
Challenging Antivirus against Elusive Android Malware
over Time
Danilo Dell’Orco1, Lorenzo Valeriani1,2, Giuseppe Bianchi1,2, Alessandro Pellegrini2 and
Alessio Merlo3,*

1CNIT National Network Assurance and Monitoring (NAM) Lab, Rome, Italy
2University of Rome Tor Vergata, Rome, Italy
3CASD - School of Advanced Defense Studies, Rome, Italy

Abstract
This empirical study evaluates the ability of commercial Android antivirus (AV) solutions to detect malware
concealed using four specific techniques: code obfuscation and repackaging through encryption, compression,
and steganography. Using real-world malware samples spanning 14 years, we developed a structured testing
pipeline to transform each sample into a less-detectable version systematically. Leading antivirus engines on
VirusTotal, which reliably detect the original malware, were tested against the altered malware. Although the
effectiveness of the repackaging techniques varies, they all significantly reduce detection rates. While obfuscation
reduces detection rates, most AV engines remain resilient to state-of-the-art obfuscation tools. We conducted the
same tests at five intervals, demonstrating that AV systems quickly adapt to these hiding techniques. However,
this adaptation often results in inadequate signatures. In some cases, engines misclassified the original host
application as malicious, even without a hidden payload. While VirusTotal remains a valuable resource for
malware analysis, our experiments highlight several limitations. These findings underscore the need for more
robust threat-neutralizing techniques and advanced detection strategies to address the evolving challenges
of malware in Android ecosystems. To improve the reliability of such studies, we propose best practices for
conducting experiments.

Keywords
Stegomalware, Android Security, Packing, Obfuscation, Antivirus Evasion

1. Introduction

Android, built on the Linux kernel, is often regarded as a secure operating system, with foundational
security measures such as explicit permission granting, application isolation, mandatory app signing,
and a disabled root user. These fundamental mechanisms establish a strong security framework.
However, as the threat landscape evolves, Android faces increasingly sophisticated attacks targeting
this ecosystem [1, 2].

Unlike traditional Linux or Windows malware, which typically seeks deep OS-level access, Android
malware frequently operates within the app sandbox. It leverages the permissions framework to
carry out malicious actions, blurring the line between legitimate and malicious applications. While
commercial antivirus solutions primarily rely on signature-based detection, identifying malware only
after its signature has been analyzed and cataloged, some solutions, like Google Play Protect, also
incorporate advanced techniques such as code analysis and machine learning to detect threats more
proactively and reduce the reliance on known signatures [3, 4].

Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), February 03-8, 2025, Bologna, IT
*Corresponding author.
$ danilo.dellorco@cnit.it (D. Dell’Orco); lorenzo.valeriani@cnit.it (L. Valeriani); giuseppe.bianchi@uniroma2.it (G. Bianchi);
alessandro.pellegrini@uniroma2.it (A. Pellegrini); alessio.merlo@unicasd.it (A. Merlo)
� http://netgroup.uniroma2.it/GiuseppeBianchi/biografia.html (G. Bianchi);
http://netgroup.uniroma2.it/GiuseppeBianchi/biografia.html (A. Pellegrini); https://www.csec.it/people/alessio_merlo
(A. Merlo)
� 0009-0004-3539-7236 (D. Dell’Orco); 0009-0003-9373-9575 (L. Valeriani); 0000-0001-7277-7423 (G. Bianchi);
0000-0002-0179-9868 (A. Pellegrini); 0000-0002-2272-2376 (A. Merlo)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:danilo.dellorco@cnit.it
mailto:lorenzo.valeriani@cnit.it
mailto:giuseppe.bianchi@uniroma2.it
mailto:alessandro.pellegrini@uniroma2.it
mailto:alessio.merlo@unicasd.it
http://netgroup.uniroma2.it/GiuseppeBianchi/biografia.html
http://netgroup.uniroma2.it/GiuseppeBianchi/biografia.html
https://www.csec.it/people/alessio_merlo
https://orcid.org/0009-0004-3539-7236
https://orcid.org/0009-0003-9373-9575
https://orcid.org/0000-0001-7277-7423
https://orcid.org/0000-0002-0179-9868
https://orcid.org/0000-0002-2272-2376
https://creativecommons.org/licenses/by/4.0/deed.en


In response, malware developers constantly refine hiding techniques to avoid detection and target
more victims. These techniques are designed to disrupt signature-based detection and machine learning
models’ feature extraction process, necessitating increasingly sophisticated countermeasures.

One common strategy is app repackaging, where attackers inject malicious payloads into legitimate
apps before redistributing them. Standard hiding techniques include code obfuscation and encryption.
Obfuscation restructures the code to make analysis more difficult while retaining its functionality [5].
Tools such as ObfuscAPK [6] and ProGuard [7] effectively bypass many detection systems. Commercial
packers [8, 9, 10] use encryption to protect the application code, further complicating the analysis.

On the other hand, steganography represents a more sophisticated and elusive technique [11]. By
embedding malicious payloads within non-code resources such as images or audio files, steganography
enables the creation of stegomalware [12]. Stegomalware is increasingly used on Android to bypass
detection mechanisms [13, 14, 15]. This rise can be attributed to malicious payloads being hidden from
static analysis by revealing them only at runtime. Steganography does not alter the app’s entropy, unlike
encryption [16], making it harder for antivirus systems to detect hidden threats without executing the
app.

This study assesses the effectiveness of various malware-hiding techniques, explicitly focusing on
obfuscation and different repackaging strategies. To evaluate how well antivirus solutions are prepared
for repackaging, we analyze several techniques of varying complexity: a standard encryption scheme,
the more straightforward method of compression, and the more covert use of steganography.

This research aims to address the following key questions:

• RQ1: How do Android antivirus solutions respond to different malware hiding techniques?
• RQ2: How does the year of malware creation influence its detection rate?
• RQ3: How do antivirus engines evolve to counteract these threats?

Our findings highlight significant weaknesses in existing antivirus solutions for Android, partic-
ularly in detecting advanced malware-hiding techniques. We observed that traditional signature-
based detection methods struggle against complex repackaging strategies such as encryption and
steganography-based hiding, completely bypassing static analysis. Furthermore, the evolution of mal-
ware demonstrates that detection engines must constantly adapt to new techniques, mainly when
obfuscation and steganography are increasingly used. These results underscore the need for more
advanced and dynamic detection approaches to address the growing sophistication of Android malware.

The remainder of the paper is structured as follows. Section 2 provides information on Android and
related work. Section 3 outlines our methodology. Section 4 presents the experimental results, and
Section 5 concludes the study.

2. Background and Related Work

2.1. Android Basics

The Android platform is an open-source software stack built on the Linux kernel. It is suitable for various
devices. At its core, the kernel manages system resources, including memory, processes, and device
drivers, supporting a robust environment for efficient Android application execution. The Hardware
Abstraction Layer (HAL) facilitates standardized interfaces for hardware capabilities like Bluetooth or
Camera modules and integrates seamlessly with the higher-level Java API framework.

Each Android application runs within a dedicated Android RunTime (ART) instance using a distinct
Linux user ID (UID). This sandboxed design ensures isolated memory spaces and prevents direct
data access between applications. Applications are written in Kotlin/Java code, organized in a set
of independent components belonging to four categories: Activities, representing the app’s graphical
UIs; Services, executing background-running tasks without any user’s interaction; Content Providers,
allowing the app to export part of its database to other apps; and Broadcast Receivers, consisting of tasks
executed when specific events occur.



Compiled apps are installed as APK files, i.e., a compressed file format signed by the developer
containing code and non-code resources. The main elements of an APK are dex files, resources, assets,
shared libraries, and the manifest file. The dex files (i.e., classes[k].dex) contain the compiled code
(bytecode) of the Java/Kotlin classes, which represent the core functionality of the app. Resources are
compiled entities, stored in the res/ folder and indexed in the resources.arsc file. Assets are non-
compiled resources in the assets/ folder. They can cover various file types, including fonts, videos,
and audio files. Unlike resources in the res/raw/ subfolder, which are compiled into the application
and referenced via resource IDs, assets are accessed directly in their original form by specifying their
file path. Shared libraries, which are stored in the lib/ folder, consist of ELF binaries (.𝑠𝑜 files) built by
compiling architecture-specific native code (C/C++). The AndroidManifest.xml file declares the set
of the app’s components and the set of permissions that the app aims to exploit at runtime.

2.2. App Modification and Hiding Techniques

APK files can be reversed using decompiling tools (e.g., ApkTool [17]) that provide access to original
resources and convert the app into smali, a human-readable assembly-like language representing the
Dalvik bytecode of the app. The inherent reversibility of Android apps [18] has also encouraged the
development of techniques to hinder reverse engineering and malware analysis.

Obfuscation. Obfuscation refers to the practice of making code difficult to understand, both for reverse
engineers and automated analysis tools [5]. In Android, benign apps widely use obfuscation to protect
intellectual property, while malware uses it to hide malicious payloads. Tools such as ProGuard [7]
or custom obfuscators transform the code by renaming methods and variables, adding dead code, or
altering the control flow.

Zheng et al.[19] demonstrated that automated obfuscation significantly reduced antivirus detection
rates in the short term. However, after four months, the detection rates increased from 54% to 90%,
as the antivirus engines adapted to these techniques. Several studies [20, 21, 22, 23] have proposed
solutions for detecting obfuscated malware, including tools like APKiD [24], which uses Yara rules to
identify known obfuscators.

Repackaging. Repackaging involves modifying an app’s compiled APK by inserting new code or
altering existing components, allowing an attacker to insert malicious code, recompile the app, and
redistribute it [25, 26, 27, 28, 29]. If the malicious code is kept in plain sight, it is easily detectable by
static analysis tools. Repackaging is often combined with techniques that hide the malicious payload
and evade static detection to avoid this.

Commercial packers, such as Baidu [10], Bangcle [9], and Ijiami [8], automate this process to protect
apps while simultaneously making reverse engineering and analysis significantly harder. These packers
often encrypt the original app’s classes.dex, embedding it within the APK and decrypting it at
runtime using APIs from the DexClassLoader family. Tools such as DexHunter [30], AppSpear [31],
and BadUnboxing [32] have been developed to extract original code from packaged apps, although they
face challenges against custom packagers or layered protection techniques.

Encryption. Encryption-based repackaging [33] encrypts the app’s classes.dex to prevent static
analysis. The code is decrypted and executed dynamically at runtime, bypassing static detection by
antivirus tools. Although this approach increases complexity for reverse engineers, it also introduces
runtime overhead and is susceptible to dynamic analysis tools that can intercept the decryption process.

Compression. Compression-based repackaging [34] is more straightforward compared to encryption.
It involves compressing the components of the app to obscure its content. However, unlike encryption,
compression is not designed to hide information. As a result, compressed apps can be easily decom-
pressed by antivirus engines or reverse engineering tools, revealing the original app’s content without
executing it.



Malware APK

Host APK

detected

Antivirus

Malware
Altered APK

analyze

Antivirus

R
epackaging

E
ncryption

C
om

pression

Steganography

O
bfuscation

O
bfuscator 1

...

O
bfuscator 5

Transformation Engine

Figure 1: Malware Transformation Pipeline.

Steganography. Steganography refers to techniques to embed information in communication channels
or files, such as images or audio. A standard method is the Least Significant Bit (LSB) scheme [35], which
alters the least significant bit of pixel values to encode hidden data, exploiting the imperceptibility of
small changes in the color channels. In addition to being used for legitimate purposes (e.g., discreet data
transmission), steganography can be exploited in stegomalware [12] to conceal code, deliver payload,
and establish covert command and control channels.

Android malware increasingly exploits steganography to evade detection, revealing significant
limitations in antivirus defenses. Badhani et al.[36] showed that hiding malware in images bypassed
detection by nine out of ten antivirus tools. Suárez-Tangil et al. [37] emphasized the challenge of
statically identifying stegomalware, as many legitimate applications perform image manipulation
operations similar to steganographic decoding. Our previous work, Stegopack [11], further revealed
that antivirus systems are ineffective against stegomalware. Although the proposed solution combines
steganalysis with dynamic analysis to successfully detect stegomalware, developing a more general
detection mechanism independent of the specific embe dding scheme is not trivial.

3. Approach and Methodology

Our approach, shown in Fig. 1, is built around a modular tool designed to implement and evaluate
four distinct malware hiding techniques: code obfuscation, naive repackaging using compression,
repackaging using encryption, and repackaging with steganography. We applied such techniques
to existing malware APKs to assess their effectiveness against detection systems. Each method is
independently configurable within the tool, allowing for precise experimentation and comparing their
impact on antivirus detection rates.

3.1. Obfuscation

To obfuscate malware, we utilize Obfuscapk [6], a tool that enables black-box obfuscation of Android
applications without requiring access to the source code. The obfuscation process involves several
techniques, such as encrypting resources, altering control flow, and using reflection to invoke methods
dynamically. The APK is first decompiled using Apktool, which exposes its smali code. The obfuscators
then modify the smali to alter its structure while preserving the malware’s functionalities. Finally,
the application is recompiled and signed, resulting in a functional APK with a modified signature
and obfuscated code. For the obfuscation of Java-based malware, we applied a combination of five
obfuscation techniques known for their effectiveness in significantly scrambling the code structure [38]:
ArithmeticBranch, Reorder, MethodOverload, CallIndirection, and Goto. For malware con-
taining native code, we added an obfuscator (LibEncryption) to encrypt the so files.



Repackaging
& SigningHost APK

Malware APK

Resource Merging

 Malware APK
w/ Host res 

Host APK w/
Malware res

Malware
classes.dex

 << extract >> 
Loader Stub

Project

Payload
Embedding

Payload
 Loader APK

Repackaged
Malware

Host  assets/

 << extract >> 

Figure 2: Malware Repackaging Workflow.

3.2. Repackaging

To evaluate the impact of different repackaging techniques, we built a structured pipeline to automate
the process, shown in Fig. 2. The process starts by decompiling the host and malware APKs using
Apktool.

The Resource Merger integrates the malware resources into the host app, following the approach
proposed in [11]. This involves renaming the resources to avoid conflicts and resolving resource ID
overlaps by increasing unique identifiers. Consistency is maintained by updating all affected files,
including XML and smali code, with minimal overhead.

Next, raw payload components are extracted directly from the APK without decompiling. These
include the classes.dex file and the lib/ folder containing native libraries. The payload files are
then embedded into the host app’s assets using the Payload Loader, applying Compression, Encryption,
or Steganography. These encoded assets are integrated into the Loader Stub project, and the loader APK
is built using the gradlew command.

The Repackager inserts the Payload Loader into the host APK. This step adds the loader classes, updat-
ing the AndroidManifest.xml to include the permissions required by the payload and configuring
the host to invoke the loader at specific points to dispatch the malware. At the end of the process, the
final APK remains functional and retains the appearance of the original host app.

3.2.1. Payload Loader

The Payload Loader is a pivotal intermediary that links the host app and the hidden malicious payload.
It performs two essential functionalities during the execution time, namely Payload Extraction and
Runtime Malware Execution.

First, the loader reverses the algorithm used in the embedding phase (steganography, compres-
sion, or encryption) to extract from the host’s assets the original bytes of both Java and native pay-
load. The classes.dex bytes are stored in a ByteBuffer, that is passed to the constructor of the
InMemoryDexClassLoader [39]. This ClassLoader allows dynamically loading DEX files not initially
included in the host APK. Using Java Reflection, the custom class loader is set as the active one for the
host app, enabling the load of host and payload classes. The malicious class is dynamically loaded via
the loadClass() method, followed by starting its associated activity using the startActivity()
API.

The native libraries are hidden using the same approach proposed in Stegopack [11]: the Pay-
load Loader extracts the bytes of each native library from its respective source (image, compressed
file, encrypted file) and writes them to corresponding .so files within the host’s private direc-
tory under /data/data. To enable the dispatched payload to load native libraries, we specify as
librarySearchPath parameter the path /data/data/com.host.app. This way, native libraries
extracted to that directory can be located and loaded using the System.loadLibrary() method



during runtime.
For payload embedding, we use established techniques to hide classes.dex and .so files. A

modified Least Significant Bit (LSB) algorithm [40] is used for steganography to embed the payload
within the host’s image assets. For encryption, the Advanced Encryption Standard (AES) is applied,
and for compression, Zstandard with a compression level of 3 is used. The classes.dex file and the
packet containing all the .so files are stored in their encrypted or compressed form as additional assets
within the host’s resources.

3.2.2. Host App Modification

We utilize a repackaging attack to integrate malware functionality into the host app. We inject only
the steganographic loader app to minimize the customization of the host app by incorporating just a
single additional activity. We modify the host’s main activity by customizing the implementation of
the onCreate() method in the corresponding smali file. Here, we insert an invoke-static call to
activate the steganographic loader, which decodes and executes malware. Once the loader executes
the payload as a standard activity within the host app’s context, the runtime behavior is the same as
the original app, containing only the permissions the host requires. To ensure the functionality of the
payload, we extract the permission needed from the malware manifest during repackaging and attach
them to the appropriate intent-filter elements in the host’s manifest.

4. Experiments

Our dataset contains 140 malware samples from VX Underground, github.com/sk3ptre, and Malware
Bazaar spanning 14 years. We selected ten distinct malware families each year, evenly divided between
Java-only and native. We applied four hiding techniques, namely obfuscation, compression, encryption,
and steganography, to each malware sample, thus obtaining a dataset of 700 malware samples.

To assess the effectiveness of these techniques, we submitted all 700 samples to VirusTotal [41] and
analyzed the detection results from 79 antivirus engines. This evaluation allowed for the measurement
of the impact of each hiding method on malware detection rates and the exploration of trends in
antivirus capabilities over time. For repackaging techniques, we utilized as a goodware host a simple
number guessing game application not known to VirusTotal.

We compare the total detection of the different techniques in Fig. 3. Detailed data is in Table 1.
The techniques showing the highest hiding result are steganography, encryption, and compression.
Obfuscation is less effective than the other approaches. The results in Table 1 also highlight the difference
in the presence of malware detected on Java and native applications. Java shows slightly higher detection
rates for most categories, indicating marginally worse performance in resisting malware detection
than native. This fact may stem from malware developers often targeting Java code, which is easier to
analyze and manipulate than native binaries.

However, in terms of obfuscation, native malware performs worse, with more threats detected (1088
vs. 930). This anomaly could be attributed to AV engines leveraging tools like APKiD [24], which
includes specific YARA rules targeting obfuscated native libraries, such as LibEncryption [42]. Since
some AV engines may embed similar techniques, native libraries may be more susceptible to detection
in this case.

Figures 4, 5, 6, 7 shows the ability of AVs to classify modified malware under its original threat
category1. Notably, with compression, AVG (76/140), Kaspersky (102/140), ESET (125/140), and Avast
(76/140) detect most of the original threats. This suggests that these antiviruses, historically prominent
on desktop platforms, effectively handle compressed payloads by decompressing malware and applying
signature matching to the extracted dex or so files.

1By “false positive”, we mean malware initially undetected but flagged as malicious after applying the hiding technique. “Different detection”
refers to malware identified as a different threat than its original classification.



2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Payload Year

0

10

20

30

40

50

To
ta

l D
et

ec
tio

ns
vanilla
obfuscation
stegopack
compression
encryption

Figure 3: Total detection comparison of different hiding techniques through the years.

Regarding obfuscation, if a threat is detected, it is consistently classified under the original category.
This technique also introduces 156 false positives out of 11, 060 samples, indicating that applications
previously undetected by a specific antivirus (AV) are flagged as threats after obfuscation. In comparison,
other techniques result in fewer false positives: compression introduces 28, while encryption and
steganography introduce 24.

ESET consistently flagged all malware samples as malicious across the three repackaging techniques.
It successfully identified 125 out of 140 malware samples in the case of compression. However, for both
steganography and encryption, it classified the malware as Android/TrojanDropper.Agent.MHY in
102 instances. As discussed in [11], these detections are specific to the Payload Loader class, regardless
of whether the loaded class is malicious. Previous studies have shown that this detection can be easily
bypassed by renaming project elements (such as assets, packages, classes, methods, and variables)
and applying simple code-scrambling techniques to the payload loader. Thus, this detection can also
be considered a false positive, as it is independent of the repackaged application and can even flag a
goodware payload.

Fig. 8 illustrates the detection performance of different antivirus (AV) vendors against the different
hiding techniques. The results indicate a clear distinction between the detection capabilities. Although
some AV engines perform strongly against compression-based hiding, overall detection rates for
repackaging techniques are generally low. Among these, steganography shows slightly better detection
rates than encryption, which outperforms compression. However, all AVs demonstrate consistent
preparedness against obfuscation, achieving significantly higher detection rates than other techniques.

Table 1
Detection rates for each hiding technique.

Hiding Technique Total Detections Java Native Detection Rate (%)

Vanilla 4464 2275 2189 40.36
Obfuscation 2018 930 1088 18.24
Compression 642 368 274 5.79
Encryption 521 284 237 3.40
Steganography 357 209 148 2.01



2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Payload Year

BitDefenderFalx
Antiy-AVL

AhnLab-V3
Sophos
McAfee

Jiangmin
Fortinet

K7GW
AVG

Kaspersky
Avast

GData
Varist

ClamAV
Avira

Sangfor
ESET-NOD32

TrendMicro
DrWeb

BitDefender
VIPRE

F-Secure
Emsisoft

MicroWorld
Arcabit
Cynet

FireEye
Tencent
Webroot

An
tiv

iru
s

Different Detection
Exact Detection
False Positives

Figure 4: AV threat detection after compression.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Payload Year

AhnLab-V3
ESET-NOD32

BitDefenderFalx
Trustlook
Jiangmin

Sophos
Ikarus

NANO-Antivirus
Fortinet

CAT-QuickHeal
VirIT

McAfee
K7GW
GData
Avast

ClamAV
AVG

Kaspersky
Avira

Kingsoft
F-Secure
Sangfor
DrWeb
FireEye

TrendMicro
VIPRE
Cynet

BitDefender
Arcabit

Emsisoft
Webroot

An
tiv

iru
s

Different Detection
Exact Detection
False Positives

Figure 5: AV threat detection after encryption.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Payload Year

F-Secure
AhnLab-V3

Varist
Trustlook

SymantecMobile
CAT-QuickHeal

Avira
Fortinet

ESET-NOD32
Sophos

NANO-Antivirus
ClamAV
FireEye

TrendMicro
AVG

Jiangmin
Zillya

Emsisoft
Yandex

Antiy-AVL
VIPRE

VirIT
Avast

Arcabit
BitDefender

BitDefenderFalx
MicroWorld
MaxSecure

K7GW
Rising
Lionic

Tencent
Ikarus

Kaspersky
DrWeb

Kingsoft
Sangfor

Microsoft
Cynet
GData
Panda
VBA32

Webroot

An
tiv

iru
s

Different Detection
Exact Detection
False Positives

Figure 6: AV threat detection after obfuscation.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Payload Year

ESET-NOD32
BitDefenderFalx

Jiangmin
Fortinet
Sophos

AhnLab-V3
McAfee
K7GW

ClamAV
Avast
Varist

GData
AVG

Kaspersky
Avira

Sangfor
FireEye

TrendMicro
MicroWorld

Emsisoft
DrWeb

F-Secure
Cynet

Arcabit
VIPRE

BitDefender
ZoneAlarm

Tencent
Webroot

An
tiv

iru
s

Different Detection
Exact Detection
False Positives

Figure 7: AV threat detection after steganography.

4.1. Repeating Experiments

We repeated the experiments every two days to assess how quickly antivirus software adapts to different
hiding techniques. As shown in Fig. 9, antivirus detection rates rose significantly against obfuscation,
with detections increasing from 2,018 on the first day to 2,672 on the last. Against compression AVs
performed even better, with detections tripling from 642 to 2,032 over the same period. In contrast,
steganography and encryption showed more consistent detection trends. Steganography stabilized
around 694 detections, while encryption gradually increased from 521 to 818 detections.

A reanalysis of the goodware host application on VirusTotal revealed that four antivirus engines
(Avira, Cynet, Avast-Mobile, and ESET) identified it as malicious. However, resigning the original app
with a fresh keystore reduced detections to just two, suggesting that specific antivirus heuristics were
based on the developer’s signing certificate rather than detecting malicious content. To validate this
hypothesis, we signed a previously undetected application with the same compromised keystore used
in the experiments, which subsequently caused it to be flagged as malicious.

Nonetheless, two detections persisted regardless of the keystore, indicating that the original goodware
application was classified as malicious solely for being used in malware repackaging. This behavior
underscores a critical issue: while detection rates may improve, antivirus engines often generate signatures
based on incorrect aspects of the application, such as the benign goodware component. This flaw exposes
applications to reputation attacks, where an attacker can repeatedly embed malware samples into any
target app and submit it to VirusTotal, intentionally triggering false positives for legitimate applications.



ES
ET-

NOD32

Ka
spe

rsk
y

BitD
efe

nd
erF

alx

Tru
stlo

ok

Av
ast

-M
ob

ile AV
G

Av
ast

Ika
rus

Goo
gle

K7
GW

CAT-
Quic

kH
ea

l
Av

ira
Cyn

et

Ahn
Lab

-V3

So
ph

os

F-S
ecu

re
DrW

eb

For
tin

et

McA
fee

Anti
y-A

VL

NANO-Anti
vir

us

Sky
hig

h

Xcit
ium Va

ris
t

Vir
IT

GData

Jian
gm

in

Max
Se

cur
e

Em
sis

oft

Arca
bit

BitD
efe

nd
er

Fire
Ey

e
VIPR

E

Antivirus

0

20

40

60

80

100

120

140
To

ta
le

 R
ile

va
zio

ni
Tecniche
vanilla
obfuscation
stegopack
compression
encryption

Figure 8: Antivirus ranking against different hiding techniques.

4.2. Discussion

From the experiments carried out, it can be observed that the year of malware creation does not
significantly influence its detection rates. This phenomenon can be attributed to the dataset creation
process. Specifically, we labeled an application as malware if more than 15 antivirus engines flagged it
as malicious [11]. Consequently, the dataset consists of samples that are well-recognized by antivirus
solutions. As demonstrated in Subsect. 4.1, antivirus engines quickly adapt to emerging threats. A
year, therefore, represents a sufficiently long period for these engines to incorporate effective detection
mechanisms.

However, it is reasonable to hypothesize that some of the more recent malware samples may not yet be
widely recognized, potentially falling below the detection threshold. Excluding cases of misclassification,
the results show that obfuscation reliably reduces detection rates. However, obfuscation is outperformed
by all other evasion techniques tested. Its diminished effectiveness may be related to the fact that
the obfuscation tool used represents state-of-the-art technology that has been well studied, allowing
antivirus engines ample time to develop robust countermeasures.

Other techniques require a deeper discussion. Regarding compression, four antivirus engines demon-
strated the ability to recognize the original threat in most cases. Excluding these four, compression’s
performance aligns closely with that of encryption. This finding is noteworthy because it underscores
how the majority antivirus systems struggle to identify a basic form of repackaging, one that employs
a standard lossless compression algorithm without specific information hiding purposes. Among the
three techniques tested, steganography, particularly the one implemented in Stegopack, yields the most
effective evasion results. By embedding the payload within existing assets, it minimizes compromise
indicators in the APK. In contrast, compression and encryption introduce files with different formats
into the APK, which can raise flags during analysis.

The rapid evolution of antivirus detections over a short period implies that experiments conducted
via VirusTotal are not reproducible. To improve accuracy and ensure reproducibility, some strategies
must be employed. First, it is essential to concentrate all experiments within the shortest possible time
window to prevent later experiments from being biased by the knowledge acquired by AVs during
earlier tests.

Moreover, we have demonstrated that, after multiple malware submissions, some AVs generate
specific signatures targeting the loader, the host application, or the developer’s signature. Therefore, to
evaluate antivirus performance against new threats effectively, it is crucial to refactor the loader (or
equivalent components) and apply a new developer signature between consecutive experiments.



0 2 4 6 8
Days

500

1000

1500

2000

2500
To

ta
l D

et
ec

tio
ns

Technique
Obfuscation
Compression
Encryption
Stegopack

Technique Day 0 Day 2 Day 4 Day 6 Day 8

Vanilla 4464 4464 4464 4464 4464
Obfuscation 2018 2655 2665 2672 2672
Compression 642 1949 1997 2011 2032
Encryption 521 770 794 802 818
Steganography 357 660 671 678 694

Figure 9: AV total detection evolution over time in December 2024, presented both graphically (left) and in
tabular form (right).

5. Conclusion

This study underscores critical gaps in the ability of Android antivirus solutions to detect advanced
malware-hiding techniques. While naive obfuscation has seen diminishing effectiveness due to improved
countermeasures, more sophisticated methods like steganography consistently bypass detection. By
embedding malicious payloads within existing app assets, steganography avoids entropy changes
and evades static analysis. Compression, a simple and lossless transformation, remains effective at
concealing threats. It was found out that only 4 out of 79 antivirus engines were capable of readily
detecting it. Although detection rates improved after several days, the delayed response is a cause of
concern.

Our experiments reveal the need for antivirus solutions to evolve beyond static, signature-based
methods, which struggle against rapidly evolving evasion strategies. The tendency to misclassify benign
components, such as loaders or repackaged host applications, exposes a serious flaw. This not only
reduces detection accuracy but also poses a reputation risk to legitimate applications unintentionally
flagged as malicious.

Dynamic, behavior-based analysis must become central to malware defense strategies to enhance
detection robustness. Future research should focus on lightweight, runtime detection frameworks
capable of countering diverse evasion techniques in real-world scenarios. Another essential direction
involves breaking steganographic concealment directly on the device and developing countermeasures
that mitigate reputation damage to repackaged goodware.

To improve the research landscape, adopting best practices for studies on VirusTotal — including time-
bounded experiments and optimized loaders — will enhance reproducibility and validity. Strengthening
collaboration between researchers and the cybersecurity industry is essential to tackle the growing
sophistication of Android malware and secure the mobile ecosystem effectively.

6. Acknowledgments

This work was partially funded by the project I-Nest (G.A. 101083398 - CUP B97H22004950001) - Italian
National hub Enabling and enhancing networked applications and Services for digitally Transforming
Small, Medium Enterprises and Public Administration.

Declaration on Generative AI

The authors have not employed any Generative AI tools.



References

[1] Kaspersky, Attacks on mobile devices significantly increase in 2023, https://www.kaspersky.com/
about/press-releases/attacks-on-mobile-devices-significantly-increase-in-2023, 2023.

[2] SpyCloud, The rise of mobile malware: How it’s evolving and what to watch for, 2023. URL:
https://spycloud.com/blog/rise-of-mobile-malware/, accessed: 2024-11-28.

[3] Google, Enhanced google play protect: Real-time protections for your android apps, https://
security.googleblog.com/2023/10/enhanced-google-play-protect-real-time.html, 2023.

[4] Google, New real-time protections on android, https://security.googleblog.com/2024/11/
new-real-time-protections-on-Android.html, 2024.

[5] U. Kargén, N. Mauthe, N. Shahmehri, Characterizing the use of code obfuscation in malicious
and benign android apps, in: Proceedings of the 18th International Conference on Availability,
Reliability and Security, 2023, pp. 1–12.

[6] S. Aonzo, G. C. Georgiu, L. Verderame, A. Merlo, Obfuscapk: An open-source black-box obfuscation
tool for android apps, SoftwareX 11 (2020) 1–6. doi:10.1016/j.softx.2020.100403.

[7] Guardsquare, ProGuard, https://www.guardsquare.com/proguard, 2024.
[8] Beijing Zhiyou Network Security Technology Co., Ltd, Ijiami, http://www.ijiami.cn/, Accessed in

2024.
[9] Bangcle Security, Bangcle, http://www.bangcle.com/, Accessed in 2024.

[10] Baidu Security, Baidu APK Protect, http://apkprotect.baidu.com/, Accessed in 2024.
[11] D. Dell’Orco, G. Bernardinetti, G. Bianchi, A. Merlo, A. Pellegrini, Would you mind hiding my

malware? building malicious android apps with stegopack, SSRN Pre-Print (2024). doi:10.2139/
ssrn.5039499.

[12] L. Caviglione, W. Mazurczyk, Never mind the malware, here’s the stegomalware, IEEE Security &
Privacy 20 (2022) 101–106. doi:10.1109/MSEC.2022.3178205.

[13] Dr.Web, Necro android malware found in popular apps, https://news.drweb.com/show/?lng=en&
i=11685&c=5, 2024.

[14] G. Cluley, Android trojan using steganography for concealment, https://grahamcluley.com/
android-trojan-steganography/, 2024.

[15] T. H. News, Necro android malware found in popular apps, https://thehackernews.com/2024/09/
necro-android-malware-found-in-popular.html, 2024.

[16] G. Bernardinetti, D. Di Cristofaro, G. Bianchi, PEzoNG: Advanced packer for automated evasion
on windows, Journal of computer virology and hacking techniques 18 (2022) 315–331. doi:10.
1007/s11416-022-00417-2.

[17] R. Winsniewski, Android–apktool: A tool for reverse engineering android apk files, 2012. URL:
https://apktool.org/.

[18] EvilSocket, Android applications reversing 101, https://www.evilsocket.net/2017/04/27/
Android-Applications-Reversing-101/, 2017.

[19] M. Zheng, P. P. C. Lee, J. C. S. Lui, Adam: An automatic and extensible platform to stress test
android anti-virus systems, in: U. Flegel, E. Markatos, W. Robertson (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assessment, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
pp. 82–101.

[20] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, F. Mercaldo, Detection of obfuscation techniques
in android applications, in: Proceedings of the 13th International Conference on Availability,
Reliability and Security, 2018, pp. 1–9.

[21] M. Conti, P. Vinod, A. Vitella, Obfuscation detection in android applications using deep learning,
Journal of Information Security and Applications 70 (2022) 103311.

[22] Y. Wang, H. Wu, H. Zhang, A. Rountev, Orlis: Obfuscation-resilient library detection for android,
in: Proceedings of the 5th International Conference on Mobile Software Engineering and Systems,
2018, pp. 13–23.

[23] J. Garcia, M. Hammad, S. Malek, Lightweight, obfuscation-resilient detection and family identifica-
tion of android malware, ACM Transactions on Software Engineering and Methodology (TOSEM)

https://www.kaspersky.com/about/press-releases/attacks-on-mobile-devices-significantly-increase-in-2023
https://www.kaspersky.com/about/press-releases/attacks-on-mobile-devices-significantly-increase-in-2023
https://spycloud.com/blog/rise-of-mobile-malware/
https://security.googleblog.com/2023/10/enhanced-google-play-protect-real-time.html
https://security.googleblog.com/2023/10/enhanced-google-play-protect-real-time.html
https://security.googleblog.com/2024/11/new-real-time-protections-on-Android.html
https://security.googleblog.com/2024/11/new-real-time-protections-on-Android.html
http://dx.doi.org/10.1016/j.softx.2020.100403
https://www.guardsquare.com/proguard
http://www.ijiami.cn/
http://www.bangcle.com/
http://apkprotect.baidu.com/
http://dx.doi.org/10.2139/ssrn.5039499
http://dx.doi.org/10.2139/ssrn.5039499
http://dx.doi.org/10.1109/MSEC.2022.3178205
https://news.drweb.com/show/?lng=en&i=11685&c=5
https://news.drweb.com/show/?lng=en&i=11685&c=5
https://grahamcluley.com/android-trojan-steganography/
https://grahamcluley.com/android-trojan-steganography/
https://thehackernews.com/2024/09/necro-android-malware-found-in-popular.html
https://thehackernews.com/2024/09/necro-android-malware-found-in-popular.html
http://dx.doi.org/10.1007/s11416-022-00417-2
http://dx.doi.org/10.1007/s11416-022-00417-2
https://apktool.org/
https://www.evilsocket.net/2017/04/27/Android-Applications-Reversing-101/
https://www.evilsocket.net/2017/04/27/Android-Applications-Reversing-101/


26 (2018) 1–29.
[24] RedNaga, APKiD, https://github.com/rednaga/APKiD, ongoing.
[25] A. Salem, F. F. Paulus, A. Pretschner, Repackman: A tool for automatic repackaging of android

apps, 2018.
[26] K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, R. Khoury, Empirical study of android

repackaged applications, Empirical Software Engineering 24 (2019) 3587–3629.
[27] Y. Zhou, X. Jiang, Dissecting android malware: Characterization and evolution, in: 2012 IEEE

symposium on security and privacy, IEEE, 2012, pp. 95–109.
[28] S. Rastogi, K. Bhushan, B. Gupta, Measuring android app repackaging prevalence based on the

permissions of app, Procedia Technology 24 (2016) 1436–1444.
[29] Y. Ishii, T. Watanabe, M. Akiyama, T. Mori, Appraiser: A large scale analysis of android clone

apps, IEICE TRANSACTIONS on Information and Systems 100 (2017) 1703–1713.
[30] Y. Zhang, X. Luo, H. Yin, Dexhunter: toward extracting hidden code from packed android

applications, in: Computer Security–ESORICS 2015: 20th European Symposium on Research in
Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part II 20, Springer, 2015,
pp. 293–311.

[31] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, D. Gu, Appspear: Bytecode decrypting and dex
reassembling for packed android malware, in: Proceedings of the 2015 International Symposium
on Recent Advances in Intrusion Detection, Springer, 2015, pp. 359–381.

[32] LaurieWired, Badunboxing, https://github.com/LaurieWired/BadUnboxing, 2024.
[33] V. Sihag, M. Vardhan, P. Singh, A survey of android application and malware hardening, Computer

Science Review 39 (2021) 100365.
[34] T. Muralidharan, A. Cohen, N. Gerson, N. Nissim, File packing from the malware perspective:

Techniques, analysis approaches, and directions for enhancements, ACM Computing Surveys 55
(2022) 1–45.

[35] T. Morkel, J. H. Eloff, M. S. Olivier, An overview of image steganography., in: ISSA, volume 1,
2005, pp. 1–11.

[36] S. Badhani, S. Muttoo, Evading android anti-malware by hiding malicious application inside
images, International Journal of System Assurance Engineering and Management 9 (2017). doi:10.
1007/s13198-017-0692-7.

[37] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, Stegomalware: Playing hide and seek with malicious
components in smartphone apps, in: D. Lin, M. Yung, J. Zhou (Eds.), Information Security and
Cryptology, Springer International Publishing, Cham, 2015, pp. 496–515.

[38] F. Pagano, L. Verderame, A. Merlo, Obfuscating code vulnerabilities against static analysis in
android apps, in: IFIP International Conference on ICT Systems Security and Privacy Protection,
Springer, 2024, pp. 381–395.

[39] Android Developers, InMemoryDexClassLoader, https://developer.android.com/reference/dalvik/
system/InMemoryDexClassLoader, 2024. [Accessed: 2024-08-30].

[40] S. Gupta, A. Goyal, B. Bhushan, Information hiding using least significant bit steganography and
cryptography, International Journal of Modern Education and Computer Science 4 (2012) 27.

[41] VirusTotal, Virustotal: Free online virus, malware and url scanner, https://www.virustotal.com/,
Accessed in 2024.

[42] S. Aonzo, Obfuscapk - libencryption plugin. apkid pull request #203, https://github.com/rednaga/
APKiD/pull/203, 2020.

https://github.com/rednaga/APKiD
https://github.com/LaurieWired/BadUnboxing
http://dx.doi.org/10.1007/s13198-017-0692-7
http://dx.doi.org/10.1007/s13198-017-0692-7
https://developer.android.com/reference/dalvik/system/InMemoryDexClassLoader
https://developer.android.com/reference/dalvik/system/InMemoryDexClassLoader
https://www.virustotal.com/
https://github.com/rednaga/APKiD/pull/203
https://github.com/rednaga/APKiD/pull/203

	1 Introduction
	2 Background and Related Work
	2.1 Android Basics
	2.2 App Modification and Hiding Techniques

	3 Approach and Methodology
	3.1 Obfuscation
	3.2 Repackaging
	3.2.1 Payload Loader
	3.2.2 Host App Modification


	4 Experiments
	4.1 Repeating Experiments
	4.2 Discussion

	5 Conclusion
	6 Acknowledgments

