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ARTICLE INFO ABSTRACT

Keywords: This paper empirically explores the resilience of the current Android ecosystem against
Mobile security stegomalware, which involves both Java/Kotlin and native code. To this aim, we rely on
Andkrmd stegomalware a methodology that goes beyond traditional approaches by hiding malicious Java code and
Packing

extending it to encoding and dynamically loading native libraries at runtime. By merging
app resources, steganography, and repackaging, the methodology seamlessly embeds malware
samples into the assets of a host app, making detection significantly more challenging. We
implemented the methodology in a tool, StegoPack, which allows the extraction and execution
of the payload at runtime through reverse steganography. We used StegoPack to embed well-
known DEX and native malware samples over 14 years into real Android host apps. We
then challenged top-notch antivirus engines, which previously had high detection rates on the
original malware, to detect the embedded samples. Our results reveal a significant reduction in
the number of detections (up to zero in most cases), indicating that current detection techniques,
while thorough in analyzing app code, largely disregard app assets, leading us to believe that
steganographic adversaries are not even included in the adversary models of most deployed
defensive analysis systems. Thus, we propose potential countermeasures for StegoPack to detect
steganographic data in the app assets and the dynamic loader used to execute malware.

1. Introduction

Mobile malware detection systems and antivirus (AV) engines rely predominantly on static analysis techniques [1], which involve
signature-based detection methods that compare parts of an app against a database of known malware signatures. From an attacker’s
perspective, concealing malware during injection and loading processes is crucial to evading AV detection and bypassing security
controls.

Steganography [2], the practice of embedding hidden information within ordinary data such as images or audio, naturally emerges
as a powerful complement to traditional AV evasion methods such as code obfuscation or payload encryption [3-11]. When applied
to malware, this technique is often called stegomalware [12]. Stegomalware hides the malicious payload within app components
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typically ignored by static analysis, such as non-code resources. The malicious code is extracted and executed only at runtime,
rendering it invisible to static analysis tools. Unlike encrypted malware loaders [13], stegomalware does not necessarily introduce
additional data or exhibit unusually high entropy, common indicators used by “standard” static analysis for detection.

Despite extensive research conducted over the decades on steganographic algorithms and detection techniques (see, e.g., [14-18],
among many earlier works), its specific impact on the Android ecosystem has received relatively limited attention [19,20]. We posit
that one possible reason for this limited interest may be that ultimately, any stegomalware—regardless of the specific steganographic
technique used—must eventually rely on some method to load the malware. Consequently, defensive techniques can potentially
disregard steganography and concentrate their detection efforts only on this loading phase.

With traditional DEX-based malware samples, the above defensive strategy (targeting “just” the loading phase) appears
straightforward and may be reasonably reliable. The vast majority of packers designed for traditional APK apps [21-24] rely, at
some point, on dynamic loading of the malicious or repacked code via the InMemoryDexClassLoader. Hence, its invocation can
be considered as an indicator of compromission'—indeed, as shown later on in Section 5.7, this strategy, duly adapted, is currently
used by the well-known ESET Antivirus.

However, we argue that the ever-increasing deployment of native apps—those that rely, either partially or entirely, on shared
binary libraries or architecture-specific native code—dramatically alters the situation described above. This shift is driven by
the availability of a significantly larger arsenal of loading techniques, as packer developers are no longer restricted to methods
necessarily compatible with dex files.

Motivated by the above, with this paper, we aim to address three complementary research questions:

» RQ1: how viable is stegomalware within the evolving Android apps deployment ecosystem, thus including (also) native apps?

» RQ2: how prepared is today’s Android defense ecosystem, e.g., commercial AVs and Google Play Protect, to counter a potential

widespread stegomalware adoption?

» RQ3: which remediation strategies should AV engines adopt to address the rise of stegomalware better?

We address RQ1 by (i) experimentally evaluating the capacity of Android apps in the wild to embed sufficient assets to reliably
hide malicious payloads (Section 5.4) and (ii) developing a proof-of-concept steganographic malware loader (Section 4). Our tool,
named StegoPack, integrates steganography with app repackaging, distributing the malicious payload across the app’s assets
(e.g., non-compiled resources) and employing a resource merging and loading strategy to install the malware at runtime. Notably,
to our knowledge, StegoPack is the first demonstration of a stegomalware instance (also) capable of operating on native apps.

Using StegoPack, we address RQ2 by conducting extensive real-world testing (Section 5). We embedded various malware
samples (including dex files and native shared objects), spanning over 14 years, into popular and lesser-known host apps. These
samples, with high detection rates on VirusTotal [29], showed a detection rate drop to nearly zero after being embedded using
StegoPack. Via tailored and repeated experiments, we provide evidence that either the 79 tested antivirus engines as well as Google’s
Playstore (a packed app passing Play Console security checks, see Section 5.9) fail even to consider the possibility of malware being
steganographically embedded into app assets—in other words, steganographic adversaries appear not to be in their adversary model.

Finally, we address RQ3 in Section 6. Our main conclusion is that relying solely on steganalysis is insufficient to detect Android
stegomalware due to a high rate of false positives, particularly from small or patterned images that characterize several apps
(Section 6.2). Hence, the combination of different dynamic analysis approaches to recognize the steganographic loader that builds
and executes the malicious payload at runtime, with a further steganalysis stage, appears to be a more compelling strategy for
countering stegomalware.

2. Background

Android basics. Android’s architecture (Fig. 1) consists of a Java stack on top of a general-purpose Linux kernel, which manages
system resources like memory, processes, and device drivers. Above the kernel, the Hardware Abstraction Layer (HAL) provides a
standard interface for higher-level Java APIs to interact with physical resources.

The Android RunTime (ART) provides the application execution environment, running Dalvik Executable format (dex) files
compiled from Java/Kotlin source code. ART uses Ahead-of-Time Compilation (AOT) at installation to convert .dex files into
native machine code (.art and .vdex), stored in the /data/dalvik-cache directory.

Each app runs with a unique user ID (UID) to ensure isolation. Android also includes native C/C++ libraries that provide
optimized services (2D/3D graphics, audio/video codecs, etc.). The Java API Framework, a standard non-privileged UID, supports
app execution. At runtime, methods invoked in the Android SDK trigger corresponding services in the Java API Framework, such
as the Activity and Package managers for app lifecycle, installation, permission management, and the Resource manager for asset
access.

Architecture of an app. The Kotlin/Java code of an Android app is organized in a set of independent components belonging to
four categories: Activities, representing the app’s graphical Uls; Services, executing background-running tasks without any user’s
interaction; Content Providers, allowing the app to export part of its database to other apps; and Broadcast Receivers, consisting of

1 Though detection of dex files loading into memory via InMemoryDexClassLoader obviously cannot be used as the sole IoC, since this technique is
employed in several defensive techniques such as code obfuscation methodologies designed to counteract reverse engineering and protect the original code from
manipulation [25-28].
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Fig. 1. The Android software stack.

tasks executed when specific events occur. Compiled apps are installed as APK files, i.e., a compressed file format signed by the
developer containing code and non-code resources (assets).

Fig. 2 shows the architecture of an APK [30]. The main elements of an APK are dex files, resources, shared libraries, assets, and
the AndroidManifest.xml file.

The dex files (i.e., classes [k] .dex) contain the compiled code (bytecode) of the Java/Kotlin classes, which represent the
core functionality of the app. Resources are compiled entities, stored in the res/ folder and indexed in the resources.arsc
file.

The res/ folder is organized into several subdirectories: layout/, which contains XML files defining the structure of the app’s
Uls; drawable/, which holds binary images and shapes used in the UI; and raw/, which includes raw data files like image, audio,
or configuration files. A unique numerical ID identifies each resource managed in the public.xml file.

Shared libraries, which are stored in the 1ib/ folder, consist of ELF binaries (.so files) built by compiling architecture-specific
native code (C/C++).

Assets are non-compiled resources in the assets/ folder. They can cover various file types, including fonts, videos, and audio
files. Unlike resources in the res/raw/ subfolder, which are compiled into the application and referenced via resource IDs, assets
are accessed directly in their original form by specifying their file path.

The AndroidManifest.xml file declares the set of the app’s components and the set of permissions that the app aims to
exploit at runtime.

Modifying Android Apps. APK files can be reversed using decompiling tools (e.g., ApkTool [31]) that provide access to original
resources and convert the app into smali, a human-readable assembly-like language representing the Dalvik bytecode of the app.
ApkTool also generates an apktool.yml file with configuration settings for recompiling the app.

3. Related work

Repackaging. Repackaging involves reverse engineering an APK, adding code or resources, recompiling, resigning, and redis-
tributing it in the wild. Attackers use repackaging to insert malicious payloads into popular Android apps and redistribute them
through official marketplaces or side channels (e.g., websites or email), tricking users into installing the altered version [32-34].
To counteract repackaging, developers may use anti-repackaging techniques that cause the app to crash if anti-tampering checks
on the original code fail. Merlo et al. [35] analyzed these techniques, demonstrating how to bypass all checks performed by NRP,
a publicly available anti-repackaging tool. They also designed ARMAND [36], a new anti-repackaging scheme utilizing multiple
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Fig. 2. Structure of a compiled Android APK.

protection patterns and native code to overcome limitations of existing methods. The approach showed robustness against common
attack vectors, at the price of occasional (3.2%) app crashes.

Repackman [21] is a tool that automatically repackages Android apps with arbitrary payloads, creating fake, malicious versions
of legitimate apps to test anti-repackaging techniques. Experimental results showed that Repackman successfully repackaged 86% of
Google Play apps with no noticeable side effects. Commercial packers such as Baidu [22], Bangcle [23], and [jiami [24] allow reverse
engineering tools to hinder app analysis. They can further thwart malware analysis by encrypting the original app’s classes.dex,
packing it into the APK, and decrypting it at runtime using DexClassLoader. However, obfuscation and packers can be countered
by tools such as DexHunter [37] and AppSpear [38], which can extract original bytes from dex files packed by established packers,
or tools like APKiD [39], which use specific Yara rules to automatically detect well-known obfuscators and packers. Moreover, using
tools like Repackman to add malware and repackage apps leaves detectable non-obfuscated code in the host’s smali.

Obfuscation. Obfuscation [5] refers to techniques that make code difficult for reverse engineers to understand. In Android, benign
apps (to protect intellectual property) and malware apps (to hide malicious payloads) commonly use obfuscation due to the ease
of decompiling apps. Zheng et al. conducted a study showing that automated malware obfuscation initially decreased antivirus
detection rates, but after four months, detection rates surged from 54% to 90%, indicating growing antivirus adaptation [40]. Indeed,
commercial antivirus products have evolved to detect obfuscation better. The QuickHeal Malware report of 2020 [41] highlighted
that the Android.Obfus.GEN36238 threat, explicitly designed to target obfuscated apps, accounted for 8% of Android malware.
Various solutions now label different obfuscated apps, such as Android/0bfus [42-44].

The research community has also made extensive efforts to detect obfuscated malware. Various studies [45-48] propose static
analysis methods for identifying obfuscation techniques. Additionally, DroidPDF [49], using an entropy-based approach, is capable of
detecting repackaged and obfuscated apps, tested against Proguard and ObfuscAPK. Research work by Graux et al. [50] and Kargen
et al. [5] has examined the effectiveness of various obfuscation techniques, noting that some methods, like string encryption, tend
to produce high false positive rates by misidentifying benign obfuscated apps as malicious.

Steganography. Steganography refers to techniques used to covertly embed information in communication channels or files, such
as images or audio. A standard method is the Least Significant Bit (LSB) scheme [51], which alters the least significant bit of pixel
values to encode hidden data. This technique exploits the imperceptibility of small changes in the color channels of the pixels.
In addition to being used for legitimate purposes, such as discreet data transmission, steganography can develop stegomalware for
code concealment, payload delivery, and establishing covert command and control channels. Several studies [14-18,52,53] proposed
solutions (often based on probabilistic or machine learning methods, due to the difficulty in determining the attacker’s algorithm)
to detect benign image manipulation using LSB [54].

Regarding Android, several studies highlighted the potential abuse of steganography for malicious purposes. For instance,
Spreitzenbarth et al. [55] analyzed the FakeRegSMS malware, which embeds encrypted malicious code within the app icon. The
study suggested a shift towards a new era of malware obfuscation, with steganography being a valuable alternative to traditional
code manipulation methods. Badhani et al. [20] demonstrated the efficacy of steganography in evading Android antivirus by showing
that hiding a malicious app within images evaded detection by nine out of ten antivirus tools. On the defensive side, Suarez-Tangil
et al. [19] proposed a detection method combining asset steganalysis with dynamic code loading and steganographic decoding
analysis. Their static analysis-based mechanism estimates the likelihood of an app being stegomalware. Their findings highlight
the difficulty of detecting malicious information extraction, as many legitimate apps manipulate images similarly to malicious
LSB decoding algorithms. Concerning remediation, limited research exists on the behavioral analysis of Android stegomalware,
particularly its implementation. The detection method in [19] targets only specific steganography algorithms and relies solely on
static analysis, which struggles to distinguish steganographic malware from legitimate image manipulation software.
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Fig. 4. StegoPack: Malware repackaging workflow.

4. Approach and methodology

4.1. Threat model

Our threat model considers an attacker embedding a malware sample into a host app, aiming for the victim to install it on their
device. We distinguish two scenarios based on the host app: either a known app (already published on the Google Play Store) or an
unknown app (new or unpublished on the store).

Fig. 3(a) refers to the first case: here, a developer implements and distributes a benign app on the Google Play Store. The app
passes all checks (e.g., the Google Play Protect analysis) and is published. The attacker downloads the app and an existing malware
sample from some external repositories and applies StegoPack to create the malicious host app by embedding the malware into the
host app. Then, the attacker redistributes it through some alternative sources (e.g., alternative app stores or via the web). The victim
downloads and installs it on her device. Before installation, the victim may submit the APK to some external AV engines. During
installation and execution, other local AVs (e.g., Google Play Protect) may check the APK. The attack is successful if the malicious
host app bypasses all checks and executes correctly on the victim’s device.

Fig. 3(b) refers to the case of unknown host apps. In this case, the attacker builds or retrieves an unpublished app from some
external sources and the malware sample, thereby building a new malicious host app through StegoPack. Then, she uploads the app
to the Google Play Store. Here, the attacker wins if the malicious host app also bypasses the checks on the Google Play Store, and
the malicious host app is eventually published as a benign app.

4.2. Stego packaging workflow

As illustrated in Fig. 4, we envision a workflow comprising five main components, each corresponding to a conceptual stage of
the malware embedding process.

Decompiler. The process starts by decompiling the host and malware APKs using an off-the-shelf Decompiler (i.e., ApkTool) to
extract the associated smali code and unencrypted resources, as described in Section 2. This step enables the manipulation of the
different APK resources.

Resource Merger. This stage integrates resources from the host and payload APKs while resolving conflicts to ensure seamless
integration. This step is crucial to maintain a coherent and functional APK. It guarantees that when executed within the host’s
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context, the payload can access all its original resources without error. The core payload components are extracted directly from
the APK without decompiling. These include the classes.dex? file and the 1ib/ folder containing native libraries.

Steganographic Encoder. This stage applies a steganographic algorithm to embed the payload files extracted in the previous
merging stage in the host’s image assets. Since the main focus of this paper is proving that elementary steganography suffices to hide
malicious payload reliably, we relied on a baseline Least Significant Bit (LSB) steganography algorithm [56] (for a basic background
please refer to Appendix A), with the additional capabilities of embedding payloads over multiple images, and supporting a variable
embedding rate (of up to 2 bits per pixel - bpp). We embed the payload’s classes.dex file and all compiled native libraries (.so
files), making them inaccessible to static analysis. Although embedding the classes.dex file is straightforward since it is a single
file, for native libraries, StegoPack uses a special header to structure the encoding of the 1ib/ folder, specifying library names,
CPU architectures, and file sizes to ensure accurate reconstruction during decoding. Refer to Appendix B for further details.

Steganographic Loader. The crucial part of any stegomalware is the loader, whose task is to extract the payload files from the
host’s assets and execute them at runtime. As discussed in Section 4.5, the loading approach significantly differs between dex and
native cases.

Repackager. This final component inserts the steganographic loader, containing the encoded payload, back into the host app. This
step also involves embedding the necessary permissions for the payload into the host’s manifest and configuring the host to invoke
the loader at specific points to dispatch the malware. At the end of the process, the final APK remains functional and retains the
appearance of the original host app. See Section 4.4 for further implementation details.

4.3. Resource merger

The Resource Merger (Fig. 5) is responsible for integrating the malware’s resources (such as layouts, drawables, and raw
files) into the host application while preventing conflicts between resource names and identifiers. A simple copy operation would
result in naming conflicts if the host and malware share files with identical names and identifier conflicts within Android’s resource
management system.

Conflicts are managed at two levels to prevent these issues: file names and resource identifiers. Naming conflicts may occur
both at the file level, where different resources share the same filename, and within XML files, where resource entries might have
identical names. To resolve file-level conflicts, the merger appends the suffix “_c” to each copied malware resource, ensuring it
does not overwrite existing files. For XML-based resources within the res/values/ directory, each element must be merged into
a single unified file, as Android assigns a unique scope to these entries (see Section 2). If an XML element is missing from the host’s
file, it is added directly. However, if a name conflict arises within the XML structure, the payload attribute’s name is modified by
appending “_c” before being integrated.

Beyond naming conflicts, Android resource IDs must also remain unique. Both the host and malware contain a public.xml
file, which assigns fixed resource IDs in the format OxPPTTEEEE, where PP denotes the package, TT the resource type, and EEEE
the unique identifier. Since the TT type codes are not standardized across different apps, identical resource types may have different
values, and identical EEEE values could lead to conflicts. To ensure consistency, StegoPack first aligns the TT bytes between host
and payload resources. If conflicts persist due to overlapping EEEE values, StegoPack increments the conflicting payload resource
ID incrementally until a unique value is assigned.

Once conflicts are resolved, the necessary modifications must be propagated throughout the app to ensure consistency. In
Android, resource references span multiple files, requiring systematic updates. StegoPack tracks all changes introduced during the
merging process and applies them collectively in a dedicated phase. Resource name updates are propagated across all XML files
using a regex-based search-and-replace strategy, including AndroidManifest.xml. Additionally, since resources are accessed
by their identifiers in the smali code, adjustments made during public.xml resolution are reflected in the payload’s decompiled
smali files to maintain correct resource loading during execution.

4.4. Repackaging

StegoPack uses a repackaging attack to integrate malware functionality into the host app. Previous methods, such as those
described in [21], embed the malicious code directly into the host app. This approach is effective only for simple malware with
limited code modifications and is impractical for complex malware with multiple activities. The repackaging approach in StegoPack
avoids direct embedding of malware. Instead, StegoPack injects only the steganographic loader app.

This approach significantly reduces the modifications of the host app by incorporating just a single additional activity. Since
the payload is steganographically encoded, there are no discernible traces of the malware’s APIs within the repackaged host code.
StegoPack leverages specific user interactions to execute the malicious payload within the host app by modifying an existing host
activity. To this aim, StegoPack modifies the host’s main activity by customizing the implementation of the onCreate () method
in the corresponding smali file. Here, StegoPack inserts an invoke-static call to activate the steganographic loader, which
decodes and executes malware.

2 Note that at this stage, classes.dex is not the original file but has updated resource references reflecting the merging process.
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Upon execution from the loader, the payload works as a standard Activity within the host context. Consequently, the manifest
file referenced at runtime is that of the original app, encompassing all permissions necessary for the host but lacking those specific
to the payload. To ensure that the payload could be executed at runtime, it becomes imperative to verify the presence of essential
permissions within the AndroidManifest.xml file of the host app, ensuring alignment with the payload’s requirements.

Our approach involves mirroring all permissions specified in the payload manifest onto the host side. This process is initiated by
parsing the payload’s manifest, extracting the required permissions, and subsequently appending them to the host manifest’s relevant
intent-filter element. To maintain manifest integrity and prevent potential conflicts or duplicates, each payload permission
is verified for existence in the host’s manifest before inclusion (see Fig. 6).

4.5. Strategies for dynamic code loading

Existing stegomalware techniques [19,20] primarily focus on concealing Java code within an app’s assets, while leaving native
libraries exposed, allowing them to be easily identified through static analysis, thereby resulting in a significant portion of the
malicious payload vulnerable to detection.

To overcome this limitation, our methodology (see Fig. 7) also shields native components from static analysis, thereby aligning
stegomalware with modern threats that leverage native code for malicious actions. Although loading Java code into the environment
requires specific APIs (such as the DexClassLoader family), attackers have greater flexibility in loading and executing native
code, which can be achieved through various methods. As described in the following, our methodology relies on established
techniques for Java code loading while introducing novel methods for handling native components.
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4.5.1. Java code loading

Concerning Java, our approach aligns with the current state of the art, which typically involves using class loaders from the
DexClassLoader family. Such APIs allow the integration of dynamically loaded code into the runtime environment of the host
app without leaving detectable traces for static analysis. Specifically, we use the InMemoryDexClassLoader for dynamically
loading dex files that were not initially part of the APK. During the decoding phase, the loader reverses the steganographic encoding
algorithm to extract the bytes of the classes.dex file from the host’s assets.

The next responsibility of the loader is to start the payload activity at runtime. This involves several steps, depicted in
Fig. 8. First, it implements a custom ClassLoader by creating an InMemoryDexClassLoader object with the payload’s
classes.dex bytes and the parent ClassLoader, enabling delegation to load both malicious and host app classes. Java
Reflection is extensively exploited to access mClassLoader within the host APK class, and the custom ClassLoader with
payload classes is assigned to this field. Next, using the malicious ClassLoader, the host app dynamically loads the class
com.example.package.MaliciousActivity through the loadClass () method. The string to specify the payload activity
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is not passed statically as a parameter. Still, it is dynamically obtained at runtime from a dedicated PayloadActivity.java
file that masks the malware activity name as image filenames in a Java array to avoid static detection. After deriving all the
original bytes, the loader’s next task is to start the payload activity at runtime. To evade detection by algorithms monitoring activity
transitions, a deliberate 500 ms delay is introduced. This is done by instantiating a handler that targets the main looper, enabling
delayed execution by scheduling a runnable task. In the current context, the task activates the malicious payload’s activity using
the startActivity () method. This intentional delay disrupts expected timing, reducing detection rates and enhancing evasion
capabilities.

4.5.2. Native library loading

Our approach extends traditional methods by managing native libraries, which are increasingly adopted in modern Android
malware [57]. Unlike Java code, which benefits from robust support for dynamic loading through existing Android APIs, dynamic
loading of native libraries, especially those extracted from steganographically hidden resources, remains largely unexplored in
stegomalware.

The core strategy involves making malicious ELF files available only at runtime, evading static analysis. This is achieved by
having the Steganographic Loader extract the bytes of each native library and write them to corresponding . so files within the host’s
private directory under /data/data. Storing the libraries in this location offers two key advantages: it restricts access, ensuring
that other apps cannot detect or access the files, and it enables the host to load libraries that were not originally packaged in the
APK, all without requiring explicit user permissions.

To implement this strategy, we modify the conventional process of loading native libraries in malware apps. Normally, when
an Android app invokes the System.loadLibrary() function, it searches for a file named 1ib<Name>.so in predefined
directories [58], primarily within the APK’s private directory at /data/app/<hash1>/<hash2>/1ib. In our pipeline, however,
the payload’s . so library is deliberately excluded from the repackaged APK to conceal its presence. Since the original APK directory
has read-only permissions, it cannot be used to store or extract the payload. Consequently, any attempt to load the library using
System.loadLibrary() fails due to the missing .so file.

Instead, we extract the original library files from stego-images, writing the .so files into the /data/data directory and
subsequently loading them from there. Based on the library name provided in the original loadLibrary () call, we determine
the CPU architecture of the device and reconstruct the full path as follows:

/data/data/com.host.app/files/1ib/<cpu_arch>/lib<name>.so.

We propose two possible strategies to enable the original application to load libraries from this custom path, both achievable
without requiring root permissions. The first involves modifying the Android Runtime to support the new path, while the second
extends the ClassLoader to allow library loading from additional directories beyond the default ones.

Hacking Android Runtime. This approach is based on replacing the standard System.loadLibrary () method with a custom
implementation that leverages System.load () [59]. Unlike System.loadLibrary (), which requires only the library name,
System.load() allows loading a . so file by specifying its full path. Internally, this API calls the native d1open function, which
restricts library loading to directories specified in permitted_paths [60]. One such permitted path is the app’s private directory
(/data/data/com.host.app), where the host app has write permissions.

To achieve this, every invocation of System.loadLibrary() must be redirected to the custom implementation. Instead
of modifying each call individually, we manipulate Android Runtime (ART) to alter the execution behavior of the original
System.loadLibrary() method. Following the approach proposed by ARTFul [61,62], this is done by replacing the runtime
representation of the System. loadLibrary () method, stored as an artMethod object in the Executable. java file. Using
the memcpy function via JNI, the memory region containing the artMethod structure for loadLibrary is overwritten with the
corresponding structure for the custom implementation, effectively altering its behavior at runtime.

The entire process is implemented within a custom library named LLHook, compiled and embedded into the host app during the
repackaging phase. Upon first startup of the host app, LLHook is loaded using the original System.loadLibrary () method.
Once loaded, LLHook replaces the default System.loadLibrary() with the custom version. From that point on, all calls to
System.loadLibrary() are seamlessly redirected to System.load(), enabling the loading of the reconstructed .so file
extracted during the decoding phase. The workflow of this mechanism is illustrated in Fig. 9.

A key advantage of this approach is its ability to directly modify the Android Runtime, allowing for the redirection of other APIs
in addition to loadLibrary. However, a notable limitation is the mandatory inclusion of LLHook . so within the repackaged app,
which could serve as an indicator of compromise (IoC) for antivirus solutions.

Extending InMemoryDexClassLoader. The InMemoryDexClassLoader is restricted to searching for native libraries in direc-
tories specified by the nativeLibraryDirectories variable in the java/dalvik/system/DexPathList. java class.
By default, this variable includes only system directories such as /system/1ib64 and /system_ext/1ib64. Consequently,
libraries extracted to private directories, such as /data/data, cannot be loaded using System.loadLibrary ().

However, starting from API Level 29, InMemoryDexClassLoader introduces an additional constructor that accepts a
librarySearchPath parameter. This parameter specifies the directories from which the DEX file (in this case, the malicious pay-
load) can search for native libraries. By setting this parameter to the host app’s private directory (/data/data/com.host.app),
the payload gains the ability to load its native libraries extracted at runtime using its original System.loadLibrary ()
invocations.
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Fig. 9. StegoPack: Dynamic loading of native libraries.

Compared to previous approaches, this method offers a significant advantage: it eliminates the need to modify the payload
application while ensuring no .so files are exposed in the repackaged app. The only adjustment required is including the private
directory as a parameter when initializing InMemoryDexClassLoader. This subtle change makes the approach inherently
stealthier from an attacker’s point of view, as the payload loading behavior remains virtually identical to standard Java loading,
aside from the additional parameter passed during DEX loader initialization.

5. Experimental evaluation
5.1. Datasets

For our analysis, we utilized three distinct datasets: the Goodware Dataset, the Malware Dataset, and the Stegomalware Dataset.
The Goodware Dataset and Malware Dataset were used to gather statistical data regarding asset sizes, steganalysis, and embedding
capacities. These datasets contain legitimate (goodware) apps and malware samples, respectively.

To evaluate the effectiveness of antivirus solutions against stegomalware, we constructed the Stegomalware Dataset. This dataset
was generated by selecting a subset of malware and goodware host apps, which were repackaged in all possible combinations using
StegoPack. The resulting dataset allows us to assess antivirus performance in steganographic payload embedding and examine how
various antivirus tools detect malware when disguised within benign apps.

Malware Dataset. Consists of 13,195 actual Android malware samples, which include 2316 native apps and 10,879 Java-only apps,
collected between 2011 and 2024. These samples were sourced from three major repositories: i) VX Underground, a dataset featuring
malware samples from 2011 to 2017, ii) github.com/sk3ptre, containing malware specimens from 2018 to 2022, and (iii) Malware
Bazaar, primarily including very recent (2022+) malware instances.

Goodware Dataset. The Goodware Dataset includes 274 benign apps collected from various sources, such as the Google Play
Store, alternative app stores, public GitHub repositories, and in-house developed apps hosted on private GitHub repositories (never
released). These apps were carefully selected to ensure they do not trigger any malware detections. All apps in this dataset were
verified to produce zero detections when submitted to VirusTotal, ensuring their legitimacy as "goodware”.

Stegomalware Dataset. To build our Stegomalware Dataset, we selected a set of host apps and malware payloads, repackaging
each malware sample within each chosen host. This process resulted in a 14,000 stegomalware instances dataset generated using
StegoPack.

The selection of malware payloads was based on the malware dataset, from which we extracted 140 distinct samples spanning
2011-2024. Specifically, we selected five native and five non-native malware samples per year, covering 119 unique malware
families. To ensure the relevance of our dataset, each selected sample had at least 15 detections on VirusTotal. We deliberately
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Fig. 10. Total detections for each original malware payload.

Table 1

Unmodified samples: Top 14 AV detection capability.
AV # detection perc. AV # detection perc.
Trustlook 140 100.0% Ikarus 133 95.0%
Avast Mobile 136 97.1% McAfee 133 95.0%
Kaspersky 136 97.1% Symantec 133 95.0%
K7GW 135 96.4% Fortinet 132 94.3%
ESET-NOD32 135 96.4% Dr. Web 128 91.4%
BitDefender Falx 135 96.4% Avira 128 91.4%
Symantec Mobile Insight 134 95.7% Lionic 127 90.7%

focused on well-known malware apps widely detected by antivirus (AV) engines, as our primary goal is to assess how AV solutions
perform against StegoPack’s steganography and repackaging technique. Similarly, to ensure diversity in host apps, we selected 100
legitimate APKs from the goodware dataset. These include 70 apps from the Google Play Store, 18 from public GitHub repositories,
8 from alternative app stores, and 4 unreleased apps. Our objective is to analyze how commercial antivirus software responds to
modifications in both widely recognized and unfamiliar apps.®

Depending on the specific combination of apps, some selected host apps may lack sufficient assets to accommodate larger
payloads. To ensure adequate embedding capacity, we inserted synthetic images into the assets/icons folder. We set the
embedding rate for all these samples to a maximum of 2 bits per pixel.

5.2. Vanilla malware assessment

To establish a baseline for comparing the original malware samples and their stegopacked counterparts, we analyzed the 140
selected payloads using VirusTotal. The radar plot in Fig. 10 shows the total detection rate for the sample. Out of 11,060 data
points (140 malware tested against 79 antivirus tools), the analysis led to 4408 detections, resulting in a mean detection rate of
about 39.85%. Table 1 illustrates the top 14 antivirus programs, ranked by their overall detection capabilities, which detected more
than 90% of the 140 malware samples submitted. Remarkably, Trustlook performed flawlessly, detecting all submitted malware
samples.

5.3. Packaging verification process
To evaluate the compatibility of various payload-host pairs using StegoPack, we implemented a pipeline with a two-step testing
process:

1. Repackaging Validation: We repackage the payload-host pair using Stegopack, monitoring the process to ensure no errors.
If errors occur, the pair is discarded. Successful repackaging leads to the next step.

3 It is worth noting that using unknown apps aligns with our threat model, mirroring a scenario where a malicious actor attempts to distribute malware
disguised as a legitimate new app.
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2. Functional Testing: We execute the malware to verify that the repackaged host can correctly dispatch the payload at runtime.
A testing device, either physical or an emulator, is initialized using the Android Debug Bridge. We then start adb logcat to
monitor the app’s behavior and launch the repackaged malware via a shell command. The app’s runtime behavior is monitored
for ten seconds, during which we look for potential crashes or errors. To confirm that the loader successfully launches the
payload activity, we check for the presence of the message “Displayed <payload_activity” in the logcat, as recorded
by the ActivityTaskManager.

Although all of the 14,000 submitted samples passed the Repackaging Validation phase without any errors, functional testing was
limited to 280 samples selected from the Stegomalware dataset, which consists of two host apps, each paired with 140 malware
samples. This reduction to 280 apps was necessary for practical reasons. Despite the automated nature of the testing pipeline,
thoroughly testing each of the 14,000 sample pairs would require substantial computational resources, time, and manual effort.
Testing involves multiple steps, including app installation, interaction stimulation, and monitoring of runtime behavior, all of which
require considerable time per sample. Moreover, manual log analysis is critical for diagnosing and classifying crashes, as it helps
differentiate between issues explicitly related to the stegopacking process and those caused by resource incompatibilities between
the malware payload and the host app. Given the complexity of these tasks and the importance of capturing errors accurately,
we chose a manageable subset of 280 instances for detailed testing. This approach ensures we can observe the malware’s behavior
comprehensively while maintaining an efficient testing process.

Failed execution of malicious host apps. Repackaged apps did not show crashes in 94 cases out of 280 (over 33%). Most errors
occurred with recent malware (2017+) that crashed after being loaded by the host due to various issues: the app not running on
the target device, incompatibility between the SDK compile versions of the host and payload, or missing resources and classes at
runtime.

In detail, 45.71% of crashes involved Resources$NotFoundException, while 6.42% crashed during payload decoding due
to JVM memory exhaustion. Additionally, 5.35% of cases encountered ClassNotFoundException when attempting to load one
of the payload activities. In 7.5% of the cases, the payload, once loaded, failed to execute one of its functions, likely due to SDK
version discrepancies. Finally, 1.07% of crashes occurred when 11hook failed to load the extracted native library, likely because
11lhook was unable to overwrite the original System.loadLibrary().

Thus, the main limitations addressable to StegoPack are due to the merger component. In particular, the conflict resolution will
likely fail if both host and payload use the AppCompat dependency [63]. Even in an empty app, using AppCompat automatically
generates around 850 Android XML resource files for more than 32,000 default resource entires that will deterministically collide [64]
. Our algorithm struggles to propagate new identifiers and names for each resource (plus the one effectively defined in the two apps)
in all the other resource files that refer to them.

Discussion on functional test outcomes. The 33% success rate in executing the stegomalware may initially seem like a low success
rate. However, it indicates that, in one-third of the cases, simply selecting two random apps results in successful execution of
the stegomalware. This demonstrates the feasibility of the Stegopack model. While building a universal tool to ensure functional
integration between any host and any malware in the wild proved impractical—primarily due to the need for manual handling
of corner cases—this challenge is more theoretical than practical. The actual goal of the attacker is not to take random malware
and pair it with random hosts. Instead, the attacker seeks to inject dex/so payloads containing only the malicious logic into a
carefully selected, suitable host app. As such, it is not essential for the payload to function seamlessly on every host, but rather to
be successfully embedded and executed within a host that supports the payload with minimal adjustments.

Regarding the antivirus assessment, we evaluated the entire Stegomalware Dataset, including apps that were not runnable. This
decision was made because the malware’s functionality on the victim’s device is not necessary for evaluating its ability to evade
detection by antivirus engines. Since the static features of the stegopacked APK remain unchanged regardless of its runtime behavior,
the malware’s execution on the device does not affect its ability to stay undetected by AV analysis.

5.4. Malware packing capacity

This analysis aims to empirically learn how much “packing space” real-world apps typically provide and whether this is sufficient
for typical malware payloads. We analyzed all the 13,195 malware from our dataset. Table 2 presents payload size statistics for
13,195 dex malware instances (note that the classes.dex file is mandatory for native malware) and 2316 native malware
samples.

Average file sizes are not meaningful as the dataset includes ready-to-run malware samples incorporating facade logic to appear
as legal software. Consequently, dex and so files, including layout and visual component dependencies, lead to larger file sizes. Our
primary concern is the malicious logic that attackers embed in these samples. Thus, we focus on the impact of samples composed
mainly of code, specifically those targeting ransomware, remote access trojans (RATs), lockers, spyware, and Metasploit-based
payloads. We chose the 75th percentile as a reference point for our analysis, as it provides a realistic upper bound that accommodates
most observed samples, capturing typical cases rather than outliers.

The results show that 75% of the dex files are below 901.7 KB. Larger sizes are due to dependencies or external libraries. Even
potent payloads, like Metasploit’s reverse shells, typically range from 20 KB to 100 KB. For native malware, encoding shared object
(.so) files is necessary, and sizes can reach several MB. About 75% of payloads are under 1.13 MB. These smaller payloads align with
our scenarios of attackers modifying existing apps, being the legitimate facade provided by the host app.
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Table 2
File size statistics for dex and so files.
Statistic DEX SO
Number of Samples 13,195 2316
Minimum Size 4.6 KB 2.4 KB
Maximum Size 25.1 MB 100.51 MB
Average Size 838.7 KB 4.59 MB
25th Percentile 47.6 KB 20.92 KB
50th Percentile 159.8 KB 336.98 KB
75th Percentile 901.7 KB 1.13 MB
90th Percentile 2.18 MB 13.13 MB
Table 3
Apps’ pixels and embedding capacity.
Category Assets Average Pixels Max Payload
(percentage) (M pixels) (M bytes)
Banking 40.7% 15.25 MP 3.81 MB
Social 53.7% 23.63 MP 5.90 MB
Gaming 45.9% 56.22 MP 14.05 MB

Thus, considering the 75th percentile as a reference for dex and so files, host apps need an embedding capacity of up to 2 MB
(combined dex and so parts). Assuming a steganographic algorithm operating at 2 bits per pixel, 8 million pixels of image assets
are required to hide such assets. While this embedding capacity may seem limiting, it is important to note that the actual payloads
in typical malware often fall within these size ranges. Moreover, if the host app lacks space to embed larger payloads, additional
images can be added to this extent.

Thus, considering the 75th percentile as a reference for dex and so files, host apps need an embedding capacity of up to 2 MB
(combined dex and so parts). Assuming a steganographic algorithm operating at 2 bits per pixel, approximately 8 million pixels
of image assets are required to hide such payloads. While this embedding capacity may seem limiting at first glance, it is crucial
to note that typical malware payloads often fall within these size ranges. Furthermore, if the host app lacks sufficient space to
accommodate larger payloads, additional image assets can be used to extend the embedding capacity.

To determine whether apps typically have this capacity and to identify suitable types for embedding malicious payloads, Table 3
presents an analysis conducted on three categories from the Goodware Dataset: 54 social apps, 61 gaming apps, and 59 banking apps.

For each category, we report the percentage of apps that carry uncompressed image assets (column “Asset” - assets packaged in
compressed files were excluded from this analysis) and the average number of pixels available in PNG, JPG, SVG, and BMP formats.

Results show that if the app provides assets, the embedding capacity is mainly sufficient. Gaming apps have significantly more
image assets than social or banking apps, making them more suitable for embedding larger payloads. However, in all categories,
half or more of the apps do not utilize uncompressed image assets, implying that careful consideration is needed to identify hosts with
effective payload embedding capacity.

5.5. Impact of payload and host choice

To systematically establish the impact of payload and host selection on detection results, we submitted all 14,000 stegopacked
payload-host pairs to VirusTotal and evaluated each pair against 79 antivirus engines. This analysis yielded three key insights.

+ Significant reduction in detection rate: The average detection rate drastically dropped after repackaging (quantitative details
in the following);
Impact of the host app: As shown in Fig. 11, the detection rate almost deterministically (!) depends on whether the host
app is known or unknown; known hosts are widely recognized apps on the Google Play Store, while unknown hosts include
lesser-known Play Store apps and unpublished apps, such as those developed in-house, downloaded from GitHub, or sourced
from alternative stores. Using a known app as the host reduced the detection rate from 39.85% to an already very significant
4.5% (in almost all cases, 500 detections out of 11,060 tests), but using an unknown host lowers it further to as low as 0.4%
(45 detections out of 11,060 tests).* The difference in detection rates for known hosts can be attributed to AVs profiling code
fingerprints of well-known apps, allowing them to spot deviations introduced after repackaging (see Section 5.7);
Consistency within categories: Apart from the distinction between known and unknown hosts, the specific choice of host
does not affect detection rates, meaning detection outcomes remain consistent within the same host category. This suggests that
current antivirus solutions do not employ steganalysis techniques, as embedding rates and image variations do not influence
detection (see Section 6).

Since the specific choice of the host does not influence results beyond being known or unknown, we focus the remainder
of this section on comparing two apps: a well-known app, com.gamma.scan (a basic barcode scanner with over 500 million

4 11,060 tests refer to 140 malware samples repackaged within each host, scanned against 79 AVs.
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Fig. 11. Scatterplot showing the total number of detections for all stegopacked payloads within each host app, categorized by the host’s source.
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Fig. 12. Total detection comparison (log scale) between unpacked payloads embedded in known and unknown hosts.

Table 4
Detection results for malware and benign payloads in known and unknown hosts across different packing
stages.
Scenario Original Modified Stego Repack.
sample resources loader app
Malware/Known Host 40/79 40/79 0/79 3/79
Malware/Unknown Host 40/79 40/79 0/79 0/79
Benign/Known Host 0/79 0/79 0/79 3/79
Benign/Unknown Host 0/79 0/79 0/79 0/79

downloads on the Play Store), and an app developed by us (it.runningexamples.fiscalcode) as the unknown host. The
radar plot in Fig. 12 compares the detection results by repackaging each payload within known and unknown hosts. The plot reveals
a striking anomaly: regardless of the malware variant used, known apps consistently yield at least three detections compared
to unknown hosts.

For further insight, we focus on a specific malware instance (SmsSpy 2021), initially detected by 40 of the 79 AVs, as a use
case. The first two lines in Table 4 present detection results for such malware, when packed into known and unknown hosts, across
four stages: original sample, modified sample after merging malware and app resources, sample after loading the malware into the
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Table 5
AV Detection effectiveness on 140 StegoPacked malware samples using the unknown app as host.
AV # Detections (%) Of which detected as same threat
BitdefenderFalx 19 (13.57%) 11 (7.8%)
K7GW 8 (5.7%) 7 (5.0%)
Kaspersky 4 (2.8%) 4 (2.8%)
ZoneAlarm 4 (2.8%) 4 (2.8%)
Sophos 2 (1.4%) 0 (0%)
ClamAV 1 (0.7%) 1 (0.7%)

app resources, and final repackaged app. As expected, the detection results for the original malware and the modified resources
are identical since the merger component has a functional rather than an evasive role. In particular, the steganographic Loader’s
detection rate drops to zero, indicating no antivirus software can detect the concealed payload in the images.

Previous results suggest that current antivirus solutions cannot detect payloads within assets and label the StegoPack steganog-
raphy extraction process as malicious. After repackaging, three antivirus programs—ESET-NOD32, Ikarus, and Google—detect
the malware again. However, such detections differ from those on the original payload and are independent of the mal-
ware used (as confirmed with other malware samples). Initially, ESET-NOD32 labeled the SmsSpy malware as a variant of
Android/Spy.Banker.AYT while Ikarus reported Trojan.AndroidOS.SmsSpy (Google, in all cases, returns a generic
detected response).

After repackaging, all classifications could not recognize the type of malware correctly. ESET indeed detected an An-
droid/TrojanDropper.Agent .LGT, while Ikarus recognized the repackaged app as Trojan.Android0S.0bfus.

The reason for this wrong detection is intuitively explained by looking at the description of the TrojanDropper threat [65]:

Android/Trojan.Dropper is a malicious app that contains additional malicious app(s) within its payload. This infected APK typically
is given the filename of a legitimate app but has a completely different package name, digital certificate, and code than the app it
claims.

In other words, detection seems based on identifying deviations in the app’s composition compared to its expected structure
rather than applying more advanced heuristics specifically designed to detect stealth alterations of assets, such as StegoPack’s
steganographic manipulation. To verify this hypothesis, we repeated the analysis with a benign payload (a simple app that displays
a Toast message). As shown in line 3 of Table 4, even for a payload initially labeled as non-malicious, the repackaging process
itself triggers detections when using a known app as the host, further supporting the conclusion that such detections rely on
static analysis of modifications in well-known apps—indeed, no detection occurs in the case of unknown apps.

5.6. AV detection effectiveness

Here, we evaluate the effectiveness of different antivirus software in detecting malware-embedded in-app assets through
steganography. We focus on repackaging using an unknown host, as detection is more challenging in this case and aligns with
our threat model.

Table 5 summarizes the detection results. Of the 79 AVs tested, only the eight listed in the table successfully identified some
threats, despite the concealment provided by steganography.® The tables’ rightmost column reports whether the threat was detected
as the original malware. As discussed in the previous section, detection may label the threat differently from the unpacked version
of the malware sample. Out of 45 total detection instances, the AVs identified the original threat in 27 cases. The best-performing
antivirus is BitDefenderFalx, which detected 19 out of 140 malware samples, with 11 of those detections correctly identifying the
same threat as the original malware.

To further understand how much the detection rate is related to the malware’s seniority, Fig. 13 shows detections on payloads,
categorized by each year. Despite the payloads being embedded steganographically, consistent detection across AVs suggests that
the detection mechanisms are likely analyzing malware, focusing on the dex file and other APK metadata. Specifically, while the
steganography stage shows zero detections (see Table 4), the AVs can identify malicious payloads even after repackaging. This fact
implies that the detection is based on analyzing the payload’s inherent characteristics, such as its original strings and assets, which
may be revealed or merged during the embedding process. If there is a signature in the manifest or resources, these are embedded
as-is since we focused on concealing the dex file and related code.

Through manual analysis, we found that the 2011-2013 payloads detections are due to the presence of Lotoor malware variants.
These malware contain malicious ELF files within their asset folders, designed to exploit older Android vulnerabilities to gain root
access to devices [66]. The detection is triggered by these malicious components stored raw in the assets, which are embedded in
the repackaged malware during the merging phase. In particular, Lotoor exploits have been mitigated since the Gingerbread release,

5 We excluded Avast-Mobile since it labels both vanilla and stegopacked malwares with generic “Android:Evo-gen [Tr]”, often associated with
goodware apps (https://forum.avast.com/index.php?topic=321616.msg1695001#msg1695001, https://forum.avast.com/index.php?topic=323096.0). F-Secure and
BitDefender have one false positive each (Vanilla undetected/StegoPacked detected).
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Fig. 13. AVs performance in detecting the same threat of the original payload.

making them obsolete threats [67,68]. Malware that utilizes raw malicious resources falls outside the scope of StegoPack, which is
designed to embed malware using steganography for stealth strategically. However, such malware constitutes significant outliers.
Of the total 4464 detections recorded for the original malware, only 27 was consistent with the original threat, which is a mere
0.67% of effective detections.

5.7. Evading ESET detection

The tests in Section 5.5 revealed that only three of the 79 antivirus programs evaluated (ESET, Ikarus, and Google) consistently
detected our approach when applied to widely recognized apps. This detection reliability likely stems from their use of an
incremental scanning approach [69], which focuses on examining new components within an app. When an app’s name or package
is recognized, these AVs compare the submitted app to a known benign version, identifying code changes and control flow graph
patterns indicative of threats. In our case, ESET (correctly!) flagged repackaging functionalities as TrojanDropper.

To understand the detection mechanisms and whether they are robust enough to thwart the tool’s evasion methods, we focused
on ESET and examined which part was detected. We thus conducted a comprehensive analysis by progressively removing sections
of the Loader and performing thorough scans. The results indicated that the InMemoryDexClassLoader API was considered an
IoC. Removing the code segment employing this API (refer to Appendix D, Listing 1) resulted in no detection. Although this makes
the malicious app non-operational, it confirms that ESET identifies the InMemoryDexClassLoader API as malicious.

At this stage, a natural question was whether it was possible to preserve the malicious functionalities while making the
repackaged app elusive. To achieve this, a trivial solution was to try disrupting detection by inserting an additional invoke-
static call between the InMemoryDexClassLoader constructor and the getClassLoader () API (Appendix D, Listing 2).
This was sufficient to evade ESET detection, although Ikarus and Google continued to detect the StegoPack loader, but only when
injected into known apps.

5.8. Repeating experiments over time

The results presented above date back to April 2024, with 45 detections for the unknown app and 500 for the known one. When
repeated in June 2024 using the same apps, the detections increased significantly to 489 for the unknown app and 1002 for the known
one. In particular, the number of initially detected threats also increased (131 for the unknown host and 304 for the known ones),
probably due to a deeper manual analysis allowing AVs to identify the original malware in some cases. Kaspersky and ZoneAlarm
consistently flagged many of the generated malware instances as TrojanDropper, explicitly pinpointing the steganographic loader
stage. ESET similarly identified (again) instances as TrojanDropper, including those associated with previously unknown apps,
suggesting that these apps have become recognizable to specific AV engines over time.

We slightly modified the structure of the steganographic loader and performed experiments to assess the effectiveness of AV
countermeasures against our attack. We refactored the loader, renaming project elements (assets, packages, classes, methods,
variables) while preserving semantic integrity to circumvent Kaspersky and ZoneAlarm. Following recompilation and scanning, we
received zero detections from these AVs. Regarding ESET, we adopted additional code-scrambling techniques, following the strategy
already outlined in Section 5.7.

Repackaging the malware within a previously used known app (com.speedsoftware.explorer) and submitting 140
samples to VirusTotal led to a decrease in detections, dropping to 169, with 20 related to the original malware threats. This
experiment suggests that, while some AV engines eventually flag originally submitted apps as malicious, they mainly rely on
signatures without fully understanding the steganographic packing methods used in the attack. Moreover, they have not developed
any behavioral signatures capable of detecting our attack beyond the steganographic loader’s facade.
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5.9. Play store submission

Following our threat model, we tried to demonstrate the feasibility of distributing stegomalware on the Google Play Store. To
this aim, we selected a malware sample containing a Metasploit reverse shell. The sample has been flagged as malicious by 26 AVs,
including Google, in its original form. We used StegoPack to embed the malware sample in the host app. Then, we submitted the
malicious host app to the Google Play Store.®

The malicious host app successfully passed Play Console security checks (pre-launch report, Fig. 14) and is currently in the
“Closed Beta” phase (Fig. 15), available only to selected testers and not publicly accessible. This phase represents a significant
milestone, as attackers could exploit it by sending invitation links to potential victims, allowing them to install the malware directly
from the Play Store. Although the malicious host app could be publicly released after 14 days of beta testing, we have kept it private
for ethical reasons and will not proceed with a public release. We further verified that the app bypasses Play Protect’s real-time
detection,” granting the installation of the malicious host app as a legitimate one.

Figs. 14, 15, 16 illustrate the successful upload of the malicious host app up to the closed beta level. Specifically, Fig. 14 details
the pre-launch report, which granted the app closed beta status, and Fig. 15 shows the app on the private Google Play, accessible
to explicitly invited beta testers. Fig. 16 shows the run-time Analysis of Play Protect output.

6. Detection strategies
The analysis shows that none of the 79 AVs evaluated via VirusTotal seems to account for an adversary that steganographically

embeds malware in the app assets. However, as shown in the previous sections, the integration of steganographic approaches into
the overall structure of the app and the dynamics of payload execution is a viable direction. Even intentionally basic steganographic

6 DISCLAIMER: The embedded malicious payload is completely harmless, as it attempts to contact a non-existent private IP, thus never activates, even when
extracted.

7 https://security.googleblog.com/2023/10/enhanced-google-play-protect-real-time.html
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Fig. 16. Successful circumvention of the Play Protect runtime analysis.

techniques, as used in this paper, pose significant challenges to traditional detection mechanisms; indeed, no AV engines successfully
identified our payload as malicious during testing. We could address defense by detecting the loading phase, as, for instance, done
by ESET. However, as discussed in Section 5.7, stealth adversaries may easily bypass simplistic techniques to detect suspicious
control flows. The presence of InMemoryDexClassLoader alone is not a sufficient IoC because it is frequently used for legitimate
purposes within the Android ecosystem (see Section 6.4). Therefore, this API should be considered dangerous only when used with
other suspicious activities. The key to effective defense lies in fighting steganographic adversaries with steganography detectors, which
should be carefully integrated with techniques designed to recognize strategies for retrieving encoded data from images and dynamic
code loading.

6.1. Towards detecting stegomalware based on stegopack

The first step is to recognize the strategies implemented in the app code for retrieving encoded data from images. Although we
can detect the use of our specific algorithm, it is essential to develop more general solutions that can identify any potential encoding
algorithm that might be employed. Some basic strategies are described below, along with the relevant limitations.

Stegdetect & Suarez-Tangil’s approach [19]. Devised explicitly for Android stegomalware, this approach identifies suspicious apps
capable of executing dynamic code. The assets of these flagged apps are then analyzed using the Stegdetect tool [70]. However,
this strategy has several notable limitations. First, flagging native code as suspicious is ineffective since modern apps commonly use
native libraries. Moreover, Stegdetect is designed for known steganographic techniques within a single file, whereas our methodology
disperses information across multiple images with varying embedding rates, which it cannot handle. Most importantly, Stegdetect
lacks dynamic engines to reconstruct the malware payload. Relying solely on static analysis can lead to a non-negligible number of
false positives, as steganography might be legitimately used to encode sensitive information.

Static Signatures on Loader Component. During the assessment of AV detection, a key finding emerged: AVs primarily rely on
static signatures that target the specific syntax and methods defined in the steganographic loader rather than employing behavioral
signatures to capture the overall workflow of stegopacked malware. We demonstrated that simple modifications to the loader
code are sufficient to avoid these signatures, highlighting a significant gap in developing efficient, instruction-agnostic detection
approaches. In this sense, a viable detection method could involve recognizing the LSB decoding process, typically achieved by
shifting all bits and performing a bitwise AND operation with 0x1. However, the extensive use of shift operations in benign APKs
may lead to false positives, making it challenging to distinguish between malicious and benign uses.

Towards an Holistic Detection Approach. Considering the abovementioned limitations, we developed a more generalized
detection method to handle the broader and more complex scenarios posed by modern stegomalware. To address these challenges,
we follow a hybrid analysis approach that integrates both static and dynamic analysis features of the malware:
1. Static Analysis: Identify DexClassLoader or InMemoryDexClassLoader usage as indicators of potential dynamic
code loading;
2. Steganalysis: Analyze app assets to detect steganographic manipulation, assessing whether images may have been altered
to embed hidden data, regardless of the specific stego-method employed;
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Fig. 17. Distribution of WS and SPA analysis results on R, G, B components.

Table 6

Mean RGB values for SPA and WS methods for low embedding rates.

Embedding rate SPA SPA Stego WS WS Stego
0.02bpp 0.0045 0.0063 0.0007 0.0033
0.04bpp 0.0052 0.0117 0.0008 0.0108
0.06bpp 0.0067 0.0127 0.0013 0.0130
0.08bpp 0.0063 0.0197 0.0010 0.0220

3. Dynamic Hooking: Implement dynamic hooking to intercept the buffer provided to InMemoryDexClassLoader and the
full path of the loaded native library. This enables real-time reconstruction and analysis of the Dex and so files as they are
dynamically loaded, facilitating immediate monitoring of the code execution;

4. Malware Verification: Submit the reconstructed dex and so files to detection services (e.g., VirusTotal) to check for malicious
code.

6.2. Assessment of steganalysis methods

We apply the methods described in the proposed approach to detect steganographically embedded content in the APK’s assets.
It is worth mentioning that, in this phase of steganography detection, the baseline goal is not to retrieve the original payload but
to identify the potential presence of stegomalware. Once detected, analysts can study the decoding algorithm, allowing the hidden
payload to be reconstructed statically.

To do this, we used the following two methods: SPA (Sample Pair Analysis) [17] and WS (Weighted Steganography) [71].
The first analyzes pairs of samples to detect the presence of steganographic modifications. It examines statistical properties such
as correlations between adjacent pixels to identify alterations suggesting hidden content. The latter identifies hidden payloads by
evaluating the distortion introduced by steganographic embedding, assigning different weights to pixels based on their significance.

Preliminary Investigation. We initially tested the validity of these methods by encoding 250 MB of dex files within one GB
of steganographic images at the maximum embedding rate of 2 bpp. Applying both steganalysis methods to the original and
encoded images, we compared their results for each color component. Fig. 17 shows a clear and easily separable clustering between
the original and stego images. Both steganalysis techniques yield significantly higher coefficients across all color components in
manipulated images.

Variable Embedding Rate. Stegomalware can encode payloads at variable embedding rates (see Appendix A). We analyze the
impact of our algorithm by varying the embedding rate as the accuracy of the steganalysis decreases with a lower percentage of
encoded pixels [17]. Since StegoPack equally loads the three color channels, Fig. 18 shows the average values for the R, G, and B
channels in both the original and stego images for varying embedding rates up to the maximum of 2bpp. The results show that even
with relatively low embedding rates, there is a noticeable distinction between images with and without steganography. However,
embedding rates can drop to as low as 0.02 bpp and 0.08 bpp for apps rich in assets such as gaming and messaging, respectively. From
Table 6, it can be seen that for low embedding rates, the distinction between original and steganographic images is less pronounced,
suggesting that setting a threshold for detecting embedding rates lower than 0.1 bpp could result in false positives. This fact implies
that a safe threshold must be at least 0.025, which catches a minimum embedding rate of 0.1 bpp.
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Fig. 18. Steganalysis compares steganographic images and their original version at varying embedding rates.

Table 7
Real APK images: analysis by color channel.
Method Channel Mean 25th perc. 50th perc. 75th perc.
R 0.02630 0.00000 0.00844 0.03245
SPA G 0.02786 0.00000 0.00923 0.03531
B 0.02781 0.00000 0.01070 0.03531
R 0.02794 0.00000 0.00000 0.00696
WS G 0.02679 0.00000 0.00000 0.00660
B 0.02689 0.00000 0.00000 0.00653

Threshold Establishment via Analysis of Legitimate APKs. To determine a reliable threshold for steganalysis and avoid false
positives, we analyzed the results of steganalysis on 274 existing legitimate APKs. Upon examination of 33,281 images from these
apps, we found that the mean values in Table 7 are above the previously established minimum threshold of 0.025, while the median
values are lower. This indicates that certain assets can trick the steganalysis (see Appendix C). In the distribution shown in Fig. 23,
4470 of the 33,281 images exhibit values above the 0.025 threshold, resulting in a false positive rate of 13.43%. Increasing the
threshold to 0.05, 2988 out of 33,281 images would exceed the threshold, lowering the false positive rate to 8.98% but reducing
detection to embedding rates around 0.2 bpp or more.

Since SPA and WS have distinct limitations based on image characteristics (see Appendix C), we suggest developing defensive
strategies that combine both methods for each color component in detection policies.® However, SPA and WS struggle with small
and monochromatic images, which can lead to false positives in steganalysis. This indicates that steganalysis alone is insufficient
for accurate stegomalware detection and should be supplemented with other domain-specific IOCs.

6.3. Dynamic payload reconstruction

After identifying a sufficient number of suspicious assets with the potential to embed a payload and confirming the presence
of dynamic code loading capabilities, the next task is reconstructing the dex and so files of the embedded payload. We utilize
Frida [72] to execute a script to intercept and connect to API calls for dynamic code loading. For Java components, our Frida
script (see Appendix D, Listings 3) hooks into the InMemoryDexClassLoader method. This allows monitoring and capturing the
ByteBuffer parameter from memory. By dumping the contents of the ByteBuffer, we can reconstruct the dex file of the payload.
For native components, the Frida script (see Appendix D, Listings 4) hooks into the System.load () invocation. It captures the
library path argument provided to this API, reads the specified library file, and then copies it to a local directory for further analysis.
Having them in their original form, the reconstructed dex and so files are subsequently analyzed using VirusTotal to detect the
presence of malicious code.

8 For instance, being Rgp,,Gsps, Bsps and Ry s, Gy s, By s denote the results of steganalysis indicators, and being thrgp, and thry, s detection thresholds for
the SPA and WS method, respectively, trigger an alarm when (Rgp, V Ggpy V Bgps > thrgp,) and/or (Ry sV Gy V By, g > thry,g). Note that detection policies
should account for the possibility that some steganographic algorithms might encode data selectively in one or more color components while ignoring others.
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6.4. Goodware evaluation

To assess the effectiveness and precision of our detection tool, we evaluated the 274 benign apps from the Goodware Dataset
(including the 100 hosts used in the Stegomalware Dataset). The results of this evaluation are summarized as follows:

1. Dynamic Code Loading and Steganalysis: Of the 274 goodware apps, 25 were flagged for dynamic code loading and
potential steganographic manipulation. Static analysis would have marked these as false positives. Dynamically reconstructing
the associated payload files with dynamic hooking would confirm their benign nature, thus mitigating static analysis false
positives.

2. Dynamic Code Loading Only: 87 apps exhibited dynamic code loading capabilities without any steganographic indications,
confirming that dynamic code loading is prevalent among legitimate apps and alone does not suffice as an indicator of
malicious intentions.

3. Steganalysis Only: 20 apps exhibited signs of steganographic manipulation but did not utilize dynamic code loading. These
apps may contain steganographic data in the images, but the steganalysis algorithms could also generate false positives for
certain assets (as discussed in Section 6.2). However, these apps reasonably do not embed a malicious payload, as they lack
dynamic code-loading capabilities.

Globally, 45 apps triggered false positives in the steganalysis: 15 gaming apps, 8 banking apps, 16 social apps, 4 apps for
image/video editing, and 2 generic tools. The initial false positives identified by static analysis and steganalysis were resolved
by dynamic hooking and subsequent verification of the so and dex files with antivirus scans. Thus, our methodology ensures that
the final assessment has no false positives. By applying the proposed hybrid analysis mechanism, we effectively mitigate the risk
of false alarms while maintaining high accuracy in distinguishing between benign and malicious apps.

6.5. StegoPacked malware evaluation

We evaluated the entire Stegomalware Dataset to assess the effectiveness of our hybrid detection mechanism against StegoPack.
Among the 45 apps from the Goodware Dataset that triggered steganalysis, 12 were used as hosts in the stegomalware generation.
To ensure a fair evaluation, we excluded the 1680 samples derived from these hosts, as their deterministic false positives made
them unsuitable choices for hosting stegomalware.

We analyzed the remaining 12,320 stegopacked apps with our detector. The results show that 12,140 of these apps were detected
accurately as stegomalware, achieving a success rate of 98.53%. The remaining 180 apps, which evaded steganalysis, are wrongly
classified as goodware. In particular, 169 of these apps had a poor embedding rate (below 0.2 bpp), which aligns with our chosen
threshold of 0.05 - a compromise to balance sensitivity to low embedding rates and minimize false positives. Furthermore, 11 of
the evading apps had embedding rates between 0.21 bpp and 0.35 bpp. This variability is due to differences in the sizes and types of
assets within different host apps, which affect their response to steganalysis.

For further validation, we evaluated the VirusTotal detection rate for all dex files, which were consistently dumped at runtime
from stegopacked malware. To also reliably include reconstructed so files, this approach should be supplemented with dynamic
techniques for a broader test coverage.” A comparison between the detection rates of the original malware APKs and their
corresponding dex files is illustrated in Fig. 19. Although the detection rate for payload files (2920 detections) was lower than
that for the original APKs (4408 detections), it is crucial that most AV solutions still recognize each dex file. The reduction in
detection rate is attributed to the fact that some IOCs considered by AV engines are located outside classes.dex or within
native libraries (e.g., 1iblib<name>. so files). As a result, these IOCs can only be detected by scanning the full APK rather than
individual components.

The results demonstrate the robustness of our detection mechanism in identifying most stego-packed payloads, showcasing its
effectiveness against this attack vector.

However, the approach still has notable limitations. On the dynamic side, malware may not activate immediately after the
startup; instead, it waits for specific user interactions. This delayed activation, coupled with the limited observation period typical
of dynamic analysis, can lead to cases where the effective payload is neither reconstructed nor detected.

On the steganalysis side, we observed the presence of false positives, as 45 applications from the Goodware Dataset triggered
steganalysis. Additionally, when payloads are minimal or embedded in hosts with substantial asset bases, low embedding rates
can enable some payloads to evade detection. Finally, the steganographic threshold we employed was calibrated based on the
characteristics of our specific algorithm and may not directly generalize to other steganographic schemes.

These challenges underscore the complexity of countering such advanced attacks, particularly when attackers strategically pair
malware payloads with host apps to evade detection. Although our approach demonstrates promise for strengthening the Android
ecosystem against these threats, more work is required to address these nuanced attack strategies more comprehensively.

9 In our testing environment, the dex file is consistently retrieved as it is loaded at the application’s startup. However, for so files, we must ensure that
malicious code delivered reaches the point where loadLibrary() is invoked.
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Fig. 19. Detection results: comparison between original malware APKs and their extracted dex files.

7. Conclusions and future works

This paper presented a methodology applied to dex or native apps to hide arbitrary malicious payloads within the assets
of Android apps using steganography. Despite deliberately employing basic steganographic techniques, our experimental analysis
revealed significant deficiencies in current AV solutions and automated Play Protect assessments; notably, we successfully uploaded
stegopacked malware to a closed beta level without detection. None of the detection engines tested identified the embedded payloads
as malicious. In the rare cases where detection occurred, the heuristics were not related to malware embedding within app images.
This suggests that most AV solutions’ threat models do not consider steganographic adversaries.

Our findings further indicate that steganalysis alone is insufficient in the context of Android apps due to potential false positives.
We, therefore, advocate for advanced detection approaches that focus on app assets to uncover hidden threats. We also complement
static steganalysis and signature-based detection with dynamic hooking techniques to monitor app behavior at runtime. This allows
for the reconstruction of the code dynamically loaded by the malware. However, we argue that such remediation is just a first step,
and further research is required to design more advanced detection solutions.

A potential limitation of stegomalware is that counter-steganography techniques could disrupt it. However, applying such
defenses in Android is non-trivial. First, preprocessing techniques such as adding noise to images must be unpredictable to prevent
stegomalware from adapting and encoding payloads resistant to these transformations. Second, suppose stego images are stored
within the assets folder of an APK. In that case, they remain read-only at runtime, preventing modification through preprocessing
mechanisms operating on the installed app. This implies that countermeasures would need to intervene before installation. Modifying
a compiled APK also invalidates the original developer signature, requiring the app to be re-signed with a different keystore. This
would break the integrity guarantees of Android’s signature verification model.

Considering these challenges, future work will focus on developing robust and scalable countermeasures that disrupt stegomal-
ware without impacting legitimate applications. Addressing these technical limitations will be key to designing effective mitigation
strategies against steganographic threats.
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Appendix A. Steganography encoding algorithm
The steganography encoding algorithm currently used in StegoPack uses a simple Least Significant Bit (LSB) method with a

maximum embedding capacity of 2 bits per pixel (bpp) [73]. We iterate over payload bytes and image pixels, modifying only 2 of
the three color components using a round-robin algorithm based on the positional index of the bit pair within the current byte.
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Original Steganography Modified Pixels

Fig. 20. Original Image, Image After Steganography Embedding, and Modified Pixels Highlighted in Red.
Source: FFHQ Dataset: https://www.kaggle.com/datasets/arnaud58/flickrfaceshq-dataset-ffhq.

Table 8

PSNR statistics.
Statistic Value (dB)
Min PSNR 52.19
25th Percentile 54.07
Median PSNR 55.80
Mean PSNR 56.77
75th Percentile 58.64
Max PSNR 68.65

Visual imperceptibility. In the worst-case scenario (from a stealth perspective) of two bits per pixel, we evaluated the visual
imperceptibility of the steganography algorithm used on a set of 1000 images of different sizes. We evaluated the Peak Signal-
to-Noise Ratio (PSNR) [74] to measure the loss of quality between the original and steganographic images. Considering that a PSNR
of 30 dB is generally considered reasonable in terms of image quality for steganography applications [75], the results shown in
Table 8 confirm the minimal loss of visual image quality. The example image shown in Fig. 20 highlights how the original and
steganographic images appear indistinguishable to the human eye. However, nearly all pixels had their color components altered
by a +/- 1 value.

Variable payload embedding rate. Our encoding strategy distributes the payload bytes across all available assets, resulting in a variable
embedding rate for each payload-host pair, depending on payload size and the total number of pixels within the host application’s
images. Let P,,, denote the number of pixels required to encode N bytes of payload. Considering that every pixel may contain up
to two bits, P =N [bytes] x 8 [bits/byte]/2 [bits/pixel] = 4N [pixels]. Being P,, the total number of pixels available in the host
application’s assets, the percentage « of bits to be encoded in each image is « = P,,,/P,, € [0, 1], i.e., the embedding rate per-image
is E; = 2a bits per pixel. Practical embedding was then performed by stego-encoding, in addition to the malware payload and a
control header specifying how bits are distributed across images.

Appendix B. Custom packing format for native libraries

Compared to the classes.dex file, native libraries can be numerous, each compiled for a specific CPU architecture. To handle
native libraries, we have therefore constructed a structured packet to encapsulate all the library data, as depicted in Fig. 21. The
preamble contains crucial information for library reconstruction during the decoding phase. It specifies the library name, supported
CPU architectures, and the size of each .so file. This enables StegoPack to reconstruct the original libraries after extraction from
the stego images accurately.

Appendix C. False positive detection of legitimate APK images

Most of the assets that exceed the detection thresholds come from game applications characterized by small textures with
monochromatic or patterned designs. Examples are shown in Fig. 22. The size of the image is the main factor that affects these results,
as shown in Fig. 24. This situation is expected, as the SPA and WS metrics are significantly influenced by image characteristics,
including compression methods and preprocessing techniques [76,77]; individual pixels have a more significant impact on smaller
images. For images sized 256 x 256, the values deviate from the decreasing trend due to 238 resources from a specific gaming app,
which consists mainly of white font images. Additionally, images with random or patterned visual elements often show a higher
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Fig. 21. Native libraries packet encoding format.

Fig. 22. Example of images fooling steganalysis.

pixel correlation, which is associated with structured data and is a common trait in steganographic content. Overall, from these
results, we empirically observe that:

1. SPA results increase with decreasing image size, even without steganography.

2. WS is more stable, as shown by the percentage plot (Fig. 18). However, it degrades faster for tiny images concerning SPA. It
returns a probability near 1 for 16x16 images or smaller, with a transparency channel and only a few colors. This is typical
for texture assets for games.

3. SPA and WS methods show higher stego probabilities for small images (lower than 64 x 64 pixels).

4. SPA gives values between 0.1 and 0.25 for images with random or constant visual patterns or noise filters. WS appears to be
more robust in these cases.

5. Both SPA and WS yield values between 0.1 and 0.2 for images that are predominantly monochrome on a specific color
component.
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Fig. 23. SPA and WS steganalysis results on goodware raw assets.
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Fig. 24. Steganalysis on goodware assets about image size.

Appendix D. Code artifacts

new-instance vi, Ldalvik/system/InMemoryDexClassLoader;

invoke-virtual {p0}, Landroid/content/Context;->getClassLoader ()Ljava/lang/ClassLoader;
move-result-object v2

invoke-direct {vl, v0, v2}, Ldalvik/system/InMemoryDexClassLoader;-><init>(Ljava/nio/ByteBuffer;
Ljava/lang/ClassLoader;)V

Listing 1 Code snippet detected as malicious by ESET, utilizing the InMemoryDexClassLoader API

.method public doRegisterOperations(I)I
.registers 4
move vO, pl
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const/4 vi, 5
add-int v1, vO0, vl
const/4 v2, 3
mul-int v2, vli, v2
return v2

.end method
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invoke-virtual {p0}, Landroid/content/Context;->getClassLoader()Ljava/lang/ClassLoader;

move-result-object v2

const/4 v0, 7

invoke-virtual {p0, v0}, Lcom/tools/render_library/MainActivity;->doRegisterOperations(I)I

invoke-direct {vl, vO0, v2}, Ldalvik/system/InMemoryDexClassLoader;-><init>(Ljava/nio/ByteBuffer;

Ljava/lang/ClassLoader;)V

Listing 2 Calling of the fake method to disrupt the Control Flow Graph

function InMemoryDexClassLoader_dump() {

var memoryclassLoader = Java.use("dalvik.system.InMemoryDexClassLoader");

memoryclassLoader.$init.overload(’java.nio.ByteBuffer’,
function (dexbuffer, loader) {

const dump_file = ‘/data/data/${PACKAGE_NAME}/dump.dex ‘;

’java.lang.ClassLoader’).implementation =

var original_classloader = this.$init(dexbuffer, loader); // Mandatory. After read dexbuffer

will be empty

// Reading Data from ByteBuffer provided to InMemoryDexClassLoader

var remaining = dexbuffer.remaining();
var buf = new Uint8Array(remaining);
for (var i = 0; i < remaining; i++) {
buf [i] = dexbuffer.get();
}
console.log("[*] Read Completed of " + remaining + " bytes")
// We dump the dex in /data/data app private folder instead.
app has rights to.
const f = new File(dump_file, ’wb’);
f.write (buf);
f.close();
return original_classloader;
}

Cannot write to /sdcard unless the

Listing 3 Frida script to hook the InMemoryDexClassLoader API, and reconstruct the original Malware DEX file.

function NativelLibraryLoader_dump() {
Java.perform(function () {
// Hook the System.load() method
var System = Java.use(’java.lang.System’);
var File = Java.use(’java.io.File’);

var FileInputStream = Java.use(’java.io.FileInputStream’);
var FileOutputStream = Java.use(’java.io.FileOutputStream’);

System.load.overload(’java.lang.String’).implementation = function (path) {

console.log("[*] System.load() called with path:

" + path);

const dump_file = ¢/data/data/${PACKAGE_NAME}/dump_library.so‘;

var file = File.$new(path);

if (file.exists()) {
var fileSize = parseInt(file.length());
console.log("[*] File Size: " + fileSize);
var buf = new Uint8Array(fileSize);

var inputStream = FileInputStream.$new(file);

inputStream.read (buf);

// Write the library to the dump file
var dump = File.$new(dump_file);
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}

var outputStream = FileOutputStream.$new (dump);
outputStream.write (buf);

console.log("[*] Library dumped to: " + dump_file);
inputStream.close();

outputStream.close();

} else {
console.error("[*] File does not exist: " + path);
}
}

return this.load(path);
b

Listing 4 Frida script to hook the 1oad () API, and reconstruct the original Malware SO file.

Data availability

Data will be made available on request.
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