
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

REGULAR ARTICLE

On Power Capping and Performance Optimization of Multi-threaded
Applications

Stefano Conoci1 | Pierangelo Di Sanzo*1 | Alessandro Pellegrini1 | Bruno Ciciani1 | Francesco
Quaglia2

1DIAG, Sapienza, University of Rome,
Italy

2DICII, University of Rome “Tor
Vergata”, Italy

Correspondence
*Corresponding author. Email:
disanzo@diag.uniroma1.it

Summary

Multi-threaded applications facilitate the exploitation of the computing power of multicore

architectures. On the other hand, these applications can become extremely energy-

intensive, in contrast with the need for limiting the energy usage of computing systems.

In this article, we explore the design of techniques enabling multi-threaded applications to

maximize their performance under a power cap. We consider two control parameters: the

number of cores used by the application, and the core power state. We target the design

of an auto-tuning power-capping technique with minimal intrusiveness and high portabil-

ity, which is agnostic about the workload profile of the application. We investigate two

different approaches for building the strategy for selecting the best configuration of the pa-

rameters under control, namely a heuristic approach and a model-based approach. Through

an extensive experimental study, we evaluate the effectiveness of the proposed technique

considering two different selection strategies, and we compare them with existing solutions.

KEYWORDS:

Multi-threaded applications, power capping, performance optimization, energy efficiency,

multicore architectures.

1 INTRODUCTION

The ever-growing demand for computing services and applications has led to a relevant increase of the worldwide energy consumption by Infor-
mation and Communication Technology (ICT) systems. A 2017 report 1 reveals that the latter has increased exponentially over the last years, and
nowadays has reached approximately 7% of the global energy demand. In particular, data centers are estimated to have the fastest-growing car-
bon footprint from across the whole ICT sector, and the energy expenditure for their operations is estimated to have doubled in five years 2. As a
consequence, the need for limiting the energy used by computing systems has become a rising challenge. The objective of bounding the energy
usage by a computing system can be achieved through the approach known as power capping. By forcing the power usage to stay below a given
threshold, power capping enables to save energy and to keep costs under control.

Nowadays, most computing systems are based on multicore architectures. These architectures can effectively be exploited by multi-threaded
workloads, which allow to take advantage of multi-core parallelism. The range of applications featuring multi-threadedworkloads is wide, including,
e.g., web applications, transactional applications, and HPC ones 3,4, for which performance is anyhow a key objective. Hence, one major challenge
is to design effective power capping techniques suited for application contexts where parallelism exploitation and performance optimization are
mandatory.

Modern multicore systems offer supports for controlling the power usage of the on-board cores. Examples include Dynamic Voltage and Fre-
quency Scaling (DVFS), which allows to dynamically change the power state (in terms of voltage and frequency) of cores, and Clock Gating, which

2 Stefano Conoci et al.

allows to disable portions of the CPU circuitry on-demand. Contextually, today’s Operating Systems offer power management tools (like the Linux
CPUFreq Governor 5) allowing the direct control of DVFS. However, beyond the availability of these tools, it is not trivial to find the optimal
configuration—in terms of number of cores simultaneously used and their power state—namely the one that provides the maximum performance
of a multi-threaded application under power caps. This problem is further complicated by the fact that the workload profile of an application may
change over time, leading in turn the optimal configuration to vary along the application execution. Accordingly, approaches aimed at identifying
a static optimal setting may not be adequate.

In this article, we investigate the design of an auto-tuning technique for multi-threaded applications that dynamically optimizes the number of
used cores and their power state under an arbitrary power cap. In our study we deal with workloads showing arbitrary scalability profiles, thus
also including the complex scenario of limited-scalability applications. These are characterised by threads that conflict in the access to shared
hardware resources (e.g. the same cache lines) and/or run computations that require to be synchronized (e.g. critical sections synchronized via
locks or transactions). The key problem with limited-scalability applications is that increasing the number of used cores does not always lead to
performance boost. Rather, it may lead to degraded performance, and consequently to poor energy efficiency because of the higher energy usage
for powering the additional used cores.

The auto-tuning technique we designed does not need any off-line workload profiling phase, and requires to monitor at run-time only two
parameters to make decisions: 1) the overall power usage by cores and 2) the specific performance metric of the application to be optimized
(e.g. the throughput or the response time). This makes our technique easily usable and portable on common modern architectures. As for point
2, performance metrics that are not application-specific (such as CPU-level metrics like Instructions per Clock, which have been used in some
literature solutions 6,7), are not fully adequate for the optimization problemwe target. In fact, many multi-threaded applications rely on mechanisms
like spin-locking, non-blocking algorithms, or optimistic transaction execution. With these mechanisms, metrics like IPC can be tricked by busy
waiting, or by transactions/operations abort and restart, which do not really perform useful application work.

We note that a trivial approach for finding the optimal configuration in terms of number of used cores and their power state is to explore
the whole bi-dimensional configuration space of the two parameters. However, this might be prohibitive at run-time, especially when a large
number of cores and/or power states are available. To address this issue, we designed and compared two different decision strategies, based on a
heuristic approach and a model-based approach, respectively. The former is an exploration-based strategy that relies on some assumptions about
the scalability profile of the workload to reduce the number of exploration steps. It has a linear time complexity O(pmax + nmax), where pmax is
the number of available core’s power states and nmax is the number of available cores. We originally presented this exploration-based strategy in
a previous study 8. The second one is a model-based strategy, that we present for the first time in this article. It uses analytical models to predict
the performance and the power usage for all the possible configurations, relying on measurements collected with a small subset of configurations.
Its time complexity is θ(nmax), thus it is independent of the number of power states. Also, differently from the exploration-based strategy, it does
not rely on any assumption about the scalability profile of the workload. On the other hand, it has the potential disadvantage of being affected by
model prediction errors.

In our study, we also observed that the effectiveness of a power-capping technique targeting the selection of the optimal configuration can be
improved through an additional micro-tuning strategy. In fact, in our experiments we noted that, once selected a configuration, the power usage
is typically subject to relatively small variations around its average value. If the latter is close to the target power cap value, then these variations
likely lead to power cap violations. A micro-tuning strategy that, once the decision strategy has selected a configuration, can temporarily switch (if
needed) to some adjacent configurations, can help limiting the violations without sacrificing performance. In this article, we presents a micro-tuning
strategy which is completely decoupled from the selection strategy, thus working with both the exploration-based strategy and the model-based
strategy.

To evaluate the effectiveness of the power capping technique with the different strategies we designed, we present the results of an extensive
experimental study with various multi-threaded application benchmarks—spanning from highly-scalable workloads to workloads with extremely
limited scalability—and we also make a comparison with other power capping techniques proposed in literature.

The remainder of this article is structured as follows. In Section 2, we analyse literature proposals. In Section 3, we provide some preliminaries
notions to introduce our power capping technique. In Section 4, we illustrate the power capping technique, the two decision strategies (heuristic
and model-based) and the micro-tuning strategy. The experimental evaluation is presented in Section 5.

2 LITERATURE OVERVIEW

Some literature techniques, as well as various tools currently in use in commercial off-the-shelf processors, aim at limiting the power usage in an
application-agnostic manner 9,10. They regulate the core power state or disable unused components (e.g. turning off an entire core package) to keep
the power usage below the target value. Consequently, they do not represent suitable solutions to optimize the application performance under

Stefano Conoci et al. 3

a power cap. On the opposite side, some tuning techniques for performance optimization of multi-threaded workloads have been proposed for
specific categories of applications and systems 11,12,13,14. However, they only target performance objectives, assuming that no power constraints
exists.

A technique proposed to optimize the performance of multi-threaded applications under a power cap is called Pack and Cap 15. It controls at run-
time the number of used cores and their power state. The authors of this technique show in their study that the configuration offering the highest
application throughput under the power cap is the one that uses the highest number of available cores. However, the limitation of the presented
study is that it does not cope with limited-scalability workloads, for which, as we show in this article, using the highest number of available cores
does not always pay off. We used Pack and Cap in our comparative experimental study, and we show its drawbacks compared to our proposal.

The work presented by Zhang et al. 16 considers the problem of maximizing performance under a power cap while also taking into account the
workload scalability profile. This solution defines an ordered set of configuration parameters that are tuned one after another, each one via binary
search. This approach may fail at identifying the configuration ensuring the maximum performance just because the configuration parameters are
tuned independently of each other. In our experimental study, we show the drawbacks of this tuning scheme compared to our technique.

Portfield et al. 17 present a technique that reduces the energy usage of OpenMP programs by throttling threads when both power and memory
bandwidth usage is high. Throttled threads are put in a low-power mode by modifying the duty cycle of individual cores. This is a lightweight
approach that, however, achieves low power reduction compared to pausing threads or modifying the frequency/voltage of cores. Furthermore, the
proposed technique does not tune the power state of the cores running non-throttled threads and does not generally allow to meet a power cap.

Some literature contributions rely on Intel RAPL 18,9 as a building block to enforce power capping at hardware level for various subsystems
(e.g. CPU package or memory). They estimate the power usage by observing different low-level hardware events, and then select the optimal
power state of cores such that the average power usage of a specific subsystem is lower than its associated power cap. We decided not to rely
on the power capping capabilities offered by RAPL, since they operate globally on the whole set of cores in the machine. Rather, as we already
mentioned, we explicitly target the selection of the most suited number of cores to be used depending on the application scalability profile. Hence,
we need to control the power state of arbitrary subsets of cores in the machine to meet the power cap. Also, RAPL is a proprietary technology
only supported by recent Intel x86 processors. Conversely, we rely on the abstraction of P-state, which is a standard supported by processors of
different manufacturers and with different instruction sets. Actually, in our experimental study we use RAPL exclusively as a power measuring tool
on x86 processors.

Gholkar et al. 19 propose a 2-level hierarchical technique based on RAPL that uses an exploration-based approach to optimize the performance of
a cluster under power constraints. This technique partitions the power budget of the cluster across different jobs. Then, for each job, it determines
the set of nodes for assigning the job, and configures the node power level via RAPL. Differently from our proposal, this technique operates at
cluster-level and does not deal with optimizing parallelism level within a single multi-core machine based on a target application performance
metric. Thework by Bari et al. 20 proposes an exploration-based technique that optimizes performance under a power cap for OpenMP applications.
For each parallel region, it selects the appropriate number of threads, the scheduling policy and the chunk size using the Nelder-Mead search
algorithm 21. The search is performed at a fixed power-cap setting. Given that the search space may be large, it searches within a restricted space
(e.g. 2, 4, 8 or 16 threads), which is established in advance to reduce the computation time. Differently from our proposal, this approach does not
ensure to find the optimal setting.

Other works investigate the problem of improving the application performance under power constraints considering different power manage-
ment variables. FastCap 7 defines an approach for optimizing performance under a system-wide power cap considering both CPU and memory
DVFS. It defines a non-linear optimization problem solved through a queuing model that takes into account the interaction between cores and
memory banks communicating over a shared bus. Unfortunately, although memory DVFS has not been proposed recently 22,23, it is not currently
available in commercial systems. This limits the applicability of the proposed solution.

Kanduri et al. propose the usage of approximation in computation as another trick to provide suited trade-offs between performance/power-
usage and accuracy of the results 24. Obviously, this approach is applicable only when approximated results are acceptable.

PPEP 6 is an online prediction framework that, based on hardware performance events and on-chip temperature measurements, estimates the
CPU performance and power usage for each different P-state. It allows implementing power capping techniques that can meet power targets in a
single step without requiring any exploration. However, it operates with the number of core assigned by the Operating System to the application,
thus it does not embed capabilities for explicitly tuning the number of cores to be used by an application along its execution.

Finally, thework by Li et al. 25 provides amodel for estimating the effects on performance by different settings of the CPU andmemory frequency.
This work is tailored to performance prediction of bulk synchronous parallel applications and does not consider the problem of matching a power
cap at runtime.

4 Stefano Conoci et al.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20T
h

ro
u

g
h

p
u

t
(n

o
rm

a
liz

e
d

)

Concurrent threads

Profile 1

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12 14 16 18 20T
h

ro
u

g
h

p
u

t
(n

o
rm

a
liz

e
d

)

Concurrent threads

Profile 2

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 0 2 4 6 8 10 12 14 16 18 20T
h

ro
u

g
h

p
u

t
(n

o
rm

a
liz

e
d

)

Concurrent threads

Profile 3

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0 2 4 6 8 10 12 14 16 18 20T
h

ro
u

g
h

p
u

t
(n

o
rm

a
liz

e
d

)

Concurrent threads

Profile 4

P-State 1
P-State 2
P-State 3

P-State 4
P-State 5
P-State 6
P-State 7

P-State 8
P-State 9

P-State 10
P-State 11

P-State 0

Figure 1 Throughput vs. Number of Concurrent Threads

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

P
o

w
e

r
(w

a
tt

s
)

Concurrent threads

Profile 1

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

P
o

w
e

r
(w

a
tt

s
)

Concurrent threads

Profile 2

 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 2 4 6 8 10 12 14 16 18 20

P
o

w
e

r
(w

a
tt

s
)

Concurrent threads

Profile 3

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

P
o

w
e

r
(w

a
tt

s
)

Concurrent threads

Profile 4

P-State 1
P-State 2
P-State 3

P-State 4
P-State 5
P-State 6
P-State 7

P-State 8
P-State 9

P-State 10
P-State 11

P-State 0

Figure 2 Power usage vs. Number of Concurrent Threads

3 PRELIMINARIES

We adopt the ACPI Standard notation 26 for power states (P-states) of cores controlled via DVFS. Accordingly, we use P0 to identify the P-state
with maximum power usage and operating frequency and P1, P2, ... to progressively identify the P-states with less power usage and operating
frequency. We also remark that in modern processors, when cores are unused, they transit from the full operating mode (the C-State known as
C0) to some deeper sleep mode (the C-States known as C1, C2, ...), in which the core power demand is highly reduced. This may happen when the
application runs with less threads than the number of cores available in the machine, or when the application threads are pinned to a subset of the
available cores.

In order to build a knowledge-base to develop our power capping technique, we observed for various multi-threaded benchmark applications
how P-state variations, in combination with the variation of the number of used cores, affect the throughput curves and the power usage. We have
run the benchmark applications on a multi-core machine with two Intel Xeon E5-2630 v4, 20 physical cores total, with core frequency ranging
from 1.2 GHz (the corresponding P-state is denoted as P11) to 2.2 GHz (the corresponding P-state is denoted as P1), Intel TurboBoost ranging
from 2.2 GHz to 3.1 GHz (the corresponding P-state is denoted as P0), 256GB of DDR4 memory, running Debian 10.2 with Linux Kernel 4.19.0.

In Figure 1, we report the main profiles of the throughput curves that we observed with applications taken from the NAS Parallel benchmark 27

and the STAMP benchmark 28, which are representative of differentiated scalability profiles of multi-threaded applications. As for the applications
of STAMP benchmark, we considered both their implementation based on Transactional Memory (TM) 1, as well as the less scalable implementation
that uses a coarse-grained locking scheme in place of transactions. To draw the profile curves, we executed 10 runs of each applications with a
fixed P-state and number of used cores, then we calculated the average throughput and the average power usage for each configurations. The plots
show the normalized throughput curves, for different P-states, while increasing the number of concurrent threads. The normalized throughput
for a configuration c is calculated as the ratio between the throughput measured with configuration c and the throughput measured with the
configuration with 1 thread and the P-state with the lowest power usage and frequency, i.e. P11.

Profile 1 is representative of highly scalable applications, in which the throughput increases up to the number of available cores. Profile 2 is
representative of applications with limited-scalability where, exceeding a certain number of used cores, the throughput does not grow further.
Profile 3 is representative of applications with limited-scalability, for which the throughput decreases after reaching a maximum value. Finally,
Profile 4 is representative of applications with a workload that does not scale at all, i.e. the throughput decreases even if only two cores are used. A

1The TM implementation we used is based on the TinySTM package 29

Stefano Conoci et al. 5

relevant aspect for all the profiles is that the P-state variation appears not to change the shape of the throughput curve. In particular, the number
of concurrent threads for which the throughput curves reach the maximum values does not change when changing P-state. The corresponding
curves depicting the power usage are shown in Figure 2. As expected, they show that the power usage always increases as a function of the
number of concurrent threads or when decreasing P-state. This behavior is independent of the scalability profile. The sample applications from
which we derived the representative profiles of Figure 1 and Figure 2 are Block tridiagonal solver (NAS benchmark) for Profile 1, the TM-based
implementation of Genome (STAMP benchmark) for Profile 2, the TM-based implementation of Intruder (STAMP benchmark) for Profile 3 and the
lock-based implementation of Vacation (STAMP benchmark) for Profile 4.

As we will show, the configuration selection strategy based on the heuristic approach relying on exploration will result highly effective in all the
scenarios where the application exhibits a behavior falling into whichever of the four shown scalability profiles. However, it may be possible to
find applications whose behavior (also depending on the settings of the underlying hardware) does not fall into any of the analyzed profiles since
their throughput curves show local maxima (i.e. they are not unimodal, see e.g. 30), even though we anyhow expect their power usage to increase
while increasing the number of used cores and/or while decreasing P-state. Our configuration selection technique is still able to cope with these
scenarios when exploited in combination with the model-based strategy. Overall, what we present in this article is a folding fan of solutions able
to address performance optimization under a power cap in generic application contexts where assumptions on the shape of the throughput curve
may either hold or not.

4 THE POWER CAPPING TECHNIQUE

We denote a configuration as (p, n), where p is a P-state and n is the number of used cores. pwr(p, n) denotes the power usage of configuration
(p, n). Given a power cap value C, and assuming that S is the set of all possible configurations, we denote as Sac ⊆ S the subset including the
acceptable configurations, i.e. the configurations for which the power cap is not violated. Hence, pwr(p, n) ≤ C for each (p, n) ∈ Sac.

The goal of our power capping technique is to dynamically select the configuration in Sac that maximizes the application performance over time.
Without loss of generality, we select the application throughput as target performance metric. Other performance metrics (e.g. response time) can
anyhow be used with our technique. We denote as thr(p, n) the application throughput when running with configuration (p, n). Our technique
periodically runs a selection procedure, that implements the selection strategy. The procedure returns a configuration (p, n)∗ ∈ Sac that is expected
to be the optimal one based on the current workload profile of the application. The period to re-run the selection procedure can be configured by
the user. A good approach is to set at run-time this period equal to a given number N of times the duration of the selection procedure. This way,
the overhead due to the selection procedure can be limited, along a time period, according, by the user-selected factor 1/N. In Section 5, we will
enter more in details of this aspect.

As already mentioned, we devise two alternative selection strategies, both presented in the following sections.

4.1 Exploration-based Strategy

The exploration-based strategy is an extension of the popular auto-tuning approach based on the hill-climbing search 31. This search method
has been used in various literature proposals and in existing systems to optimize a variety of parameters, including the number of concurrent
threads 32,33 (as in Microsoft .NET Thread Pool 12). In its basic version, the hill-climbing search repeatedly performs the following steps: 1) starting
from the current configuration, it moves to a neighbour configuration, and 2) if the new configuration is better than the previous one (according
to the metric to be maximized) it persists in the new configuration, otherwise it tries with another neighbour configuration. It terminates when
none of the neighbour configurations provides advantages. With the basic hill-climbing version, it is assumed that the shape of the function to be
maximized is unimodal. Based on this assumption, no local maxima exist, thus the selected configuration corresponds to the global maximum.

To cope with local maxima, a number of alternative versions have been designed, typically based on stochastic mechanisms. Examples include
Simulated Annealing 34, Tabu Search 35, Iterated Local Search 36. However, these methods only contribute to increase the probability to find the
global maximum, and typically require much higher computation time to converge. This discourages their adoption in online self-tuning techniques.
Conversely, various studies have shown that the basic hill-climbing version is effective in many cases.

Our exploration-based strategy is built on top of a search scheme similar to the basic hill-climbing. However, we have extended it to cope with
the more complex optimization problem we target, where the configuration space is bi-dimensional and there is a constraint, namely the power
cap. In addition to the unimodality of the speed-up curve, our strategy assumes that the power usage always increases as a function of the number
of concurrent threads or when decreasing P-state, which is compliant to what shown in Figure 2. Moreover, it exploits our experimental findings
on the shape of the throughput function when changing the number of concurrent thread, which we found to generally not change for different
CPU P-states.

6 Stefano Conoci et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Acceptable configurations

Unacceptable configurations

P
-S

ta
te

Threads

Power Cap Frontier

Frontier

Figure 3 Example of a frontier line dividing acceptable and unacceptable configurations.

0
1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P-
St

at
e

Threads

Exploration phases

(ps,ns) (ps,n1)

(p2,n2)

(p3,n3)

Frontier
Phase 1
Phase 2
Phase 3

Figure 4 Example of exploration phases performed by the exploration strategy.

By relying on the above assumptions, the exploration-based strategy is able to find the optimal configuration by exploring only a subset of the
whole bi-dimensional configuration space (the Supplemental Material section of this article includes a formal proof of the optimality of the selected
configuration). In short, it moves along a well suited path of configurations and records the measures of the power usage and the throughput of the
application. At the end of the exploration, the explored configuration with the highest throughput that does not violated the power cap is selected.

We now enter the details of the selection strategy. By the above-mentioned assumptions about power usage, pwr(p, n) is a monotonically in-
creasing function of n and a monotonically decreasing function of p. Thus, the subsets of acceptable and unacceptable configurations are separated
by a frontier line. In Figure 3, we show a frontier line example.

To identify the configuration (p, n)∗, the exploration-based strategy takes as input a starting configuration (ps, ns). Given that the strategy can
be run periodically to re-adapt the selected configuration to the workload current profile, in the first execution the starting configuration can be
selected randomly, while in subsequent executions it can coincide with the last selected configuration.

Exploiting the assumptions on the unimodality of the speed-up curves and on the increment of the power usage curves, some configurations
can be safely pruned during the exploration according to the following rules:

1. if a configuration (p′, n′) such that thr(p′, n′) ≤ thr(p′, n′−1) is found, then all the configurations (p, n)where n ≥ n′, for whichever p, can
be pruned—because we are in the descending part of the throughput curve and the throughput curves preserve the shape while varying
P-state;

2. if a configuration (p′, n′) such that pwr(p′, n′) ≤ C is found then all configurations (p, n′) with p > p′ can be pruned—because increasing
P-state reduces the application throughput;

3. if a configuration (p′, n′) such that pwr(p′, n′) > C is found then all configurations (p, n) where n ≥ n′ and p ≤ p′ can be pruned—because
decreasing P-state or increasing the number of used cores increases the power usage.

The exploration-based strategy works in 3 phases plus a final selection step, all of them described below. A graphical example to help the reader
is shown in Figure 4, which refers to a test case where each throughput curve (associated to a given P-State) reaches the maximum value with 15
threads.

Stefano Conoci et al. 7

Phase 1. This phase starts from configuration (ps, ns) and returns a configuration that we denote as (ps, n1). It keeps ps fixed and explores along
the dimension of the number of cores. Specifically, starting from (ps, ns), it increments the number of cores while the throughput increases and
the power cap is not violated. We note that if after an increment of the number of cores the throughput increases, this means that the search is
moving along the ascending part of the throughput curve. This phase stops as soon as the throughput decreases, or the power cap is violated,
or the maximum number of cores has been reached. Thus, it selects and returns the explored configuration for which it measured the highest
throughput, which does not violate the power cap. On the other hand, if the throughput decreases after the first increment along the number of
cores axis, or the power cap is violated, it changes the exploration direction and starts reducing the number of cores. Then, it returns the explored
configuration with the highest throughput that does not violate the power cap. Otherwise, if all the explored configurations violate the power cap,
or if the search reaches a number of cores equal to 1, it returns (ps, 1). In the example in Figure 4, phase-1 exploration is represented by the green
line. It starts with (ps, ns) = (6, 5), then increases the number of cores and terminates when it reaches configuration (6, 13) since it violates the
power cap. It returns (ps, n1) = (6, 12), which satisfies the power cap.
Phase 2. This phase starts exploring from the configuration (ps, n1) returned by phase 1. Phase 2 is executed only if (ps, n1) does not violate the
power cap (otherwise we jump to the next phase). The goal of phase 2 is to continue the exploration along lower values of P-state (we remark
that reducing P-state leads to higher core performance and higher power usage). Specifically, we move from the current configuration (ps, n1) to
configuration (ps − 1, n1). If the latter configuration does not violate the power cap, we continue reducing the value of P-state. If a configuration
that violates the power cap is reached, we start reducing the number of cores (in order to reduce the power usage) until the power usage falls
below the power cap. Then, we restart the exploration again by decreasing P-state. The exploration in phase 2 terminates when p reaches 0 and
the current configuration does not violate the power cap, or when configuration (0, 1) is reached, or when some configuration with n = 1 violates
the power cap. Then, among the explored configurations, phase 2 returns the configuration with the highest throughput that does not violate the
power cap, or (0, 1) if all the explored configurations violate the power cap. We denote the returned configuration as (p2, n2). In Figure 4, phase-2
exploration is shown by the blue line. It starts from (ps, n1) = (6, 12), and then explores up to configuration (0, 1). It returns (p2, n2) = (3, 6).
Phase 3. This phase starts again from the configuration returned by phase 1, i.e. (ps, n1), and explores along higher values of P-state. This phase is
executed only if phase 1 has explored along the ascending part of the throughput curve—namely, the throughput did not decrease or the maximum
number of cores has been reached. In phase 3 we increment P-state by one and start increasing the number of cores until the power cap is violated
or the throughput decreases. In the former case, if the maximum value of P-state has not been reached, we increment P-state by one and start
again increasing the number of cores. In all the other cases the exploration terminates. Then, phase 3 returns the explored configuration with the
highest throughput that does not violates the power cap, or it returns (pmax, n1) if all the explored configurations are within the power cap. We
denote the returned configuration as (p3, n3)). In Figure 4, phase-3 exploration is represented by the yellow line. It starts from (ps, n1) = (6, 12),
then moves up to configuration (8, 16), where it stops since the throughput decreases (we remark that in the example the number of used cores
providing the highest throughput is equal to 15). It returns (p3, n3) = (8, 15).
Final phase. This phase simply selects the configuration with the highest throughput among the configurations (ps, n1), (p2, n2) and (p3, n3), which
does not violate the power cap, or returns null if all of them violate the power cap. The scenario of no configuration satisfying the power cap (e.g.
because of unfeasible power cap specification) clearly needs to be resolved by user defined mechanisms that are out of the scope of our work.

4.1.1 Time Complexity

In this section, we estimate the time complexity of the exploration-based strategy in terms of the number of exploration steps required to find the
optimal configuration. This can be done by estimating the time complexity of each exploration phase separately.

• Phase 1. Each configuration with a different number of used cores and p = ps is explored at most once, thus the time complexity isO(nmax);

• Phase 2. Starting from a configuration (p, n), phase-2 exploration either reduces the value of p or reduces n. Starting from the configuration
returned by phase 1, it can reduce p at most pmax times, and can reduce n at most nmax times. Thus, the time complexity of phase 2 is
O(pmax + nmax);

• Phase 3. Starting from a configuration (p, n), phase-3 exploration either increments the value of p or increments n. Thus, according to the
same reasoning used for phase 2, the time complexity of phase 3 is O(pmax + nmax).

In any case, the total number of exploration steps executed by phase 2 and phase 3 is at most nmax + pmax, thus the maximum number of steps,
including phase 1, is pmax + 2nmax Hence, the time complexity of the exploration-based strategy is O(pmax + nmax).

8 Stefano Conoci et al.

4.2 The Model-based Strategy

The model-based strategy relies on two analytical models used to estimate throughput and power usage. The strategy works in 3 phases. In
the first phase, throughput and power usage are measured for a predetermined subset of configurations. In the second phase, the two models
are instantiated by solving a system of equations and using the set of collected measures. In the third phase, throughput and power usage for
all the configurations are estimated through the two analytical models, then the configuration estimated to provide the highest throughput and
not violating the power cap is selected. The model-based strategy does not require any of the assumptions of the exploration-based strategy.
Furthermore, the number of configurations for which throughput and power usage measurements have to be collected is linear with respect to
the number of cores.

4.2.1 Performance model construction

Our performance model allows the prediction of the throughput of a given execution phase of the application for whichever configuration. As a
first step, the model estimates the CPU-bound portion and the memory-bound portion of the current workload based on measurements collected
while running with two different arbitrary P-states. Once estimated these portions, it can predict the throughput for all the other P-states. At run-
time, the model can be periodically re-instantiated to capture possible variations of the application workload that modify the ratio between the
CPU-bound portion and the memory-bound portion. In the following, we enter into the details of the construction of the model.

In literature, various performance models for DVFS have been proposed. A classification is presented in 37. Validation studies show that it is
reasonable to assume a linear relation between the core frequency and the execution speed-up of the CPU-bound portion of the application.

Hence, the execution time T of a computation task running on a single core can be estimated as the sum of two parts, i.e.

T = C +M (1)

In the above equation, C is the execution time of the CPU-bound portion of the task operations. Thus, C is subject to the variation of the operation
execution speed when changing the core frequency. M is the execution time of all operations that are not affected by frequency variations of the
core, such as memory operations. Thus, if we measure C for P-state pj, denoting with fj the associated core frequency, the execution time Tk of
the computation for another P-state pk with frequency fk can be estimated as

Tk =
fj

fk
· C +M (2)

By Equation 2, once estimated C and M for an arbitrary P-state, we can estimate the computation execution time for whichever P-state. However,
we note that, fixed P-state, C and M can vary when the number of cores that are running computation tasks in parallel changes. This is essentially
due to the different level of contention on shared resources (e.g. shared caches and memory interconnection).

For this reason both C and M have to be estimated for each possible number of available cores. Thus, Equation 2 has to be rewritten as

Tk,n =
fj

fk
· Cn +Mn (3)

where Tk,n is the execution time for P-state k when running with n cores, and Cn and Mn are the values of C and M when running with n cores,
respectively.

In order to use the above model in our model-based configuration selection strategy, we have to rewrite it in terms of throughput rather than
execution time. Since the throughput can be expressed as the number of computation tasks per time unit, it can be calculated as 1/Tk,n.

Hence, by Equation 3, the throughput for a generic P-state pk when running with n cores can be expressed as

thr(pk, n) =
1

fj
fk
· Cn +Mn

(4)

Considering that the throughput for P-state pj is

thr(pj , n) =
1

fj
fj
· Cn +Mn

=
1

Cn +Mn
(5)

by solving the system composed of Equation 4 and Equation 5, we can calculate Cn and Mn as

Cn =
fpk · (thr(pj , n)− thr(pk, n))
thr(pj , n) · thr(pk, n) · (fj − fk)

(6)

Mn =
1

thr(pj , n)
− Cn (7)

Stefano Conoci et al. 9

Hence, we can calculate Cn and Mn for each n by measuring the throughput for two different arbitrary P-states pk and pj, and, for each of them,
for each number of cores from 1 to nmax. Once calculated Cn and Mn, we can calculate the throughput thr(pl, n) for whichever configuration (pl, n)

with core frequency fl using Equation 4, i.e.

thr(pl, n) =
1

fj
fj
· Cn +Mn

(8)

In practice, once taken the above-mentionedmeasurements, themodel is able to predict the throughput curves forwhichever P-state. Essentially,
this is achieved by projecting the measured curves on the basis of the specific frequency of the P-state and the estimated values of Cn and Mn.
This allows the model to predict the throughput curves independently of their specific profile, thus making the model able to capture whichever
of the profiles shown in Figure 1.

4.2.2 Power-usage model construction

The power-usage model is designed to allow the estimation of the power usage for a given execution phase of the application for each P-state.
To be instantiated, it requires the measurement of the power usage with just two different arbitrary P-states, then it is able to estimate the power
usage for all the other P-states. Thus, the model can be instantiated in real-time by taking at runt-time the required measurements. Similarly to
the performance model, the power-usage model can be periodically re-instantiated to capture possible variations of the application workload that
may lead to variations of the power usage for the different P-states. In the follow, we discuss the construction of the model.

A power-usage model for DVFS should be able to capture the effects on power usage due to CPU frequency variation. Literature studies
(e.g. 38,39) show that the power usage of a computer system can be approximated by the sum of three components. The first one is associated with
the CPU dynamic power usage, which is due to switching of CPU transistors during the operation executions. It can be approximated as

Pdyn = ρ · CL · V 2 · f (9)

where ρ is the switching probability, CL is the system capacitance, V is the supply voltage and f is the frequency. Since a linear relation exists
between the frequency f and the supply voltageV, by the above equation a cubic dependence exists between dynamic power usage and frequency.
Accordingly, the power usage can be modeled as

Pdyn = α · f3 (10)

where α is a factor that depends on the specific hardware design and the workload profile. The second component is associated with the CPU
leakage power, and can be approximated as Pleak = V · N · kdesign · Ileak, where N is the number of transistors, kdesign is a CPU design-dependent
parameter, Ileak is a technology-dependent parameter. By the linear dependence between V and f , this component can be modeled as

Pleak = β · f. (11)

Also in this case,β is a factor that can be assumed to be dependent on the hardware design and theworkload profile. Finally, the thirty component
represents the power usage of the system that is independent of frequency variations. To our aim, it can be considered as a fixed component, that
we denote as Pfixed. Hence, the total power usage is calculated as

P = α · f3 + β · f + Pfixed (12)

To use the above model in our model-based selection strategy, we need to estimate α, β and Pfixed. The latter can be estimated by measuring
the power usage when all cores are idle. As for α and β, we use the same approach as for the performance model. By our experiments, we noted
that also α and β vary depending the number of used cores. Thus, we estimate them as a function of the number of cores, using the notation αt

and βt, respectively.
Fixed the number of cores n, we consider the power usage for two different P-state values pj and pk, respectively, and we subtract Pfixed from

both of them. We denote the results as Pj
p and Pk

p. Thus, we build a system with the following equations, derived from Equation 12 after having
subtracted Pfixed from the left term:

Ppj = αt · f3pj + βt · fpj (13)

Ppk = αt · f3pk + βt · fpk (14)

Solving the system we have

αt =
P j
p · fpk − Pk

p · fpj
fpk · fpj

3 − fpk
3 · fpj

, βt =
P j
p · fpk

3 − Pk
p · fpj 3

fpk
3 · fpj − fpk · fpj

3
. (15)

Once calculated αt and βt for any number of cores, we can estimate the power usage for each P-state pl by calculating Ppl = αt · f3
pl + βt · fpl

and then adding Pfixed.

10 Stefano Conoci et al.

Execution of the

Exploration-based strategy

nal

Execution of the

Micro-tuning strategy

Phases:

Execution of the

Model-based strategy

measures

collection

models
instantiation

con g.

selection

Phases:

models

Execution of the

Micro-tuning strategy

Execution of the

Micro-tuning strategy
Execution of the

Micro-tuning strategy

1 2 3

time

Execution of the

Exploration-based strategy

nal

Phases:

1 2 3

Execution of the

Model-based strategy

measures

collection instantiation

con g.

selection

Phases:

time

Figure 5 Example of the execution timelines of the technique with the exploration based strategy (top timeline) and the model based strategy
(bottom timeline)

Finally, we note that the power-usage model can be instantiated using power measurements taken for the same set of configurations used to
instantiate the performance model.

4.2.3 Time Complexity

We observed that the time to solve the models to calculate the expected throughput and power consumption for all the configurations is negligible
with respect to the time to instantiate them. Thus, we estimate the time complexity in terms of number configurations for which throughput and
power usage have to be measured to instantiate the models. To this aim, given the models’ construction, 2 · nmax configurations are required. Thus,
2 · nmax measurement steps have to be executed, and consequently the time complexity is θ(nmax).

4.3 The Micro-tuning Strategy

As hinted, in our experimental study we observed that, once fixed a configuration, the power usage can be subject in various cases to small
variations around its average value. Basically, this is due to the fact that the instruction paths executed by cores can change over time, and that
different instructions may require different power usage (see 40). Thus, once the selection strategy (either exploration-based or model-based) has
selected the optimal configuration—to be ideally kept up to the next execution of the selection phase—if the instruction path temporarily changes
in a way to demand more power, then power cap violations are likely to happen. In particular, this may happen if the power usage of the selected
configuration is very close to the power cap. On the other hand, if the instruction path temporarily changes in a way to demand less power,
then there could be the possibility to move, without violating the power cap, to a power state with higher frequency for improving performance.
To cope with these small and temporarily power usage variations, we designed a procedure that implements a micro-tuning strategy, which is
activated immediately after a configuration is set by the selection strategy. The micro-tuning strategy considers the two power states adjacent to
the one chosen by the selection strategy, i.e., one with lower frequency and one with higher frequency. Upon a power cap violation, the micro-
tuning strategy switches to the configuration with lower frequency. Conversely, when the power usage decreases, the procedure tries to achieve
a performance boost by switching to higher core frequency. This setting is kept along time unless the power usage violates the power cap. Upon
any violation, the micro-tuning strategy switches the core frequency back to the previous value.

Figure 5 shows an example timeline for the exploitation of our selection strategies (exploration-based or model-based) in combination with the
micro-tuning strategy. As depicted, the selection strategy is periodically re-executed, and the micro-tuning strategy runs between two consecutive
executions of the selection strategy.

5 EXPERIMENTAL STUDY

In this section, we present the results of the experimental study we conducted to assess the proposed power capping technique. As in previous
studies (e.g. 15,41), we consider twometrics, i.e. the average power cap error and the speed-up of the application. Preliminary, we present the results
of the study we performed to estimate the prediction accuracy of the two models used by the model-based strategy. Then, we present the results
of the evaluation study of our power capping technique, comparing it with the following two techniques taken from the literature:

Stefano Conoci et al. 11

1. A technique that uses the selection strategy proposed by Reda et al. 15, which has been already used as a reference in various studies.
The strategy identifies the highest number of cores for which at least one admissible configuration exists. Then selects, within this set of
configurations, the one with the highest frequency P-state. We refer to this technique as baseline.

2. A technique based on a strategy that executes an hill-climbing search to find the number of cores which provides the maximum throughput
at the lowest frequency P-state. Then, it increases P-state until the power usage is below the power cap. We refer to this strategy as
dual-phase. It is a refinement of the technique proposed by Zhang et al. 16.

The comparison with the baseline technique allows us to quantify the performance benefits achievable by taking into account the scalability profile
of the application, as we do in our technique. The comparison with the dual-phase technique, which accounts for the scalability profile, allows us
to quantify the performance benefit of our technique compared to a solution based on two distinct mono-dimensional exploration phases. Our
experimental study shows that such a solution can offer acceptable performance levels. However, in general, it can fail in the identification of the
optimal configuration, thus our technique can offer better performance.

In our experiments, we considered three different groups of applications:

• Group A, which includes applications with highly scalable workload, reflecting Profile 1.

• Group B, which includes applications with scalability profiles spanning from Profile 2 to Profile 3.

• Group C, which includes applications with workloads showing extremely limited scalability, reflecting Profile 4.

The first one (Group A) is representative of applications for which the highest performance is achieved when using the highest number of
available cores. The second one (Group B) is representative of applications for which the highest performance is achieved when the number of
used cores is in the middle, i.e. between the minimum and maximum number of available cores. Finally, the third one (Group C) is representative
of applications for which the highest performance is achieved using just one core. This also explains why we included applications with Profile 2
and Profile 3 in Group B.

Based on the analysis we carried out on the scalability profile of applications taken from various benchmarks, which we ran on the 20-core
machine exploited in our study (see Section 3 for the details), we selected a total of twelve different applications, four for each group. As for Group
A, we selected four applications fromNAS Parallel Benchmark 27. They are: Block tridiagonal solver, 3-D Fft Pde,Multigrid and Pentadiagonal solver.
We note that applications in Group A can be considered as worst-cases when comparing our technique to the baseline. In fact, since all of them
definitely scale up to the number of available cores, the the baseline can easily find the optimal configuration. At the same time, the baseline does
not pay the overhead for supporting the strategies used in our power capping technique. Also, we observed that, fixed a configuration, the power
usage profile of these applications is very stable along the whole application execution. Thus, these applications can be considered as worst-case
test-beds also with respect to the micro-tuning strategy, since there is no room for providing fine grained optimizations based on this strategy.

As for Group B, we selected four applications from the STAMP benchmark suite 28, namely Vacation, Intruder, Genome and Ssca2, with their
TM-based implementations. Their scalability profiles well match Profile 2 and Profile 3. Finally, as for Group C, we found that the implementations
of the above mentioned STAMP applications where the critical sections are synchronized with locks rather than transactions—as it occurs in the
STM based implementation—represent good test cases matching Profile 4. This is due to the fact that coarse-grained lock-based synchronization
is generally less scalable than the fine-grained transactional approach.

With the Intel TurboBoost option (or similar ones such as AMD Turbo CORE) the real power usage and the clock frequency of a core may
become highly variable. If fact, they may run out of the control of the Operating System, being regulated by the hardware on the basis of various
factors, such as the current power consumption of the other cores in the same package, and the overall package temperature. Accordingly, they can
become unpredictable in practice. For this reason, the P-state that enables Intel TurboBoost (which is typically P0) should be excluded to guarantee
to avoid uncontrolled power cap violation. However, on those machines which suffer from this problem (as the one used in our experimental study)
our technique can circumvent it, without loosing the possible performance advantage of offered by P0. This can be simply done by excluding P0

from the set of P-states considered by the decision strategy. P0 still remains reachable by the micro-tuning strategy, which can switch to P0 when
P1 has been selected. If with P0 the power consumption is violated, the micro-tuning strategy immediately switches back to P1. Definitely, our
technique is able to exploit Intel TurboBoost when the power cap value does not lead to disabling it.

In the next sections we initially focus on implementation details of our power capping technique. Then we present and discuss the experimental
results.

12 Stefano Conoci et al.

5.1 Implementation Details

All software components of our experimental study, including the benchmark applications, are written using the C language and Linux/Posix
services2. We designed a controller module that periodically runs the selection procedure, at the end of which it sets the selected configuration.
Once a configuration is set, the controller runs the procedure that implements the micro-tuning strategy until the subsequent re-execution of the
selection procedure. The selection procedure is re-started after a period of time which lasts 10 times the duration of the selection procedure. We
observed that this choice offers a good trade-off between the overhead introduced by the selection procedure and the optimal solution search
frequency. We will discuss this aspect more in detail later in this section.

In our implementation, the power usage is measured via the RAPL interface, and the P-state is regulated through cpufreq Linux sub-system,
which in recent versions of the Linux kernel can be accessed through the /sys virtual file system. We observed that, with the machine used in our
experiments, the time to execute the software instructions to change the frequencies of all cores through this interface is below 1 millisecond.
We note that, with our technique, the overhead to execute these instructions is paid only by one core (which is in charge of changing the P-states
of all the other cores), and only when it is required to actually move to a new configuration with a different P-state with respect to the previous
configuration. Finally, we observed that the hardware transition delay tomove from a frequency to anotherwas in the order of tens ofmicroseconds.

As mentioned in Section 1, our technique aims at maximizing a performance metric which is directly correlated to the actual progress of the
application. The target metric we selected for the presentation of our power capping technique, namely the throughput, well fits all the application
benchmarks considered in this study. In NAS applications, which run computations based on iterative loops, the throughput can be simplymeasured
in terms of number of iteration steps executed per time unit. In STAMP applications, the throughput can be measured in terms of transactions or
critical sections executed per time unit.

In NAS applications we applied our power capping technique by relying on the core-packing approach. Specifically, the controller forces all
threads (by changing the threads’ scheduling affinity via the function pthread_setaffinity_np) to run on the number of cores decided by our technique.
With STAMP applications, we used an alternative scheme in which the controller changes the number of used cores by pinning threads to different
cores, and by activating/deactivating the different threads to match the selected number of cores. Threads are deactivated by calling the pause()
service and Posix signals are used to wake up the threads again.

With the machine we used in our experiments, we noticed that the minimum length of the sampling interval to get reliable measurements of the
power usage is about 50 ms. As for the throughput measurements with the selected applications, we observed that a duration in the order of a few
milliseconds was sufficient. Consequently, we used 50 ms as a lower bound for the duration of each measurement step of the selection procedure.

Based on these settings, the actual duration of the selection procedure varied depending on the application and the selection strategy, being
it directly correlated to the number of explored configurations. With our 20-core machine, the model-based strategy has a number of exploration
steps equal to 40 (see Section 4.2.3), with an average duration of about 2 seconds. Differently, the number of steps required by the baseline
technique, the dual-phase technique and the exploration-based strategy change depending on the shape of the throughput curves. In all our
experiments, in the majority of cases the baseline and the dual-phase techniques required between 10 and 30 measurement steps (with a duration
between 0,5 and 1,5 seconds), the exploration-based strategy required between 10 and 50 measurement steps (with a duration between 0,5 and
2,5 seconds) for the first execution, and between 10 and 30 measurement steps (with a duration between 0.3 and 0,8 seconds) for the subsequent
executions 3

5.2 Model Prediction Accuracy

We evaluated the prediction accuracy of the two analytical models used by the model-based strategy for all the twelve target applications. To
instantiate the models, we measured the throughput and the power usage while varying the number of exploited cores along the execution of
the applications from 1 to 20 and for two different P-state values. We selected the lowest and the highest P-State, namely P11 and P1. Then,
once instantiated the models using the collected measures, we used the models to estimate the throughput and the power usage for all the other
(pmax−2) ·nmax configurations (i.e. 9 ·20 = 180 configurations), and we compared themwith the measured values. The Mean Absolute Percentage
Error (MAPE) is reported in Table 1 for each application.

The results show that the error is always below 5%. The maximum error of the power-usage model is 4,81%, and the maximum error of the
performance model is 4.61%. Also, there is no significant difference among the errors of the models when working with applications in the three
different groups. These results demonstrate both a good accuracy of the analytical models and a good robustness, since their accuracy appears to
be independent of the type of the workload and scalability profile.

2Software is publicly available at https://github.com/HPDCS/NAS-powercap and https://github.com/HPDCS/STAMP-powercap
3The difference in the duration of the first execution and the subsequent executions of the selection procedure with the exploration-based strategy is

due to the fact that the first execution start from a random configuration, while the subsequent executions start from the configuration selected during the
last execution, which is likely closer to the optimal one, unless the workload is remarkably varied.

Stefano Conoci et al. 13

Group Test case
Power-usage

Model
Prediction

error

Performance
Model

Prediction
error

A
Block tridiagonal solver 3.12% 4.61%
CG 2.92% 4.08%
3-D Fft Pde 2.91% 4.14%
Multigrid and Pent. 3.16% 2.58%

B
Genome with TM 2.42% 2.93%
Intruder with TM 4.82% 2.61%
Ssca2 with TM 3.07% 2.43%
Vacation with TM 4.81% 2.98%

C
Genome with Locks 2.26% 3.29%
Intruder with Locks 3.41% 2.91%
Ssca2 with Locks 2.02% 2.04%
Vacation with Locks 3.25 % 2.21%

Table 1Mean Absolute Percentage Error (MAPE) of the performance model and the power-usage model.

5.3 Evaluation and Comparison with Other Techniques

With all cores running at the maximum power, the power usage of the machine we used in our experiments is about 90 watts. Accordingly, we used
two different power cap values, namely 50 watts and 70 watts. We consider two evaluation metrics, the power cap violation percentage and the
throughput speed-up. The power cap violation percentage is calculated as the average of the percentage difference between the measured power
usage and the power cap value for each time interval of 1 second. For those time intervals for which the power cap is not violated the percentage
is considered equal to zero. The speed-up of the throughput is measured with respect to the throughput of the baseline. We measured the above-
mentioned metrics for the baseline, the dual-phase technique, and our power capping technique with either the exploration-based strategy and
the model-based strategy.

The results in the top chart of Figure 6 show the power cap violation and the speed-up with power cap set to 50 watts. Let us consider the four
test cases of Group A. We remark that they represent worst-case tests for our technique because their workload profiles scale very well. Also, the
instruction path of these applications is extremely uniform over time, and gives rise to very small variations of the power usage. Consequently,
there is little room for the micro-tuning strategy to provide additional performance boosts. Overall, test cases in Group A are interesting mostly for
the observation of the overhead induced by our solution in scenarios where scarce possibilities to provide optimizations (compared to the baseline)
exist.

Figure 6 shows that our technique provides slow-down (i.e. the throughput is lower than the baseline) with only one of the four test cases of
Group A, specifically "Black Tridiagonal Solver". However, such slow-down is no more than 5%with the exploration-based strategy and 3%with the
model-based strategy. On the other hand, the dual-phase technique shows a slow-down of about 30%.With the other three test cases of Group A,
our technique offers speed-up of up to 10%. These results show that the overhead introduced by the technique is affordable. Also, our technique
consistently performs better than the dual-phase technique. The power cap violation percentage with our technique with the exploration-based
strategy is higher than the baseline only with "3-D Ftp Pde". However, its value is always below 1%. With the model-based strategy the violation
percentage is always higher than the baseline. However, also in this case it is limited to 1%, except for "Multigrid" where the value is of about 2%.

As for Group B, the dual-phase technique and our technique (with both the strategies) offer a noticeable increment of the speed-up for "SSca2
with TM" and "Intruder with TM". This is motivated by the scalability profile of the two applications, which matches Profile 3, while the scalability
profile of "Vacation with TM" and "Genome with TM" matches Profile 2. Our technique with the heuristic-based strategy achieves higher speed-
up increments (up to 85% increased speed-up over baseline for Intruder) and, independently of the employed selection strategy, it significantly
outperforms the dual-phase technique for 2 out of 4 test cases—with up to 35% better speed-up for Scaa2—while providing the same performance
for the other 2 test cases. As for the power cap, with Group B the percentage violation is still relatively low, being under 1% with all the tested
techniques. On the other hand, the results confirm that our technique used with the model-based strategy leads to a violation percentage that is
generally higher, although it is anyhow limited to 2% over all test cases. This is essentially due to the prediction error of the power-usage model4.
In fact, the violation percentages are in line with the model prediction errors we measured (see Table 1).

4Even if the prediction error is very low, it could lead to select some configuration that is believed to be within the power cap, but it is actually not.

14 Stefano Conoci et al.

0.0

1.0

2.0

3.0

4.0

5.0

V
io

la
ti
o

n
 (

%
)

Powercap Violation and Speed-up | Power Cap: 50 watts

0.5

1.0

1.5

2.0

Block tridiagonal solver

3-D
 Fft Pde

M
ultigrid

Pentadiagonal solver

Intruder w
ith TM

Vacation w
ith TM

G
enom

e w
ith TM

Ssca2 w
ith TM

Intruder w
ith Locks

Vacation w
ith Locks

G
enom

e w
ith Locks

Ssca2 w
ith Locks

S
p

e
e

d
-u

p

Baseline
Dual-phase

Exploration-based strategy
Model-based strategy

0.0

1.0

2.0

3.0

4.0

5.0

V
io

la
ti
o

n
 (

%
)

Powercap Violation and Speed-up | Power Cap: 70 watts

0.5

1.0

1.5

2.0

Block	tridiagonal	solver

3-D
	Fft	Pde

M
ultigrid

Pentadiagonal	solver

Intruder	w
ith	TM

Vacation	w
ith	TM

G
enom

e	w
ith TM

Ssca2	w
ith	TM

Intruder	w
ith	Locks

Vacation	w
ith	Locks

G
enom

e	w
ith	Locks

Ssca2	w
ith	Locks

S
p

e
e

d
-u

p

Baseline
Dual-phase

Exploration-based strategy
Model-based strategy

Figure 6 Power cap violation and speed-up results

Finally, as for Group C, the dual-phase technique and our technique with the exploration-based strategy improve the speed-up with all the test
cases, except "Genome with Locks". For this test case, the model-based strategy works better than the exploration-based strategy. We observed
that this is due to the scalability profile of Genome, which is quite irregular and showsmore than one local maximum. This represents a disadvantage
for the dual-phase technique and the exploration-based strategy of our technique, which may fall in a local maximumwhich could not be the global
one. Differently, the model-based strategy does not suffer from this limitation, thanks to the models which allow to get predictions of the power

Stefano Conoci et al. 15

0.0

0.5

1.0

1.5

2.0

V
io

la
ti
o

n
 (

%
)

Average Powercap Violation and Speed-up per Group

0.5

1.0

1.5

2.0

Group A
50 Watts

Group B
50 Watts

Group C
50 Watts

Group A
70 Watts

Group B
70 Watts

Group C
70 Watts

S
p

e
e

d
-u

p

Baseline
Dual-phase

Exploration-based strategy
Model-based strategy

Figure 7 Average Power cap violation and speed-up per group

0.0

5.0

10.0

15.0

20.0

Group A
50 Watts

Group B
50 Watts

Group C
50 Watts

Group A
70 Watts

Group B
70 Watts

Group C
70 Watts

R
a

ti
o

Ratio Between Average Speed-up and Powercap Violation per Group

Baseline
Dual-phase

Exploration-based strategy
Model-based strategy

Figure 8 Ratio Between speed-up and average Power cap violation per group

usage and the speed-up values for the whole configuration space. In any case, with Group C, our technique outperforms the dual-phase technique,
providing speed-up improvements of up to 9% for "Scaa2 with locks" and up to 100% for "Genome with locks".

The results in the bottom chart of Figure 6 show the power cap violation and the speed-up with power cap set to 70 watts. The test cases of
Group A confirm that the overhead introduced by our technique is very low. It is slightly higher compared to the results with power cap equal to
50 watts, in particular those achieved with the model-based strategy. This is caused by the larger set of admissible configurations when the power
cap is equal to 70 watts with respect to 50 watts, requiring more time for the exploration and for building the models. However, the speed-up
provided by our technique is lower than the one of the baseline only when used with the model-based strategy; the difference is anyhow limited to
8% The speed-up values with the test cases of Group B and Group C essentially confirm the results we observed with power cap equal to 50 watts.
Also, in these cases the exploration based strategy achieves the highest speed-up, with the only exclusion of "Genome with Locks", for which the
model-based strategy is the best one. As for the power cap violation percentage, with cap of 70 watts it is (on average) lower compared to cap of
50 watts. This is because of the less strict constraint on the set of admissible configurations imposed with cap of 70 watts. In fact, when this set
is larger, the probability that the power usage of the optimal configuration is far from the power cap is generally higher, thus reducing the overall
violation probability.

16 Stefano Conoci et al.

5.4 Overall Assessment and Discussion

To make an overall assessment of the results of our experimental study, in Figure 7 we report the calculated average power cap violation per-
centage and the average speed-up for each group of applications. Basically, the results clearly demonstrate the advantages, in terms of speed-up,
achievable with techniques that take into account the scalability of the applications. In particular, the advantages become higher whenmoving from
scalable workloads to less scalable ones, for which smarter approaches that avoid over-provisioning of cores in combination with the fine tuning of
the core power states have more chances to pay off. Further, the results show that our technique with the exploration-based strategy consistently
outperforms the dual-phase technique. Basically, this is due to the ability of the exploration-based strategy to guarantee, under the same assump-
tions of the dual-phase technique, to find the optimal configuration for a superset of cases. As for the model-based strategy, the results show that
it outperforms the baseline with workloads with limited scalability. Further, it outperforms the dual-phase technique and the exploration-based
strategy when the workload profile is irregular, where the unimodality assumption generally may not hold. In conclusion, in scenarios with irregu-
lar scalability profiles, although the prediction error of the model-based strategy may be non-negligible, the model-based strategy can offer better
results.

We conclude our assessment study by analysing some additional data, in order to exclude that the performance advantages offered by the
strategies we proposed could be due in some way to the extra power they use in those cases where the power cap violation is higher than the
baseline. To this aim, in Figure 8 we report the ratio between the speed-up and the average power cap violation for each group of applications.
The histograms show that with the exploration-based strategy and with the model-based strategy the ratio is higher than the baseline in the most
of cases, except for Group A 50 Watts, and for Group B 50 Watts only with the model-based strategy. We remark that Group A represents worst-
case scenarios for our technique in terms of performance maximization. In all the other cases, the violation with the exploration-based strategy is
lower than the baseline, and the exploration-based strategy achieves higher speed-up. Also, we note that the model-based strategy offers higher
performance than the baseline not only with Group B 50 Watts, but also with Group B 70 Watts, with Group C 50 Watts and with Group C 70
Watts. In these cases, the violation with the model-based strategy is lower than the baseline. Accordingly, these data indicate that the performance
improvement with both the strategies is not generally correlated to the additional power usage which in some cases can be exploited by the
strategies with respect to the baseline.

In conclusion of our study, we want briefly discuss about the applicability of our approach and its possible limits. To optimise the performance
of a given application, it is necessary to have the possibility to measure an application-specific performance metric, such as the throughput or the
response time, or some other metric that measures the execution progress of the application. Considering our target, namely performance-sensitive
multi-threaded applications, they often expose performance metrics to the user to monitor their actual level of performance. As an example, in
applications that process transactions, web requests or batch processes, measuring the throughput is simple and is already allowed by specific
frameworks. On the other hand, there may be applications in which the performance metrics could be not directly accessible. This would require to
insert within the application code some code block to measure the target performance metric. This would be more easy to do when the application
source code is available. Conversely, when the source code is not accessible, it would be necessary to try to use some different approach, e.g by
wrapping specific components of the application to measure the desired performance metric.

Another issue to consider is related to applications that may show some irregular behaviour at run-time which may cause continuous variation
of the values of the target performance metric. This could be the case of applications where, e.g. the instruction execution path quickly and
irregularly changes over time. Obviously, frequent and fast changes in the workload of the applications can represent a weak point for adaptive
techniques. Indeed, in these cases the optimal solution may continuously change over times. It might even change so fast that the search of the
optimal solution may never converge. We empirically observed that when the workload of the application is subject to continuous changes, such
that the performance and the power usage are generally not stable for a time period of about 10 times the duration of the selection procedure
(see Section 5.1), the efficiency of our technique may start decreasing. On the other hand, this kind of irregular behaviours generally disfavours
not only our technique, but rather any adaptive approach.

6 CONCLUSIONS

In this article, we investigated the design of power capping techniques for multi-thread applications. We explored both a heuristic approach and a
model-based approach for designing on-line strategies that tune at run-time the number of cores used by the application and their power state.
Our study suggests that strategies designed to account for the scalability profile of the application can offer noticeable advantages in terms of
performance. From a theoretical perspective, the exploration-based strategy we designed can find the optimal configuration in linear time, under
the assumption of unimodality of the workload scalability profile. The experimental results showed that such kind of strategy works well with a
variety of test cases, thus suggesting that a heuristic exploration-based approach can represent a viable solution. On the other hand, when the

Stefano Conoci et al. 17

scalability profile markedly deviates from the unimodality assumption, it would be convenient to use model-based approaches, like the one we
presented. Ultimately, the strategies we presented should be considered as alternatives to be chosen on the basis of the workload.

References

1. Avgerinou Maria, Bertoldi Paolo, Castellazzi Luca. Trends in Data Centre Energy Consumption under the European Code of Conduct for Data
Centre Energy Efficiency. Energies. 2017;10:1470.

2. Buyya Rajkumar, Vecchiola Christian, Selvi S. Thamarai.Mastering Cloud Computing: Foundations and Applications Programming. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.; 1st ed.2013.

3. Oracle . Plug into the Cloud with Oracle Database 12C (wite paper) http://www.oracle.com/technetwork/database/
plug-into-cloud-wp-12c-1896100.pdf.

4. Vitali Roberto, Pellegrini Alessandro, Quaglia Francesco. Load Sharing for Optimistic Parallel Simulations on Multi-core Machines. ACM
Performance Evaluation Review. 2012;43(3):2–11.

5. Pallipadi Venkatesh, Starikovskiy Alexey. The ondemand governor: past, present and future. In: Proceedings of Linux Symposium, vol. 2, pp.
223-238; 2006.

6. Su Bo, Gu Junli, Shen Li, HuangWei, Greathouse Joseph L.,Wang Zhiying. PPEP:Online Performance, Power, and Energy Prediction Framework
and DVFS Space Exploration. 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. 2014;:445–457.

7. Liu Yanpei, Cox Guilherme, Deng Qingyuan, Draper Stark C., Bianchini Ricardo. FastCap: An efficient and fair algorithm for power capping in
many-core systems. ISPASS 2016 - International Symposium on Performance Analysis of Systems and Software. 2016;(3):57–68.

8. Conoci Stefano, Di Sanzo Pierangelo, Ciciani Bruno, Quaglia Francesco. Adaptive Performance Optimization under Power Constraint in Multi-
Thread Applications with Diverse Scalability. In: Proceedings of the 2018 ACM/SPEC International Conference on Performance EngineeringICPE
’18:16–27Association for Computing Machinery; 2018; New York, NY, USA.

9. David Howard, Gorbatov Eugene, Hanebutte Ulf R., Khanna Rahul, Le Christian. RAPL: Memory power estimation and capping. Low-Power
Electronics and Design (ISLPED), 2010 ACM/IEEE International Symposium on. 2010;:189–194.

10. Muthukaruppan Thannirmalai Somu, Pricopi Mihai, Venkataramani Vanchinathan, Mitra Tulika, Vishin Sanjay. Hierarchical power management
for asymmetric multi-core in dark silicon era. Proceedings of the 50th Annual Design Automation Conference on - DAC ’13. 2013;:1.

11. Ryoo Shane, Rodrigues Christopher I., Baghsorkhi Sara S., Stone Sam S., Kirk David B., Hwu Wen-mei W.. Optimization Principles and Appli-
cation Performance Evaluation of a Multithreaded GPU Using CUDA. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel ProgrammingPPoPP ’08:73–82ACM; 2008; New York, NY, USA.

12. Hellerstein Joseph, Morrison Vance, Eilebrecht Eric. Applying control theory in the real world: Experience with building a controller for the
.NET thread pool. SIGMETRICS Performance Evaluation Review. 2009;37:38-42.

13. Di Sanzo Pierangelo. Analysis, Classification and Comparison of Scheduling Techniques for Software Transactional Memories. IEEE Transactions
on Parallel and Distributed Systems. 2017;28(12):3356-3373.

14. Ianni Mauro, Marotta Romolo, Cingolani Davide, Pellegrini Alessandro, Quaglia Francesco. The Ultimate Share-Everything PDES System. In:
Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete SimulationSIGSIM-PADS ’18:73–84ACM; 2018; New York,
NY, USA.

15. Reda Sherief, Cochran Ryan, Coskun Ayse. Adaptive Power Capping for Servers withMultithreadedWorkloads. IEEEMicro. 2012;32(5):64–75.

16. Zhang Huazhe, Hoffmann Henry. Maximizing Performance Under a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques.
In: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating SystemsASPLOS
’16:545–559ACM; 2016; New York, NY, USA.

http://www.oracle.com/technetwork/database/plug-into-cloud-wp-12c-1896100.pdf
http://www.oracle.com/technetwork/database/plug-into-cloud-wp-12c-1896100.pdf

18 Stefano Conoci et al.

17. Porterfield Allan K., Olivier Stephen L., Bhalachandra Sridutt, Prins Jan F.. Power measurement and concurrency throttling for energy reduction
in OpenMP programs. Proceedings - IEEE 27th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW
2013. 2013;:884–891.

18. Intel . Intel 64 and IA-32 Architectures Software Developer Manual, Volume 3C: System Programming Guide, Part 3. 2011.

19. Gholkar Neha, Mueller Frank, Rountree Barry. Power Tuning HPC Jobs on Power-Constrained Systems. Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation - PACT ’16. 2016;:179–191.

20. Bari Md Abdullah Shahneous, Chaimov Nicholas, Malik Abid M., et al. ARCS: Adaptive runtime configuration selection for power-constrained
OpenMP applications. Proceedings - IEEE Int. Conference on Cluster Computing, ICCC. 2016;:461–470.

21. Dennis JE, Woods Daniel J. Optimization on microcomputers: The Nelder-Mead simplex algorithm. New computing environments: microcom-
puters in large-scale computing. 1987;11:6–122.

22. Deng Qingyuan, Ramos Luiz, Bianchini Ricardo, Meisner David, Wenisch Thomas. Active low-power modes for main memory with memScale.
IEEE Micro. 2012;32(3):60–69.

23. David Howard, Fallin Chris, Gorbatov Eugene, Hanebutte Ulf R, Mutlu Onur. Memory Power Management via Dynamic Voltage/Frequency
Scaling. Proceedings of the 8th ACM International Conference on Autonomic Computing. 2011;:31–40.

24. Kanduri Anil, Haghbayan Mohammad-Hashem, Rahmani Amir M., et al. Approximation knob: power capping meets energy efficiency.
Proceedings of the 35th International Conference on Computer-Aided Design - ICCAD ’16. 2016;:1–8.

25. Li Bo, León Edgar A., Cameron Kirk W.. COS: A Parallel Performance Model for Dynamic Variations in Processor Speed, Memory Speed, and
Thread Concurrency. In: Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2017,
Washington, DC, USA, June 26-30, 2017:155–166; 2017.

26. Corporation Compaq Computer, B Revision. Advanced Configuration and Power Interface Specification. 2000.

27. Bailey David H.. NAS Parallel Benchmarks:1254–1259. Boston, MA: Springer US 2011.

28. Cao Minh Chi, Chung JaeWoong, Kozyrakis Christos, Olukotun Kunle. STAMP: Stanford Transactional Applications for Multi-Processing. In:
Proc. 4th IEEE Int. Symposium on Workload Characterization:35–46IEEE; 2008.

29. Felber Pascal, Fetzer Christof, Riegel Torvald. Dynamic Performance Tuning of Word-Based Software Transactional Memory. In: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP); 2008.

30. Daloze Benoit, Tal Arie, Marr Stefan, Mössenböck Hanspeter, Petrank Erez. Parallelization of Dynamic Languages: Synchronizing Built-in
Collections. Proc. ACM Program. Lang.. 2018;2(OOPSLA):108:1–108:30.

31. Pllana S., Xhafa F.. Programming Multicore and Many-core Computing Systems. Wiley Series on Parallel and DWiley; 2017.

32. Xi Bowei, Liu Zhen, Raghavachari Mukund, Xia Cathy H., Zhang Li. A Smart Hill-climbing Algorithm for Application Server Configuration. In:
Proceedings of the 13th International Conference on World Wide WebWWW ’04:287–296ACM; 2004; New York, NY, USA.

33. Schaefer Christoph A.. Reducing Search Space of Auto-tuners Using Parallel Patterns. In: Proceedings of the 2009 ICSE Workshop on Multicore
Software EngineeringIWMSE ’09:17–24IEEE Computer Society; 2009; Washington, DC, USA.

34. Kirkpatrick S., Gelatt C. D., Vecchi M. P.. Optimization by Simulated Annealing. Science. 1983;220(4598):671–680.

35. Glover Fred. Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res.. 1986;13(5):533–549.

36. Stützle Thomas, Ruiz Rubén. Iterated Local Search:579–605. Cham: Springer International Publishing 2018.

37. Nath Rajib, Tullsen Dean. The CRISP Performance Model for Dynamic Voltage and Frequency Scaling in a GPGPU. In: Proceedings of the 48th
International Symposium on MicroarchitectureMICRO-48:281–293ACM; 2015; New York, NY, USA.

38. Rauber Thomas, Rünger Gudula, Schwind Michael, Xu Haibin, Melzner Simon. Energy Measurement, Modeling, and Prediction for Processors
with Frequency Scaling. J. Supercomput.. 2014;70(3):1451–1476.

Stefano Conoci et al. 19

39. Kaxiras Stefanos, Martonosi Margaret. Computer Architecture Techniques for Power-Efficiency. Morgan and Claypool Publishers; 1st ed.2008.

40. Hirki Mikael, Ou Zhonghong, Khan Kashif Nizam, Nurminen Jukka K., Niemi Tapio. Empirical Study of the Power Consumption of the x86-64
Instruction Decoder. In: USENIX Workshop on Cool Topics on Sustainable Data Centers (CoolDC 16)USENIX Association; 2016; Santa Clara, CA.

41. Lefurgy Charles, Wang Xiaorui, Ware Malcolm. Power Capping: A Prelude to Power Shifting. Cluster Computing. 2008;11(2):183–195.

How to cite this article: Stefano Conoci, Pierangelo Di Sanzo, Alessandro Pellegrini, Bruno Ciciani, and Francesco Quaglia (2020), On Power
Capping and Performance Optimization of Multi-threaded Applications, Concurrency and Computation: Practice and Experience, 2020;00:1–6.

APPENDIX

A PROOF OF THE OPTIMALITY OF THE CONFIGURATION SELECTED BY THE
EXPLORATION-BASED STRATEGY

In this section, we prove that the exploration-based strategy finds the optimal configuration—although it does not explore the whole configuration
space—under the assumption of unimodality of the speed-up curve and the assumption that the power usage always increases when decreasing
P-state or when increasing the number of used cores (which actually matches what we have experimentally observed).

We can formalize the following derived assumption, which are functional to the construction of the optimality proof.

Assumption 1. Fixed a P-state, the speed-up curve while varying the number of used cores n in [1, nmax] shows one of the following trends:

1. initially increases, reaches its maximum value, then decreases, otherwise
2. monotonically increases, otherwise
3. monotonically decreases.

Assumption 2. If thr(p′, n) > thr(p′, n + 1) then for each p we have thr(p, n) > thr(p, n + 1). Also, if thr(p′, n) > thr(p′, n − 1) then for each p

we have thr(p, n) > thr(p, n− 1). In other words, if for some P-state and n cores the speed-up decreases (increases) when adding (removing) one
core, then this holds true for whichever P-state. Overall, the ordering relations on the speed-up values when changing the number of cores are not
effected by P-state.

Assumption 3. If p < p′ then thr(p, n) > thr(p′, n) for whichever n. In other words, when decreasing the value of P-state the speed-up always
increases for whichever number of cores.

Assumption 4. If p < p′ then pwr(p, n) > pwr(p′, n), and if n > n′ then pwr(p, n) > pwr(p, n′). In other words, the power usage increases when
decreasing P-state or when increasing the number of cores.

Theorem 1. The exploration-based strategy finds the configuration with the maximum speed-up and that does not violate the power cap.

Proof. We partition the search space into three disjoint sub-spaces, based on the value of P-state of the initial configuration, i.e. ps. Specifically:

• S1 is the sub-space of configurations such that p = ps;
• S2 is the sub-space of configurations such that p < ps;
• S3 is the sub-space of configurations such that p > ps.

We show that Phase 1, Phase 2 and Phase 3 find the optimal configuration for sub-spaces S1, S2 and S3, respectively. This is sufficient to prove
that the overall optimal configuration is found, since Final phase simply selects the optimal one among them.

Outcome of Phase 1.

Phase 1 explores configurations within S1. Specifically, it keeps fixed ps and explores while varying the number of cores n. Phase 1 uses the hill-
climbing search. By Assumption 1, the function thr(ps, n) has only one local maximum, which corresponds to the global maximum. Accordingly,
the hill-climbing search can trivially find the maximum, which is the optimal configuration in S1. The only exception is when the configuration with
the global maximum violates the power cap. In this case, the exploration terminates as soon as the configuration with the highest number of cores,
which is within the power cap, is found. Also in this case, it is the optimal configuration in S1

20 Stefano Conoci et al.

Outcome of Phase 2.

We recall that Phase 2 starts exploring from the configuration returned by Phase 1, denoted as (ps, n1), which is the optimal among the ones with
P-state equal to ps, unless none of them is within the power cap. In the latter case, Phase 1 returns (ps, 1), i.e. the one with the lowest power
consumption. Also, we recall that Phase 2 explores moving towards lower P-states and a lower number of cores. By Assumption 2, the number
of cores that provides the maximum speed-up does not change when decreasing P-state. Accordingly, if (ps, n1) is the optimal configuration fixed
ps, then the optimal configuration for the sub-space S2 must have a number of cores less than or equal to n1. Specifically, if pwr(ps − 1, n1) < C

then the optimal configuration with P-state equal to ps − 1 still has n1 cores. Otherwise, if the power cap is violated, the number of cores has to
be reduced to try to stay within the power cap (by Assumption 4). This leads to reduce the speed-up, since the above situation can arise only if
we are in the ascending part of the speed-up curve. Accordingly, in this case the optimal configuration is the first one that is within the power cap
while reducing the number of cores. Phase 2 follows exactly this behavior, i.e. it first moves to P-state equal to ps − 1 , and if pwr(ps − 1, n1) > C

then it reduces the number of cores until it finds a configuration that does not violate the power cap. Thus, Phase 2 finds the optimal configuration
for P-state equal to ps − 1, unless none of them is within the power cap. We remark that Phase 2 continues this search for each P-state such that
p ∈ [1, ps − 1]. Thus, it finds the optimal configuration for each P-state in the sub-space S2. Ultimately, it selects the optimal one of them, thus
finding the optimal configuration in the sub-space S2.

Outcome of Phase 3.

We remark that Phase 3 starts exploring from the configuration returned by Phase 1, and explores moving towards higher P-state values and a
higher number of cores. Also, we remark that Phase 3 is not executed if the configuration returned by Phase 1 is such that n1 is the number of cores
that provides the highest speed-up and is within the power cap. Indeed, in this case, the speed-up for any configuration with a number of cores
higher than n1 and any higher P-state is lower by Assumption 2. Hence, Phase 3 is executed only if the number of cores that provides the highest
speed-up is higher than n1, but it violates the power cap with P-state equal to p1. This means that n1 is along the ascending part of the speed-up
curve because of Assumption 1. Also, this holds true for any P-state higher than p1 because of Assumption 2. Accordingly, the speed-up with any
configuration in the sub-space S3 with a number of cores less than n1 is lower. Consequently, the optimal configuration for P-state equal to ps + 1

must have a number of cores higher than n1. Phase 3 first moves to P-state equal to ps + 1, then it starts increasing the number of cores (which
by Assumption 4 leads to increase the power consumption) and stops when the power cap is violated or the speed-up decreases. Accordingly, it
finds the optimal configuration for P-state equal to ps + 1. After, Phase 3 explores for each P-state such that p ∈ [ps + 1, pmax]. Thus, it finds the
optimal configuration for each P-state in the sub-space S3. Ultimately, it selects the optimal one of them, thus finding the optimal configuration in
the sub-space S3.

	On Power Capping and Performance Optimization of Multi-threaded Applications
	Abstract
	Introduction
	Literature Overview
	Preliminaries
	The Power Capping Technique
	Exploration-based Strategy
	Time Complexity

	The Model-based Strategy
	Performance model construction
	Power-usage model construction
	Time Complexity

	The Micro-tuning Strategy

	Experimental Study
	Implementation Details
	Model Prediction Accuracy
	Evaluation and Comparison with Other Techniques
	Overall Assessment and Discussion

	Conclusions
	References
	Appendix
	Proof of the optimality of the configuration selected by the exploration-based strategy

