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Abstract—We present a methodology for performing automatic
extraction of behavioral features from test programs, that is,
for collecting pieces of information about the test programs
execution. These features are then exploited to carry out analysis
and reasoning about test program similarity. The similarity
information can be used to drive the execution of test campaigns,
in the attempt to either reduce the time-to-test, or to increase
the testing capabilities of a given test suite. Our methodology
is embedded in the Hyperion analysis framework, which can
be configured to define a wide range of test program similarity
criteria.

Index Terms—Test Program, Similarity Analysis, Symbolic
Execution, Automated Reasoning

I. INTRODUCTION

The ability to determine a suitable degree of similarity
among test programs creates several opportunities to be taken
when these test programs are run. Indeed, depending on the
particular phase of the software lifecycle in which the test
suite is exercised, different strategies can be designed to either
reduce the time to completion of the test programs, or exploit
the available test programs for stress testing a given software
system in a comprehensive way. As an example, during
regression testing it might be advisable to avoid a retest-all
strategy, skipping specific tests associated with portions of the
system under test for which a test program has already detected
a failure [1], [2]. Conversely, right before the deployment of a
new release, the available test programs might be composed,
e.g., by launching in parallel tests which access the same
(shared) data structures, in the attempt to discover some
concurrency bug [3], [4].

Deeming two test programs similar requires a deep un-
derstanding of both the test suite and the system under test.
When the source code is (partially) unavailable, or when the
application of interest is complex and/or large, identifying
similarities can be difficult and time-consuming [5]. This can
be particularly the case of microservice-based applications [6],
where the (large) number and diverse nature of microservices
and test suites can hinder human analysis: the burden placed
on the QA Engineering team could be high to the extent that
other development activities might be slowed down, if proper
classification of the similarity between test programs is carried
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Fig. 1: Constructing similarity relations by analyzing the
symbolic execution of test programs.

out manually. This is especially true if testing activities at
different development stages are pursued.

In order to define similarity relations between test programs
it is particularly relevant the identification of suitable pieces of
information about their execution, which we collectively call
behavioral features in this paper. Some form of automated
extraction of behavioral features is desirable, and the set of
features which should be considered must be configurable
to support different similarity discovery activities, exactly
associated with the different phases at which this information
could be leveraged.

In this paper we present Hyperion!, a test suite analysis
framework, which allows us to carry out automatic extraction
of behavioral features from test programs, targeting Java
applications and JUnit [7] test suites. The overall approach that
we follow is depicted in Figure 1. Our framework relies on
symbolic execution [8] to exercise (parametric) test programs
and to collect information related to: i) what methods are
invoked during a (possible) execution of test programs; ii)
what endpoints are contacted—this latter piece of information
is particularly useful in the context of microservice-based
applications.

Our framework embodies a set of Prolog rules [9] that
allow us to conduct, based on the collected features, different
reasoning activities. In this way, it is possible to study test
program similarity under different conditions, by relying on
different similarity criteria. The set of Prolog rules can be

I'Source code available at http://saks.iasi.cnr.it/tools/hyperion.
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configured easily, thus allowing for a custom usage when
interacting with our framework.

The current version of Hyperion implements and extends
the technique presented in previous work [10], which focuses
on the context of microservice applications. The present con-
tribution stresses the point of configurability of the framework
by presenting various general purpose similarity criteria. We
also provide a new case study, consisting of a medium-sized
application that implements a system for railway ticketing,
including 682 JUnit test programs. The system under test is
a microservice-based application and, besides the similarities
between its test programs that refer specifically to the mi-
croservice architecture (i.e., to the microservice endpoints), we
also infer other types of similarities based on the extraction of
sequences of method calls.

The remainder of this paper is organized as follows. In
Section IT we discuss related work. The methodology to extract
similarity features is discussed in Section III. Prolog rules
to carry our similarity analysis are discussed in Section IV.
Section V reports the results of our case study. Section VI
presents some concluding remarks.

II. RELATED WORK

The problem of identifying similarities among test programs
is related to the broader problem of identifying similarities
among generic programs [11], which has been studied for
multiple purposes (and with different techniques), such as du-
plicate code detection [12], plagiarism detection or copyright
infringement [13], and code compression [14].

The idea of using test case similarity for the design
of effective testing strategies has been explored in several
works [15]-[19]. Noor and Hemmati [15] propose an approach
for prioritizing test cases on the basis of their similarity with
the ones that failed on previous versions of the software
system under consideration. The similarity between test cases
is defined by comparing sequences of method calls, extracted
from execution traces. That paper makes use of concrete
execution, while we perform a logic-based similarity analysis
on traces extracted via symbolic execution.

Another similarity-based approach for regression test case
prioritization is presented by R. Wang et al. [16]. The execu-
tion order of the test cases is scheduled based on the distance
between them, where the notion of distance is defined with
respect to branch coverage. That paper evaluates six similarity
measures and shows, through experiments on a few benchmark
programs, that Euclidean distance gives the best result.

Test case similarity is defined by Ledru er al. [18] on the
basis of the string distance between the test cases, and hence
no notion of execution is considered. Also Miranda er al. [19]
base their test case prioritization technique on similarity
relations defined on test cases, and not on their execution.
To enforce scalability, similarity is computed by algorithms
usually applied in the context of big data processing.

Similarity has been exploited for fault-localization in the
paper by Hao et al. [17], where similarity between test cases
is defined by using a fuzzy set representation of a matrix

relating test cases and program statements, and candidate
faulty statements are selected on a probabilistic basis.

Some papers propose techniques for computing similarity
of programs (not necessarily test programs) based on static
analysis or fuzz testing, whereas we employ symbolic execu-
tion. In particular, Raman et al. [20] use the call-dependency
relation among program APIs to generate a trace of the API
calling sequence. S. Wang and Wu [21] present a method that
makes use of fuzz testing for a similarity analysis of binary
code. The similarity score of two behavior traces generated by
fuzzing from two program functions is computed according to
their longest common subsequence.

In the context of automated software testing, symbolic
execution has been largely used as an effective technique for
finding errors in software applications and for generating high-
coverage test suites [22]-[31]. This technique, which was first
introduced in the mid 1970’s [32], [33], has been conceived
to exercise a software system by searching for potential con-
figurations/states violating a given set of assertions. The basic
idea of symbolic execution is strongly related to techniques for
bounded model checking of software, which use Satisfiability
Modulo Theories (SMT) solvers for checking that a specified
program property is not violated by any execution path, up to
a given length bound [34].

Some techniques for relational verification make use of
constraint logic programming (i.e., logic programming aug-
mented with constraint solving) to verify relations between
programs [35], [36]. However, the kind of properties targeted
by relational verification are very strong (in general, unde-
cidable) relations, such as full functional equivalence, while
here we focus on test programs and we are interested in much
weaker dependency and similarity relations based on suitable
abstractions of the finite set of paths generated by symbolic
execution. In this respect, our work bears some relationships
with symbolic execution techniques for crosschecking opti-
mised versions of data-parallel programs with respect to the
optimised ones [37].

III. EXTRACTION OF BEHAVIORAL FEATURES

Our technique for extracting behavioral features is based
on three main execution phases: i) test program enumeration;
ii) feature extraction; iii) Prolog facts generation. These three
phases generate a knowledge base which is later used to carry
out automated logic-based reasoning to determine test program
similarity, according to some (user-specified) criteria. In the
following, we detail the methodological/technical organization
of these phases.

A. Test Program Enumeration

The identification of similarities among test programs is
guided by an automatic analysis procedure scanning their im-
plementations (e.g., available from source-code repositories).
The analysis procedure assumes that test programs are clearly
identifiable from the rest of the source-code—we explicitly
rely on JUnit annotations.



1 {

2 "sut": [

3 "path to classes 1",

4 "path to classes 2"

5 1,

6 "testPrograms": [

7 "path to test classes 1",
8 "path to test classes 1"
9 1,

10 "includeTest": [

11 "list", "of", "@Test",

12 "methods", "to", "analyze"
13 1,

14 "excludeTest": [

15 "list", "of", "@Test",

16 "methods", "to", "skip"
17 1,

18 "additionalClasspath": [

19 "path", "to", "any"

20 "other", "needed", "dependency"
21 1,

22 "excludeTracedPackages": [
23 "Java/",

24 "sun/"

25 ]

26 }

Fig. 2: Hyperion JSON Configuration File.

Hyperion is based on a JSON configuration file, the struc-
ture of which is reported in Figure 2. For test program
discovery, we rely on the testProgram list, which allows
the user to specify the paths to the folders where the compiled
test classes can be found on disk. Hyperion scans these
paths, and recursively enumerates all classes. In each class
found, all methods annotated as @Test (but without the
@Ignore annotation) are located, and stored into an in-
memory dictionary.

The possibility to rely on a list of paths is particularly
important for microservice-oriented applications. Indeed, in
this scenario, the test programs could be related to different
microservices, while integration, contract, or end-to-end test
programs might be delegated into different sources. In this
way, Hyperion is compliant with multiple testing strategies
for microservice architectures [38].

If, for any reason, the QA Engineering team wants to
exclude some test programs, this can be done by relying
on the excludeTest list in the JSON configuration file.
Conversely, if only a certain number of test programs should
be analyzed, the includeTest list in the JSON file can be
configured accordingly.

B. Feature Extraction

We base feature extraction on symbolic execution tech-
niques [8]. Unlike concrete execution, where a program is run
on a specific input and a single control flow path is explored,
the basic idea of symbolic execution is to allow variables
to take on symbolic values, as well as concrete values. A
symbolic value could either be an elementary symbolic value
or an expression in numbers, arithmetic operators, and other
symbolic values. An elementary symbolic value is any text
string which the programmer uses to stand for the value of a
variable. Elementary symbolic values are often just variable
names.

1 public static void main (String] args)

2 throws Exception {

3 final Class<?> testClass = Class.forName (args[0]);
4

5 junit = new JUnitCore();

6 request = Request.method(testClass, args[l]);
7 Result result = junit.run(request);

8

9 if (!result.wasSuccessful ()) {

10 System.out.println("Test failed.");

11 }

12 }

Fig. 3: Hyperion Test Launcher.

This characteristic of symbolic variables allows the simul-
taneous exploration of multiple paths that a program can
take under different inputs. Every time that some condition
is checked against a symbolic variable, a branch is taken,
in the sense that multiple control flows are maintained at
the same time by the symbolic execution engine, effectively
building a symbolic execution tree. In Hyperion, we use the
Java Bytecode Symbolic Executor (JBSE) [39] as the symbolic
execution engine. JBSE is a symbolic Java Virtual Machine
able to deal with complex heap data structures.

At startup, we load all classes associated with test programs
(from the testPrograms classpath list in the JSON config-
uration file), as well as all classes associated with the system
under test (the sut classpath list). If additional classes are
needed to run the application, their classpath can be listed
in the additionalClasspath list. These paths will be
included in the JBSE classpath, which enables lazy loading of
classes on demand. In this way, JBSE can symbolically run
all test programs, as we describe below.

We also use a form of concolic execution [27], which is
essentially a “mixed” concrete/symbolic execution, to handle
methods in charge of setting up the environment for a test
program execution (e.g., @Before or @BeforeClass in
JUnit), as well as multiple mocking frameworks [40] (e.g.,
Mockito). In particular, we instruct JBSE to rely on a
“guided” execution: we launch an additional concrete JVM,
starting from an artificial main () program (its code is re-
ported in Figure 3), which launches one test program enu-
merated as per Section III-A by instantiating a JUnitCore
object. By relying on the Java Debug Interface (JDI), we
set a breakpoint on the method associated with the test
program. Once that breakpoint is hit, JBSE takes back control
and runs the same code—up to the breakpoint—by making
decisions using the actual branches which were taken in the
concrete execution. In this way, we can quickly reach the
entry point of our test program, without having to explore
execution paths which are not relevant for the extraction of
similarity information. This activation scheme is repeated for
each enumerated test program.

As already mentioned, we are interested in extracting in-
formation as general as possible, to support multiple decision
strategies when similarity measures are constructed at a later
stage. To this end, we inspect all symbolic execution states
explored by JBSE, and we focus only on the states associated



1 filter(

2 InvokesLst,

3 invokes (testProgram,

4 branchingPointList,
5 segNum,

6 caller,

7 programPoint,
8 frameEpoch,

9 pathCondition,
10 callee,

11 parameters),

IS

isHttpMethod (callee) 1,
testProgram,

)

14 method (caller),

15 httpMethod(callee,parameters),
16 head (parameters) 1,

17 endpoint,

18 EndpointLst)

Fig. 4: Prolog query to generate endpoint facts

with the invocation of some (local) method. We keep track
of all invoked methods, in all explored branches, in an in-
memory data structure. The traversed symbolic execution
states associated with the invocation of methods are then used
to generate the knowledge base for similarity analysis, based
on Prolog rules.

C. Prolog facts generation

As mentioned before, the pieces of information that we are
interested in collecting are related to methods invoked, and
endpoints contacted by test programs. The knowledge base
that we construct from symbolic execution is composed of
different Prolog facts, each one describing one of the above
features.

When the symbolic execution is completed, we dump to a
file on disk a set of Prolog facts named invokes, constructed
as follows:

BranchingPointList,

ProgramPoint, FrameEpoch,
Callee, Parameters)

invokes (TestProgram,
SegNum, Caller,
PathCondition,

An invokes fact describes that, while running a certain
test program (denoted by TestProgram), a certain method
(Callee) has been invoked with a certain set of parameters
(Parameters). Given the symbolic nature of the execu-
tion, an invocation is bound to a certain symbolic execution
path in the symbolic execution tree, which is identified by
a list of branching points (BranchingPointList). To
discriminate invocations that take place in iterations within the
same symbolic execution path, we stamp each invokes fact
with the ProgramPoint, i.e., the identification of a certain
statement within the program’s body, and a monotonic counter
(SegNum) which is incremented every time that a new sym-
bolic state is observed in the symbolic execution. Similarly, to
discriminate between different recursive invocations, we rely
on the FrameEpoch monotonic counter, which is associated
with the creation of each stack frame.

To deal with the generation of facts associated with end-
points remotely invoked by test programs, we rely on the
Prolog predicate filter that can be used to query the

database of invokes facts for generating the endpoint
facts. Figure 4 shows the query we have used to trigger the
generation process. The first parameter InvokesLst (line
2) is the list of invokes facts, whose structure is specified
as second parameter (lines 3—11). The third parameter is the
utility predicate i sHttpMethod (callee) (line 12), which
selects all invokes facts whose callees make use of an HTTP
method to invoke a remote API. The fourth parameter is the
list of fields to be extracted from the selected invokes facts,
specifically: (1) the name of the test program testProgram,
(2) the caller method method (caller)), (3) the HTTP
method httpMethod (callee, parameter) (which oc-
curs either as part of the callee’s name or as a callee’s
parameter), and (4) the first parameters of the HTTP method
head (parameters), that is, the URI of the remote APIL
These fields become the arguments of the newly generated
fact, called endpoint (line 17), which is added to the output
list EndpointLst (line 18).

Overall, this leads to the generation of endpoint facts
which are in the form:

endpoint (TestProgram, Caller, HTTPMethod, URI)

IV. SIMILARITY ANALYSIS

The knowledge base generated by the behavioral feature
extraction process, that is, the invokes and endpoint
facts, represents the domain of the similarity relations between
test programs. We now present the Prolog rules [9] defining
such relations, and we show how to use them to query the
knowledge base for analyzing similarity of test programs.

We first introduce two basic notions defining the similarity
between elements of the domain, that is, similarity between
invokes facts and between endpoint facts.

Similarity between elements of the domain is evaluated
by using the predicate matching (Dom, 01, 02) shown in
Figure 5, where Dom defines the domain of the elements O1
and O2 (either invokes or endpoint) compared according
to the definitions introduced above.

Given two invokes facts I1 and I2, we say that they are
similar if and only if (cl) I1 invokes the same method of I2
(line 6).

Given two endpoint facts E1 and E2, we say that they
are similar if and only if: (c2) they make use of the same
HTTP method to invoke a remote API (line 14), and (c3) their
URIs match (line 15). Matching between URISs is performed
by using a list of regular expressions specified using the Perl-
Compatible Regular Expression (PCRE) format, and extracted
from the test suite. The use of regular expressions enables us
to compare URIs while ignoring all information related to the
call site that any URI may include.

Now, building upon the mat ching predicate, we can define
the similar_tp predicate, which evaluates the similarity
between two test programs.

The predicate in Figure 6 states that the test program
TP1 is similar to TP2 according to the similarity criterion
SimCr based on the matching of elements, belonging to the



1

2 st

3 matching (invokes,I1,I2) :-—

4 Il = invokes(_,_,_s_y_s_,_,Calleel,_),

5 I2 = invokes(_,_,_,_4y_,_,_,Callee2,_),

6 Calleel == Callee2. $ (cl)

10 $ (c3) EI

& 2 ch a
11 matching (endpoint,E1l,E2) :

12 El = endpoint(_,_,HTTPMethodl, URI1),

13 E2 = endpoint(_,_,HTTPMethod2,URI2),

14 HTTPMethodl == HTTPMethod2, 5 (c2)
15 matching_URIs (URI1,URIZ2). $ (c3)

Fig. 5: Prolog rules that define matching (Dom, 01, 02).

1 similar_tp (Dom,DomSrc, SimCr, TP1, TP2,WT1,WT2, Score)

Fig. 6: Prolog rule that defines similar_tp.

domain Dom, generated during the feature extraction phase
from the source DomSrc. In particular, if we specif “trace”
for DomSrc, the elements of Dom are generated from the
invokes facts occurring in symbolic execution traces; while
if we specify “iseq” the elements are generated by using only
the invokes occurring in traces whose caller is the method
annotated as @Test. WT1 and WT2 are lists of elements in
Dom that witness the similarity of TP1 and TP2, and Score
is a numeric value that quantifies the degree of similarity of
TP1 and TP2. Since the symbolic execution of a test program
may generate several execution traces, for a pair (TP1, TP2)
of test programs there may be several pairs (WT1,WT2) of
witnesses, and hence several score values.

We have defined the following set-based similarity criteria

(values for the SimCr parameter):

e “nonemptyEgSet” stating that WI1l and WT2 are
nonempty lists, and all the elements in setOf(WT 1) match
an element of setOf(WT2) and vice-versa;

e “nonemptySubSet” stating that WT1 is nonempty and
all the elements in setOf(WT1) match an element of
setOf(WT2);

e “nonemptyIntersection”, stating that there exist
two elements O1 in setOf (WT1) and 02 in setOf(WT2)
such that 01 matches 02;

where setOf(L) is the set of distinct elements in the list L. The
value of Score is computed as follows:

o If SimCr is “nonemptyEgSet”, then:
Score =1

e If SimCr is “nonemptySubSet”, then:

_ |setOf(WT1)|

T |setOf(WT2))|

e If SimCr is “nonemptyIntersection”, then:

|matchingSet(WT1,WT2)|
min(|setOf(WT1)|, [setOf(WT2)|)

Score

Score =

where matchingSet(L.1,1.2) is the nonempty set of all ele-
ments O1 in setOf(1.1) such that there exists an element 02

in setOf(L2) for which the predicate matching (01,02)
holds.

V. EXPERIMENTAL CASE STUDY

We have evaluated the Hyperion framework by means of
a case study based on a medium-size benchmark system.
In particular, we have used a microservice-based application
called TrainTicket’ [41], which implements a system for
railway ticketing. TrainTicket allows users to inquire about
the train tickets between two cities on a certain day, to reserve
tickets for a specific passenger on a specific class/seat, to pay
for the reservations (and send the related confirmation email),
and to manage ticket changes.

TrainTicket is currently composed of 43 total microservices,
38 of which are implemented in Java. These 38 microservices
ship with a total of 682 test programs, implemented using
JUnit 4. For the sake of readability of the results, we have
performed experiments on a subset of the available test pro-
grams’, excluding all the invokes of methods that belong to
a base Java class (i.e., belonging to the java package), and
to frameworks used to ease the development of the application
(e.g., Spring). In this way, we only focus on the behavior of the
target application. Using the Prolog facts generated by means
of symbolic execution, we have computed our similarity scores
for both the invoked methods and the contacted endpoints.

The similarity between test programs is based on the in-
formation extracted from their symbolic execution traces (see
the definition of similar_tp). Hence, the evaluation of the
similarity of each pair of test programs is based on the analysis
of multiple execution traces generated from the symbolic
execution of each test program. This means that, as already
mentioned, for any similarity criterion discussed in Section IV,
we may obtain more than one score value. Rather, we obtain
a (possibly different) score value for each pair of symbolic
execution traces. In the following, we report only the minimum
score value for each pair of test programs deemed similar by
a given criterion. Picking the minimum value allows us to
compare the different criteria in a more stringent way, while
comparing the similarity-detection capabilities of the presented
criteria. Other choices would also be sensible, e.g., taking
into account the maximum value, as discussed in previous
work [10].

In Figure 7 we report similarity matrices (in the form
of heatmaps) for all considered test programs*. The goal of
this comparison is to show how the different criteria capture
similarity with respect to the same test suite.

The first important aspect is the different cardinality of the
sets of test programs which are deemed similar. In particular,
conservative similarity criteria, such as nonemptyEgSet,
consider as similar fewer test programs than more inclusive
criteria such as nonemptyIntersection (as shown in

Zhttps://github.com/FudanSELab/train-ticket.
3Details on the selected test programs are available online [42].

4To make the figures more readable, we have replaced test program names
with numbers. The match with the test names in TrainTicket is available
at [42].
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Fig. 8: Range of similarity for test programs (on method
invocation).

Figures 7a and 7c). Additionally, as expected from the def-
inition of nonemptySubSet, we observe from the results
that this criterion provides non-symmetric results, while the
other two criteria’s results are symmetric.

The values of the similarity scores obtained by the different
criteria are also interesting to discuss. The nonemptyEgSet
criterion (see Figure 7a) associates each pair of similar test
programs with the value 1—in Figure 7a non-similar test
programs are given the value 0. Therefore, this criterion
behaves in a very selective way, deeming two test programs
either as (fully) similar or not. In the test suite that we have
used for our experimental case study, we anyhow find a non-
marginal number of test programs that are considered similar
by this criterion. This is related to the nature of TrainTicket’s
test programs, which are in a large number, and exercise many
times the same portions of the system under test.

Conversely, the results shown in Figure 7b (associated
with the nonemptySubSet criterion) provides a (small)
number of intermediate similarity score values, while slightly
increasing the number of test programs deemed similar, as
mentioned before. At the same time, if we compare the results



presented in Figures 7a and 7b, we notice that many pairs
have been evaluated as similar by the nonemptyEgSet
similarity criterion. Indeed, this is expected by the definition
of nonemptyEgSet, as every time that nonemptyEgSet
assigns a score 1, so does nonemptySubSet. Nevertheless,
nonemptySubSet is slightly more inclusive, and captures
also the fact that some test programs are “not completely”
similar, a notion that could be fruitfully exploited when
prioritizing the execution of test suites.

The nonemptyIntersection similarity criterion re-
laxes this concept. From Figure 7c, we observe that this
criterion is way more inclusive (i.e., the number of in-
cluded test programs is significantly higher), and the as-
signed similarity scores are much finer, showing a richer
range of values. When compared to, e.g., nonemptyEgSet,
nonemptyIntersection tells that some pairs of test
programs are also different, to some extent.

In Figure 8 we provide a different perspective on the
presented similarity criteria, in the form of a box and
whiskers plot. In particular, we show, for each test pro-
gram, the variability in the similarity score with respect
to the other programs in the test suite—we do not re-
port the data for the nonemptyEgSet criterion because,
as mentioned before, it cannot produce any variability in
the score of similar test programs. By the results, we
can confirm that nonemptySubSet provides more sta-
ble compared to nonemptyIntersection, meaning that
nonemptySubSet is able to capture only stronger similarity
between test programs.

Overall, the three criteria provide results which are com-
parably different. nonemptyEgSet is a stronger similarity
criterion, which anyhow leaves out a large number of test
programs from the suite. nonemptyIntersection, on
the other hand, includes a larger number of test program,
while being less “categorical” about the similarity between test
programs. nonemptySubSet captures capabilities of both
criteria. Overall, we advocate that all these three similarity
criteria could be beneficial to testing campaigns, depending
on the actual phase of the lifecycle of the application. As
an example, when dealing with testing during feature de-
velopment, the nonemptyEgSet criterion might help at
determining what test programs to execute after a failure,
to reduce the time to completion of the test suite—a test
program similar to the failed one might be skipped. Con-
versely, the nonemptyIntersection criterion might help
at determining what test programs could be run in parallel
before releasing a new stable version of the application, e.g.,
in the possible attempt to detect reéntrance bugs—multiple test
programs that invoke methods from the same package of the
application might be run concurrently.

We finally discuss the results related to the invocation
of endpoints. In our study, all three criteria have identified
similarity in a negligible percentage out of the total number of
test programs. This is not surprising, because the test suite in
TrainTicket typically exercises different endpoints in different
test programs. From this result, we conclude that the test suite

of TrainTicket is well designed from a unit testing perspective,
while it could be demanding from an integration/end-to-end
testing point of view. We therefore believe that our approach
could also be repurposed to study some quality metrics of test
suites, although this specific goal might require the definition
of additional and more comprehensive similarity criteria.

VI. CONCLUSIONS

In this paper we have presented an approach to the auto-
matic extraction of behavioral features from test programs,
with the goal of performing a similarity analysis. Our tech-
nique is based on a balanced mixture of symbolic execution
and Prolog rules, which jointly allow the creation of a knowl-
edge base of (possible) execution traces of the test programs
and the evaluation of queries to determine similarity scores.
The results presented in this paper support the claim that our
approach is viable for multiple purposes related to both test
suite prioritization, and assessment of the quality of test suites.
As future work, we plan to substantiate this claim in practice
by developing effective testing strategies that indeed exploit
the knowledge about test program similarity.
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