverse
situation where a same thread faults multiple times on a
same page, which has already been identified as belonging
to its current working-set. Also, the approach of frequently
denying memory access in the hope to track the accesses to
the same page by the different threads running within the
truly multi-thread application can only alleviate the problem,
since misses of accesses’ tracing can iterate over time, just
depending on application external factors such as OS thread
scheduling.

In this article we overcome this problem by proposing an
innovative memory management facility, specifically tailored
to Linux/x86 64 systems, based on the concept of multi-view
address space (MVAS). With our proposal, any individual
thread is (temporarily) associated with a thread-specific
memory view that is set up via a so-called sibling page-
table, which stands aside of the one originally instantiated
for supporting the logical-to-physical memory mapping of
the overall (truly multi-thread) process. Each thread-specific
memory view has the capability to detect, via minor faults,
the access to virtual pages by the corresponding thread.
Minor faults are fully resolved via an ad-hoc version of
the operating system page-fault handler, which we provide
in our architecture, so that the memory access tracking
scheme does not rely on the usage—and does not impose the
overhead—of the full chain of supports for the SIGSEGV
signal. The ad-hoc version of the page-fault handler we
provide is in charge of maintaining consistency between
the original page-table and the sibling one(s) via an elegant
iterative fault-resolution scheme (limited to 2 steps), which
does not require to perform system-wide synchronized up-
dates of multiple sibling page-tables. Further, such a scheme
allows treating any kind of fault that may be experienced
in a conventional (single-view) execution of the multi-
thread application, such as native minor faults on empty-zero
memory.

Our MVAS facility can be switched on/off dynamically
while the target process runs. Hence, per-thread working-
set variations can be detected at runtime to apply dynamic
thread/page migration schemes optimizing memory access
on NUMA platforms. The design and implementation of one
of these schemes are also provided in this article.

Our proposal is fully based on a Linux module1, which
avoids the need for any kernel recompilation/reinstallation
in order to use our architecture. Further, the complexity of
using our system is minimal, since it requires managing a
few simple shell commands that are provided within the
software package.

1Source code available at https://github.com/HPDCS/MVAS

Experimental data are provided for an assessment of our
solution, which have been collected by running a motivated
case study from HPC, namely an open source parallel simu-
lation platform [21], on top of a 32-core machine equipped
with 64 GB of RAM, partitioned into 8 NUMA nodes.

The remainder of this article is structured as follows. In
Section II we discuss related work. The multi-view address
space facility and the associated memory access tracing
support are presented in Section III. How to exploit them for
actual migration of threads/pages is discussed in Section IV.
In Section V we present the experimental evaluation of our
system.

II. RELATED WORK

NUMA allocators. NUMA-aware allocators constitute a
well known technology for memory access optimization in
modern computing systems. This is the case of kernel-level
allocators, used for ultimately serving memory requests by
either the kernel or the applications. As an example, so-
called mem-policies are adopted by Linux in order to allocate
pages according to NUMA oriented rules [13]. The default
rule is the so-called first-touch one, according to which
a logical page is materialized in a physical frame on the
NUMA node where the CPU-core performing the first access
to the page resides. Our approach has a different target, given
that we aim at (dynamically) determining which threads
are touching—possibly in shared mode—some logical page
(likely already materialized in RAM) over time in order to,
e.g., migrate it towards different NUMA nodes while the
application’s execution is in progress.

Beyond kernel-level software, NUMA-aware allocators
have also been considered in HPC, e.g., in parallel scientific
applications based on explicit data partitioning [16], [22].
In such a scenario, the application-level allocator resorts
to NUMA-specific system calls to support the (dynamic)
binding of logical pages to the NUMA nodes where the
threads touching a specific partition of the overall application
state are running (or are dynamically migrated to). Our
approach is different from these proposals in that we target
truly multi-thread applications not necessarily based on data
partitioning across different threads. Rather, we cope with
scenarios where a single page can be hot (being included in
the working-set) of more than one thread, which ultimately
allows for clustering these threads and their hot page(s) on
the same NUMA node.
Library and instrumentation based approaches. A few
solutions are based on determining the data-sharing pattern
across different threads and/or processes by relying on
runtime profiling of actual memory operations at the level
of the employed data-exchange libraries. In this category we
can find approaches suited for parallel applications relying
on MPI/OpenMP libraries (see, e.g., [4], [17], [26]). Variants
of this category of proposals are based on either a-priori
knowledge of the source/destination threads for specific
data-exchange operations [10] or on a knowledge base of the
communication pattern built by tracing previous executions



of a given application software [2], [9]. In both cases the
data-exchange library is able to select well-suited buffers for
access latency reduction on NUMA machines. Our approach
is completely different since we do not operate at library
(user-space) level, rather at kernel-level. Consequently, it
looks more general since it can be employed in the context
of multi-thread applications relying on generic (e.g. NUMA
unaware) libraries for exchanging/sharing data across con-
current treads. On the other hand, our focus is exactly on
truly multi-thread applications, not on multi-process ones.

Alternative approaches are based on instrumenting appli-
cation level code so as to capture memory access dynamics
independently of the reliance on, e.g., data exchange li-
braries. Along this path we can find solutions that are aimed
at making instrumentation lightweight although attempting
to maximize its capability in tracking memory access pat-
ters [12], [18], [24]. Our proposal is fully orthogonal to
all these techniques given that it operates at kernel level.
Further, it can be switched on/off periodically thus allowing
for controlling the relative overhead for memory access
pattern determination, which is not allowed (or at least
is not allowed at zero cost) by pure user-space schemes
[11]. The only exception is when relying on multi-coding
within the same executable (with static coexistence of both
instrumented and native application modules), which has
been shown to be feasible limited to specific application
domains [23].
Hardware based approaches. A few proposals try to capture
data affinity towards a CPU-core (i.e. a thread running on
that core) by using specific hardware-level facilities. These
include statistics exposed by memory controllers [1], [3],
software-managed TLBs [19], [25] (programmed ad-hoc to
gain information on the memory access pattern), or even
instruction-based sampling [7]. These solutions target the
determination of what thread is interested in working on a
specific page, while we aim at determining threads vs data
affinity in contexts where a specific page can be hot for
multiple threads, so as to ultimately migrate these threads
and the page on the same NUMA node.
Operating system based approaches. Recent proposals like
KMAF [8] and AutoNUMA [27] are both based on in-
ducing page faults that are then traced to determine the
pages accessed by threads. When a page fault occurs by
a specific thread, the access is then re-granted (by updating
the corresponding page-table entry), so that other threads
living in the same address space are also allowed to access
the same page without being traced. As we pointed out,
this makes these approaches not fully suited for truly multi-
thread applications with non-partitioned thread accesses to
virtual pages. Rather, they are mostly suited for parallel
applications based on either (A) multiple processes living in
different page-tables (so that page faults by different threads
do not mask those by other threads) or (B) multi-thread
applications where the access pattern is such that specific
sets of logical pages are exclusively accessed by different
threads (which avoids false negatives when a page opened

for the access by a faulting thread is then automatically
accessible by any other thread of the application). Differently
from these proposals, our approach provides an innovative
system-level support for page access tracing in truly multi-
thread applications which avoids false negatives, given that
each thread is allowed to run in a specific (sibling) memory
view. As a consequence, a change of the access rule on
a view upon the occurrence of a faulting access does not
impact the access rules on other views, hence the possibility
to trace faulting accesses to the same page by other threads.

The attempt to exploit non-conventional address space
management policies (as we do) in order to capture the ac-
cess pattern and to optimize the runtime in NUMA platforms
has been devised in [5]. Here the authors provide the concept
of a locality-aware page-table, able to track per-thread
accesses to pages by directly registering the identifier of the
accessing thread within the page-table upon TLB misses.
Clearly, this approach requires hardware level facilities that
are not currently available in off-the-shelf processors. In
fact it has been evaluated limited to simulated/hardware-
emulated scenarios. Rather, our proposal does not require
any special hardware support, and has been integrated within
Linux via a real implementation available as free software.

III. MULTI-VIEW ADDRESS SPACE—MVAS

A. Basic Architectural Organization

Our software architecture puts in place a kernel-level
differentiation, in terms of memory views, for all the threads
belonging to a specific process. To achieve this goals, we
have developed a Linux module offering support for a
special device file called dev_multi_view such that a
process ID can be registered by simply issuing an ioctl
call, with the command REGISTER_PID, towards the de-
vice file. In our overall software suite, this can be done via a
proper shell command, which runs in a program that is fully
separated from the one whose threads need to be monitored.
Registering a process ID on the special device file allows
the OS kernel to know that all the threads running within
this process must be managed via thread-specific memory
views, i.e. via sibling page-tables, so as to gain information
on their working-set of logical pages along their subsequent
execution phase.

The part of the OS kernel that needs to know whether
some thread belongs to a process that is registered within
dev_multi_view is the schedule() function. In our
design, modifications of the scheduler to make it aware
that per-thread memory views need to be setup, handled or
switched off, is based on a dynamic patching approach where
parts of the executable image of the kernel are rewritten at
startup of the external module.

Our patching approach is based on retrieving the memory
position of the block of machine instructions implementing
schedule() from the system map and on injecting into
this routine an execution flow variation such that control
goes to a schedule_hook() routine offered by the



external module right before schedule() would exe-
cute its finalization part. Also, the patch works for (and
has been tested on) Linux kernels from 2.6 to 3.2. The
schedule_hook() function simply executes the same re-
turn actions originally planned by the kernel schedule()
function. However, patching the original scheduler this way
allows the hook to take control when the decision about
what thread needs to take control of the CPU-core is already
finalized—actually the thread has already taken control of
the CPU-core, since we are just returning from the CPU-
scheduling process.

The schedule_hook() routine implements a state
machine that allows the scheduled thread to switch to its
own memory view, or to switch back to the original memory
view in case the working-set tracing phase has been switched
off. This is again supported via a proper ioctl call, with
the DEREGISTER_PID command, leading to deregister the
process ID from dev_multi_view. A thread switches to
its private view right upon being CPU-rescheduled if the pro-
cess it belongs to is registered within dev_multi_view.
This is checked by the scheduled thread by assessing the
value of current->tgid, which is the Linux process
control block field used to keep the actual process ID for all
the threads living in the same process. The switch operation
to the private view entails three steps:
(A) The thread registers its ID (namely current->pid)

into a control table, still supported via our Linux
module, used to keep track of what threads need to
be executed by relying on private memory views.

(B) The private memory view is instantiated for the reg-
istering thread, which is done by setting up a sibling
page-table.

(C) Right before returning, schedule_hook() updates
the content of the page-table pointer register CR3 so
as to point to the sibling page-table.

If the rescheduled thread finds itself registered in the con-
trol table but the process in which it lives is no longer regis-
tered into dev_multi_view, then schedule_hook()
deregisters the current thread from the control table, switches
it back to the original memory view by resetting the CR3
register to point to the original process page-table (whose
address is kept by current->mm->pgd), and then tears
down the sibling page-table. However, if no change is
observed in relation to register/deregister operations of the
process ID on dev_multi_view since the last reschedule,
the current thread persists in the last selected memory
view—the original one or the private one—just depending
on the conditions observed in the last passage within the
schedule_hook() code block. The execution flow of
schedule_hook() is schematized in Figure 1.

B. Sibling Page-Tables
In x86 64 processors, the paging scheme is based on (up

to) 4 indirection levels, as shown in Figure 2. The top-
level page-table is called PML4 (or PGD—Page General
Directory) and keeps 512 entries. All the other page-tables,

schedule_hook
current thread 

is registered ?

no

return

yes

yes

1 – deregister current thread

2 – update CR3 to point to current->mm->pgd

3 – tear down sibling page-table 

current->tgid

is registered ?

no

1 – register current thread

2 – setup sibling page-table

3 – update CR3 to point to 

sibling page-table

update CR3 (if needed)

to point to 

current->mm->pgd

current->tgid

is registered ?

yes no

update CR3 

(if needed) to point 

to sibling page-table

Figure 1. Execution diagram of schedule_hook.

DirectoryPML4 Directory Ptr Table O set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

Figure 2. The paging scheme in x86 64 processors.

operating at lower levels, still have 512 entries each. In our
proposal, per-thread memory views are based on setting up
sibling page-tables that, in their initial state, are essentially
partial copies of the original PML4 associated with the
process within which the threads are running. This is the
PML4 table pointed by current->mm->pgd.

As shown in Figure 3, the sibling PML4 has all the entries
associated with kernel-level addresses set to be a copy of the
corresponding ones from the original PML4. Rather, all the
other entries are set to the value NULL. This way, as soon
as the thread living in the memory view associated with the
sibling page-table returns to user mode, any memory access
to user space logical addresses will give rise to page faults2.

These page faults are handled in our architecture via a
modified version of the original page-fault handler, which
is setup while mounting our external module via simply
rewriting the associated entry of the Interrupt-Descriptor-
Table (IDT). Upon gaining control, this modified version
needs to discriminate whether the fault is a real one (minor
or not), or is simply due to the fact that the sibling page-
table is not aligned to the original one, hence not yet granting

2In our design, sibling page-tables can be also configured to have the
PML4 entries associated with the application text sections already filled
with the corresponding ones kept by the original PML4. This can help in
all the scenarios where the threads running within the truly multi-thread
application rely on the same modules within the application code, such
as for categories of HPC platforms [28], [29]. In these scenarios, all the
concurrent threads are highly likely correlated in the access to text-reserved
virtual pages, so that tracing the accesses and moving these pages across
different NUMA nodes might produce pure overhead with no advantage in
terms of clustering of threads/data on a same NUMA node.



Original PML4

Sibling PML4

Pointed by 

current->mm->pgd

Entries mapping 

kernel addresses
copy

Entries mapping 

user addresses

NULL

Figure 3. Initial setup of the sibling PML4.

access to the target page. To determine how to handle the
fault, the modified handler tries to traverse the original chain
of PML4/PDP/PDE/PTE tables so as to assess whether the
target page is in memory. In the positive case, the sibling
view is simply realigned to the original one by allocating and
setting up the proper tables (and entries) along the sibling
PML4/PDP/PDE/PTE chain corresponding to that page. An
example of this scheme is shown in Figure 4.

If the page fault was a real one (e.g. a minor one
on empty-zero memory), meaning that the page could
not be located along the original chain of page-tables,
the original page-fault handler is invoked, which will re-
solve the fault along the original chain. In fact, it uses
current->mm->pgd to locate in memory the chain to
be consulted/updated. Upon the return of the original han-
dler, our modified version passes control back—along the
same thread—to the application code, which lives within
the memory view associated with the sibling page-tables.
This will regenerate a fault that can anyhow be treated as
explained before (by simply realigning the sibling view to
the original one, which now allows pointing to the correct
page in memory). This leads to an iterative procedure with
no more than 2 steps.

By inducing the faults on the sibling page-table, thanks
to its initial setup with NULL PML4 entries for user space
addresses, we can detect the exact pages that are accessed
by any individual concurrent thread living in a process
that is registered in the dev_multi_view device file.
The addresses of the faulted pages are then passed as
input to an audit subsystem used to record the actual per-
thread working-set of pages, still supported via our external
module, whose details will be provided in the next section.

We also note that our scheme is able to handle both 4KB
page size (which exactly relies on all the 4 levels of paging
we described above) and large pages, namely 2MB pages. In
the latter case, the sibling chain that maps a 2MB page will
only entail 3 levels of page-tables, namely PML4/PDP/PDE.
In fact, our custom fault handler, while traversing the orig-
inal chain of page-tables, is able to determine whether the
target page is a large one or not, and to setup the sibling
page-tables’ chain accordingly.

C. Logging the Faulting Accesses

Any fault occurring on sibling memory views is logged
in our architecture via a kernel-level data structure, whose

. ..001 …
. ..10 …

..111..
..110..

Current->mm->pgd

. ..011 …
. ..000 …

..110..
..110..

Sibling PML4

accessed

frame

Only the control bits copied from the original chain

since memory positions of the sibling tables depends

on allocation operations

Exact 

copy

Figure 4. Setup of the per-thread sibling chain of page-tables.

Figure 5. Data structure used to log the faulting accesses.

schematization is provided in Figure 5. Essentially, it is
based on a scalable hash table, where each hash bucket
allows for keeping track of faults occurring on any of 64
memory regions associated with the same number of PDE ta-
bles. Each PDE-record is kept via a node that allows pointing
to a list of up to 512 page_node structures. Each of these
structures allows for keeping, via its thread_tracking
field, the number of accesses that have been performed on
that same page by up to NGROUPS×SIZE_GROUP different
threads. These parameters can be configured depending
on the scale of the used multi-core machine, and on the
(maximum) amount of threads that are supposed to be
executed within the hosted applications. In particular, the
value of SIZE_GROUP determines the reference cardinality
of the number of threads that can be monitored within a
process (64 in our suggested configuration). If the number
of employed threads is expected to exceed this value, then
more groups can be used. We also note that the management
logic of the above data structure allows logging memory
accesses according to two alternative modes: (A) One-shot,
where we simply keep track of whether a logical page has
been accessed or not since the last activation of the MVAS
facility; (B) Count, where we count the number of faults that
have occurred for a given thread across multiple activations
of the MVAS facility.

D. Safe Execution with Sibling Page-Tables
An important aspect to consider when dealing with sibling

memory views is the fact that sibling page-tables need to
be kept consistent with the memory mapping kept by the
original page-tables’ chain, even in scenarios where pages
that were valid at some point in time are then invalidated,



or undergo a change of their access rules or of their actual
physical mapping. One example of invalidation is when a
call to the munmap system call for a virtual memory region
that is currently valid is issued by the application, which
was already allocated in RAM (e.g. because of minor faults
when that region was still in the empty-zero state). As for
these scenarios, the Linux kernel already entails mechanisms
such that system calls of this kind are executed atomically
in terms of (A) changes performed on the original page-
tables’ chain (e.g. invalidation of the entries at some level
of the chain) and (B) TLB invalidation on one or multiple
CPU-cores. The latter target is achieved via so called TLB-
invalidate Inter-Processor Interrupt (IPI) notifications across
the CPU-cores.

In our architecture, we need to reach a similar level
of atomicity, so that the sibling page-tables need to be
atomically updated in case of the execution of a system call
that leads to shrinking the set of valid pages in the process
address space, or to changes of the access permissions and/or
of the position of logical pages in physical memory. To
achieve this objective, we wrapped all the system calls of
this kind by hacking the system call table at module startup,
so that the wrappers temporarily lock the access to the
sibling page-tables, invalidate their entries and then call the
original system call code. Clearly, all the operations depicted
in Section III-B, namely those that lead to updating the
chain of sibling page-tables upon a faulting access, need
to grab the lock, so as not to incur in inconsistency in case
of concurrent operations by the above wrappers. However,
each sibling page-tables’ chain has its own spin-lock, so
that two different threads that concurrently fault on their
own memory views do not block each other in the update
of the corresponding chains of sibling page-tables. Overall,
global synchronization is only requested in case any of these
threads calls one of the above-cited system calls, given that
the corresponding wrappers need to lock all the sibling
memory views.

As a final note, we exploited swapoff/swapon services
natively offered by Linux in order to temporarily avoid asyn-
chronous modifications of the original page-tables’ chain due
to page swapping by the kswapd daemon while the working
set tracing phase is active.

IV. MIGRATION RULES AND SUPPORT

In this section we propose a greedy policy whose objective
is to cluster as much as possible a thread and its working
set of pages (some of which possibly shared with other
threads) on a same NUMA node. Let us suppose that we
are dealing with a truly multi-thread application with T
concurrent treads, each one associated with an ID in the
interval [0, T − 1]. Let us suppose, additionally, that the
overall estimated working-set of the application is composed
of P pages. For each page, we generate an access-count
tuple:

pi = ⟨n0, n1, . . . , nT−1⟩ (1)

where each nj is the number of accesses by each thread
j on the i-th page. For each tuple pi we compute the
maximum value Mi = maxj{nj}, which keeps the highest
access count for the i-th page. The ID associated with the
corresponding thread is stored in the maximum access count
vector m, which will be later exploited. We then convert the
access-count tuple pi in a relative access-frequency tuple:

φi =

⟨
n0

Mi
,
n1

Mi
, . . . ,

nT−1

Mi

⟩
(2)

The tuple φi allows to estimate which threads have a
higher fraction of accesses on a given page pi. This tuple
is then combined in a per-page access-frequency matrix.
Specifically, given two indices l and m in [0, T − 1], the
per-page access-frequency matrix (related to the i-th page)
is a symmetric matrix where ∀l ̸= m the corresponding
elements are defined as:

Φi
l,m = Φi

m,l =

 (φi,l + φi,m)/2 if greater than α
0 if φi,l ∨ φi,m = 0
0 otherwise

(3)
where α ∈ [0, 1] is a controlling factor. The higher the value
of α, the higher must be the access frequencies to a given
page to consider two different threads as correlated on that
page. From each Φi, we then build the final (symmetric)
access matrix, telling whether two threads share a certain
amount of the memory pages in their working-set, which is
defined as:

Al,m = Am,l =
P−1∑
i=0

Φi
l,m (4)

We then extract from A all the elements such that l ̸= m, in
order to generate a vector v of tuples ⟨tl, tm, al,m⟩, where
al,m is the component of A at position (l,m). This vector
is then ordered according to the descending order of al,m
values, allowing us to identify which are the pairs of threads
having higher affinity in terms of accessed memory pages.
We also note that, when employing the one-shot fault-
logging approach, Al,m elements will either acquire value 0
or 1, with value 1 indicating that two threads are correlated
given that they touched (at least one time) the same virtual
page, as tracked via the multi-view facility.

The next step of our greedy approach maps threads to
cores taking into account the corresponding NUMA node
that is close to each core. In particular, we assume that the
machine on which we are running is composed of Z NUMA
nodes and that the CPU-cores belong to some cluster zk,
which has direct access (say is close) to the memory of
node k ∈ [0, Z − 1].

We iterate over the elements of v, starting from v0 by
picking the thread IDs t0l and t0m, and we add these threads
to the cluster zk of CPU-cores, with k initially set to
0. Then, we check the next element v1 ∈ v, and again
extract t1l and t1m. If either t1l or t1m corresponds to either
t0l or t0m, we check whether the previous cluster zk has
still enough space (namely, not all CPU-cores are already



assigned to threads). In the positive case, we add t1l or t1m
to zk, otherwise we switch to zk+1. If neither t1l nor t1m
are equal to t0l or t0m, we directly add them to the next
zk+1 which has enough space. This step is repeated until
all threads are assigned to some cluster zk. If T is greater
than the total number of available CPU-cores, we necessarily
need to operate a mapping possibly leading to time-sharing
concurrency across (some of) the T threads. In this situation,
we simply leave the decision to the underlying operating
system kernel—by not forcing any binding at all—so as to
exploit the (already optimized) CPU-sharing policies offered
by the operating system.

After having determined the mapping of threads to CPU-
cores, we start scanning the maximum access count vector
m, so as to identify the NUMA node each page should be
migrated to. In particular, as mentioned, each entry mi ∈ m
holds the ID of the thread which has the highest access
ratio for the i-th page. We therefore identify the cluster zk
the thread belongs to, and we flag the memory page to be
mapped to the corresponding NUMA node k.

The thread/page migration support based on the above
greedy algorithm has been implemented via a (low-priority)
user-space separate daemon that is activated via a shell com-
mand (fully external to the multi-thread application whose
runtime needs to be monitored and optimized). In order to
let this daemon retrieve from the kernel-level data structures
the information used to build the access-count tuples pi, we
have added a system call for flushing data related to logged
accesses into the syslog buffer via printk.

V. EXPERIMENTAL DATA

A. Reference Hardware/OS Platform

We executed experiments on a 64-bit NUMA HP Pro-
Liant server, equipped with four 2GHz AMD Opteron 6128
processors and 64 GB of RAM. Each processor has 8 cores
(for a total of 32 cores) that share a 12MB L3 cache (6 MB
per each 4-cores set), and each core has a 512KB private L2
cache. The operating system is OpenSuse 13.2 (Harlequin)
(x86 64), with Linux kernel 3.16.7. The computing platform
entails 8 different NUMA nodes, each one close (distance
10) to 4 CPU-cores and far (distance 20) from all the others.

B. Test-bed Software Platform

To test our proposal we selected the ROOT-Sim [15] open
source truly multi-thread HPC platform, which supports
multi-core parallel execution of discrete event simulation
models3. On top of this platform we have run a high fidelity
discrete event simulation model of a cellular system (we
refer the reader to [23] for details). The motivations for
which we believe the selected ROOT-Sim platform (coupled
with the overlying test-bed application) represents a good
case study are the following ones:
(A) It relies on speculative processing techniques hence
leading—as is well known [6]—to large usage of memory

3Code is available at https://github.com/HPDCS/ROOT-Sim

for (temporarily) keeping both speculatively produced data
records and in-memory logs for recoverability. Overall, it
is a memory intensive case study that, in the selected
configuration, has stably reached RAM occupancy on the
order of 30 GB.
(B) The running threads are definitely CPU-bound. Hence
their execution speed can be significantly affected by the
efficiency according to which data are accessed within the
NUMA platform (i.e. performance is not interfered by I/O
or other blocking services). We have run the platform by re-
lying on 32 concurrent worker threads, thus fully exploiting
the underlying 32 CPU-core platform.
(C) It implements a load-sharing policy (see [28]) that allows
different worker threads to operate on (say to take care of
the execution of) different sets of simulation objects (either
in forward mode or in rollback mode in case of causal
inconsistencies) along different wall-clock-time windows.
This leads to the scenario where the virtual pages used for
the objects’ representation and for their recoverability data
are accessed in shared mode by the threads (depending on
runtime decisions of the load-sharing policy and on how it
clusters the objects across the worker threads).
(D) It already embeds a NUMA oriented memory manage-
ment support (see [22]) that operates in user-space, which
can be exploited for a comparative analysis of our current
proposal.

As for the latter point above, the user-space NUMA ori-
ented subsystem is based on ad-hoc allocation services that
keep track of what virtual pages are destined for which sim-
ulation object, and for its recoverability data. Also, when an
object is periodically (re-)bound to specific worker threads
for load-sharing purposes, the associated virtual pages are
all migrated to the NUMA node hosting these threads. This
scheme can be classified as a library based approach where
the allocation/migration sub-system only keeps a map of
the overall page allocations, and does not know what pages
are—and likely will be—of interest for the object execution
during the next wall-clock-time window. On the other hand,
it does not require runtime tracing of memory accesses.
Overall, this scheme can be seen as based on the concept
of resident-set, given that all the pages associated with data
structures used to support the execution of an object are
migrated. Rather, our new proposal is based on migrating
pages belonging to the working-set since we are able to
accurately–and periodically—trace memory accesses per-
thread, and the threads’ data-share profile (thus migrating
only the pages that are currently hot for sets of threads).
Orthogonality of the two approaches allows us to compare
different philosophies targeting NUMA optimization.

C. Results

Multi-view Address Space Overhead: We initially fo-
cused on evaluating the overhead induced by our solution.
To this end, we run the selected test-bed platform by acti-
vating the MVAS facility and logging the faulting accesses,
comparing the execution time with the one achieved with



 0

 5

 10

 15

 20

 25

TP 1 - AP 5 - LOG

TP 1 - AP 5 - NO LOG

TP 1 - AP 10 - LOG

TP 1 - AP 10 - NO LOG

TP 1 - AP 20 - LOG

TP 1 - AP 20 - NO LOG

TP 3 - AP 5 - LOG

TP 3 - AP 5 - NO LOG

TP 3 - AP 10 - LOG

TP 3 - AP 10 - NO LOG

TP 3 - AP 20 - LOG

TP 3 - AP 20 - NO LOG

pe
rc

en
ta

ge
 in

cr
em

en
t o

f t
he

 e
xe

cu
tio

n 
tim

e

Figure 6. Overhead evaluation.

a baseline configuration with no activation of MVAS. Each
execution-time sample has been computed as the average
over 5 runs of the same application (under the same set-
tings). Further, we considered different settings in relation
to the usage of our multi-view based memory access pattern
tracking system. In particular, we varied both the period
according to which the MVAS facility is switched on while
the application is in progress (referred to as AP - Activation
Period - in the plots), and the interval of time during which
the multi-view and the associated memory access pattern
determination is kept in place (this parameter is referred
to as TP - Trace Period - in the plots). As a last variant,
we have run the multi-view configuration by excluding the
logging of the faulting accesses (referred to as NO LOG in
the plots), so as to be able to assess the relative overhead
for managing the logging data structure presented in Section
III-C, as evaluated by comparing these data with the ones
achieved when the log facility is turned on.

We report in Figure 6 the percentage increment in the
execution time induced by the different configurations com-
pared to the baseline case. From the results we see very low
or negligible overhead when running with MVAS except for
configurations leading to extremely intensive memory access
tracing. This occurs either for very reduced values of AP
(say when the MVAS facility is frequently activated every
5 secs) or when the threads live within sibling views for
longer time (say when TP is set to the value 3 secs). We also
see that the relative overhead by the logging facility of the
faulting accesses supported via the data structure presented
in Section III-C is quite negligible.

We note that, the longer TP, the higher is the likelihood
that the finally determined working-set contains both very
hot pages (with high current frequency of accesses by a
specific thread) and pages that are used less frequently along
the current execution phase. Hence, maintaining the MVAS
facility active for shorter periods (say when setting TP to
reduced values, like 1 sec) would anyhow allow capturing
the accesses to the hot pages within the working-set, whose
placement optimization within the NUMA platform would
expectedly lead to the highest benefits. At the same time,
shorter TP values would expectedly lead to minimal over-
head by MVAS as pointed out by the experimental data.

Benefits Assessment: We then focused on evaluating
the effects of the NUMA oriented architecture made up
by combining MVAS with the thread/data placement policy
provided in Section IV. In particular, we compared the exe-
cution time provided by our solution with the one achieved
with the baseline configuration of the test-bed platform, and
with the one achieved when resorting to the resident-set
NUMA oriented migration facility already supported by the
platform (referred to as RS migration in the plots).

We included in the comparison an operating system
based variant of NUMA optimizer where all the threads
living within the same truly multi-thread application (hence
within the same address space) are traced, in terms of page
accesses, by relying on a single page-table supporting the
traditional single-view address space. This is the philosophy
characterizing solutions like KMAF [8] and AutoNUMA
[27]. Overall, although we did not test directly against these
systems, our experiments are somehow representative of test-
ing against the core memory access tracing philosophy they
rely on, with the advantage of not inducing biases due to the
different logic for page-fault handling (since for both multi-
view and single-view we exploit the same implementation
of the kernel level tracer/logger of accessed pages, while
KMAF and AutoNUMA have different implementations for
carrying out this task).

On the other hand, the employed migration policy for
both multi-view and single-view contexts (and its actual
implementation support) is exactly the one we provided in
Section IV. This policy is fully orthogonal to the method
used to detect actual memory accesses, which further favors
fairness while comparing multi-view and traditional single-
view approaches for the (periodic) determination of the
working-set of the concurrent threads, and their final impact
on performance optimization in NUMA machines when
migrating threads/data.

For both multi-view and single-view scenarios we decided
to rely on TP set to one (thus targeting the determination
of the hot pages within the current working-set), and on
cumulating the faults by a same thread on a given page, via
the Count mode of the logging data structure, across two
subsequent activations of the multi-view facility. This has
been done according to a kind of second chance approach,
leading a page to be considered as belonging to the current
set of hot pages because of a faulting access in either the
first or the second of the two subsequent activations of the
MVAS facility (or of the single-view based memory access
tracing scheme). If a page is tracked as being accessed by a
thread in both the activations (which would lead to the value
2 for its counter of references by a given thread), it will
represent a very hot page. Another parameter that we have
varied in the experiments (for both multi-view and single-
view configurations) is AP, by setting it to either 10 or 20
secs. Finally, we experimented with three different values
of the parameter α used by the thread/data migration policy
provided in Section IV in order to discriminate whether
different threads can be considered as correlated in the



access to a given virtual page. As a last note, any time
the policy solver and the thread/data migration support are
activated (this occurs at each AP), the corresponding shell
command of our software suite is launched with nice factor
19 thus running in non-intrusive mode. This is done to
avoid alterations of performance data (potentially) caused by
resource demand from policy solving tasks and thread/data
migration commands.

The gathered performance data are reported in Figure
7. We can observe how the baseline configuration not
exploiting thread/data affinity and move facilities shows, as
expected, the worst performance. The configuration based
on RS migration allows for reducing the execution time by
about 19%. The execution time is further reduced by relying
on both single-view and multi-view memory access tracking
schemes coupled with the thread/data migration policy and
support of our own. However, while the maximal reduction
in the execution time by the single-view scheme is of the
order of 35%, the reduction provided by the multi-view
approach further improves to 40% (thus providing more than
10% further gain compared to the single-view approach).
This looks a significative result when considering that fault
induction in the single-view approach represents the founda-
tion of last generation state of the art methods for operating
system based memory access pattern determination. Another
important point to note is that the performance offered by
the single-view scheme is poorly influenced by variations
of the parameter α. This is still expected, given that single-
view based access pattern determination suffers from false
negatives (missing access-tracking) when multiple threads
share pages within their working-sets at a given point in
time. Hence, it mostly allows for detecting whether some
page can be considered hot for at least one thread, while it
may result less effective in detecting the actual correlation
in the accesses. On the other hand, our innovative multi-
view based approach avoids false negatives and traces the
working-set (e.g. the current hot pages) of individual threads
within a same process accurately. When filling the tracing
outcome as input to the thread-migration policy, we get
the possibility to increase the level of correlation while
decreasing the value of α which allows for better detecting
the utility of clustering specific threads and pages on a
same NUMA node. In fact, the configuration with α set to
0.9 leads the multi-view scheme to correlate two different
threads on a same page only if, after the MVAS facility
is shut down during the current tracking and optimization
period, they both have their counters of references to that
page set to the value 2 (meaning that the page is very hot
for both). On the other hand, lower values of α allow for
detecting useful correlations even when the page is likely
becoming hot (e.g. it exhibits access count set to the value 1),
which might further help optimizing thread/data placement.

The very last note is related to the difference in the
execution time between the RS migration approach, and
the ones based on working-set determination via runtime
tracking of the accessed pages. The latter ones outperform

 0

 200

 400

 600

 800

 1000

 1200

α=0.9 α=0.5 α=0.1

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

multi-view - AP 10
multi-view - AP 20

single-view - AP 10

single view - AP 20
baseline

RS migration

Figure 7. Performance data.

the former not because the former is unable to place the
right pages close to the right threads (given that it knows
what pages represent the overall memory segment of interest
for a given thread along a given execution phase). Rather, it
happens because it blindly moves all the pages of potential
interest for some thread, independently of actual accesses.
Although the move is carried out via lower priority demons
(as we also do in our proposal), the oversized memory
amount that is actually moved generates additional overhead
which is instead avoided via solutions that discriminate at
runtime the actual access pattern and the associated hot
pages. This is allowed by our proposal, with the new feature
of enabling the accurate tracking of the access pattern per-
thread within the same address space.

VI. CONCLUSIONS

In this article we have presented an operating system
innovative facility called multi-view address space (MVAS)
enabling the accurate determination of the working-set of
logical pages (and of its variation over time) for any
individual thread running in a multi-thread process, when
also considering shared page accesses by different threads.
The target operating system is Linux/x86 64 and the whole
architecture we provide is fully included in an external
loadable module. This facility is exploitable for moving
threads and pages in NUMA machines so as to allow the
pages belonging to the (intersecting) working-sets of the
threads to be placed on NUMA nodes that are close to the
CPU-cores where the corresponding threads are executed.
A policy for such a migration, and its support, are also
provided. The proposed solution has been experimentally
assessed by relying on a motivated case study in the context
of HPC.

REFERENCES

[1] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian,
and A. Davis. Handling the problems and opportunities posed
by multiple on-chip memory controllers. In Proc. of the
19th International Conference on Parallel Architecture and
Compilation Techniques, pages 319–330, 2010.



[2] N. Barrow-Williams, C. Fensch, and S. W. Moore. A commu-
nication characterisation of splash-2 and parsec. In Proc. of
the International Symposium on Workload Characterization,
pages 86–97, 2009.

[3] H. Casanova, F. Desprez, and F. Suter. On cluster resource
allocation for multiple parallel task graphs. J. Parallel Distrib.
Comput., 70(12):1193–1203, 2010.

[4] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn. MPIPP:
an automatic profile-guided parallel process placement toolset
for SMP clusters and multiclusters. In Proc. of the 20th
Annual International Conference on Supercomputing, pages
353–360, 2006.

[5] E. H. M. da Cruz, M. Diener, M. A. Z. Alves, L. L. Pilla,
and P. O. A. Navaux. Optimizing memory locality using a
locality-aware page table. In Proc. of the 26th International
Symposium on Computer Architecture and High Performance
Computing, pages 198–205, 2014.

[6] S. R. Das and R. M. Fujimoto. Adaptive memory management
and optimism control in Time Warp. ACM Transactions on
Modeling and Computer Simulation, 7(2):239–271, 1997.

[7] M. Dashti, A. Fedorova, J. R. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quéma, and M. Roth. Traffic management: a
holistic approach to memory placement on NUMA systems.
In Proc. of the 8th Internatinal Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 381–394, 2013.

[8] M. Diener, E. H. M. da Cruz, P. O. A. Navaux, A. Busse,
and H. Heiß. KMAF: automatic kernel-level management of
thread and data affinity. In Proc. of the 23rd International
Conference on Parallel Architectures and Compilation, pages
277–288, 2014.

[9] M. Diener, F. L. Madruga, E. R. Rodrigues, M. A. Z. Alves,
J. Schneider, P. O. A. Navaux, and H. Heiss. Evaluating
thread placement based on memory access patterns for multi-
core processors. In Proc. of the 12th International Conference
on High Performance Computing and Communications, pages
491–496, 2010.

[10] R. M. Fujimoto, K. S. Panesar, and K. S. Panesar. Buffer
management in shared-memory Time Warp systems. In Proc.
of the 9th Workshop on Parallel and Distributed Simulation,
pages 149–156, 1995.

[11] X. Gao, M. Laurenzano, B. Simon, and A. Snavely. Reducing
overheads for acquiring dynamic memory traces. In Proc. of
the Workload Characterization Symposium, pages 46–55, Oct
2005.

[12] X. Gao, B. Simon, and A. Snavely. ALITER: an asyn-
chronous lightweight instrumentation tool for event recording.
SIGARCH Computer Architecture News, 33(5):33–38, 2005.

[13] M. Gorman. Understanding the Linux Virtual Memory Man-
ager. PRENTICE HALL, 2004.

[14] D. Hendler, A. Naiman, S. Peluso, F. Quaglia, P. Romano,
and A. Suissa. Exploiting locality in lease-Based replicated
transactional memory via task migration. In Proc. of the 27th
International Symposium on Distributed Computing, pages
121-133, 2013.

[15] HPDCS Research Group. ROOT-Sim: The ROme OpTimistic
Simulator. https://github.com/HPDCS/ROOT-Sim.

[16] D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. Optimization
of parallel discrete event simulator for multi-core systems. In
Proc. of the International Parallel and Distributed Processing
Symposium, pages 520–531, 2012.

[17] C. Karlsson, T. Davies, and Z. Chen. Optimizing process-to-
core mappings for application level multi-dimensional MPI
communications. In Proc. of the International Conference on
Cluster Computing, pages 486–494, 2012.

[18] M. A. Laurenzano, J. Peraza, L. Carrington, A. Tiwari,
W. A. W. Jr., and R. L. Campbell. PEBIL: binary instrumen-
tation for practical data-intensive program analysis. Cluster
Computing, 18(1):1–14, 2015.

[19] J. Marathe and F. Mueller. Hardware profile-guided automatic
page placement for ccnuma systems. In Proc. of the Sympo-
sium on Principles and Practice of Parallel Programming,
pages 90–99, 2006.

[20] Oracle. Plug into the Cloud with Ora cle Database 12C
(wite paper), http://www.oracle.com/technetwork/database/
plug-into-cloud-wp-12c-1896100.pdf.

[21] A. Pellegrini and F. Quaglia. The ROme OpTimistic Simula-
tor: A tutorial (invited tutorial). In Proc. of the 1st Workshop
on Parallel and Distributed Agent-Based Simulations, pages
501–512, 2013.

[22] A. Pellegrini and F. Quaglia. NUMA Time Warp. In Proc.
of the 3rd SIGSIM Conference on Principles of Advanced
Discrete Simulation, pages 59–70, 2015.

[23] A. Pellegrini, R. Vitali, and F. Quaglia. Autonomic state
management for optimistic simulation platforms. IEEE Trans.
Parallel Distrib. Syst., 26(6):1560–1569, 2015.

[24] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, E. Borin,
and F. M. Quintão Pereira. Compiler support for selective
page migration in numa architectures. In Proc. of the
23rd International Conference on Parallel Architectures and
Compilation Techniques, pages 369–380, 2014.

[25] M. M. Tikir and J. K. Hollingsworth. Hardware monitors
for dynamic page migration. J. Parallel Distrib. Comput.,
68(9):1186–1200, 2008.

[26] F. Trahay, F. Rué, M. Faverge, Y. Ishikawa, R. Namyst, and
J. Dongarra. Eztrace: A generic framework for performance
analysis. In Proc. of the 11th International Symposium on
Cluster, Cloud and Grid Computing, pages 618–619, 2011.

[27] R. van Riel and V. Chegu. Automatic NUMA Balancing.
Technical Report 1.0, 2014.

[28] R. Vitali, A. Pellegrini, and F. Quaglia. Load sharing for
optimistic parallel simulations on multi-core machines. ACM
Performance Evaluation Review, 40(3):2–11, 2012.

[29] J. Wang, D. Jagtap, N. B. Abu-Ghazaleh, and D. Ponomarev.
Parallel discrete event simulation for multi-core systems:
Analysis and optimization. IEEE Trans. Parallel Distrib.
Syst., 25(6):1574–1584, 2014.


