
Autonomic Power Management in Speculative
Simulation Runtime Environments

Stefano Conoci

conoci@diag.uniroma1.it

Sapienza, University of

Rome

Rome, Italy

Mauro Ianni

ianni@diag.uniroma1.it

Sapienza, University of

Rome

Rome, Italy

Romolo Marotta

marotta@diag.uniroma1.it

Sapienza, University of

Rome

Rome, Italy

Alessandro Pellegrini

pellegrini@diag.uniroma1.it

Sapienza, University of

Rome

Rome, Italy

ABSTRACT
While transitioning to exascale systems, it has become clear that

power management plays a fundamental role to support a viable

utilization of the underlying hardware, also performance-wise. To

meet power restrictions imposed by future exascale supercomput-

ers, runtime environments will be required to enforce self-tuning

schemes to run dynamic workloads under an imposed power cap.

Literature results show that, for a wide class of multi-threaded ap-

plications, tuning both the degree of parallelism and frequency/

voltage of cores allows a more effective use of the budget, compared

to techniques that use only one of these mechanisms in isolation.

In this paper, we explore the issues associated with applying these

techniques on speculative Time-Warp based simulation runtime

environments. We discuss how the differences in two antithetical

Time Warp-based simulation environments impact the obtained re-

sults. Our assessment confirms that the performance gains achieved

through a proper allocation of the power budget can be significant.

We also identify the research challenges that would make these

form of self-tuning more broadly applicable.

CCS CONCEPTS
• Computing methodologies → Discrete-event simulation;
• Hardware → Chip-level power issues; • Software and its
engineering → Software performance.
KEYWORDS
Power capping; share everything; parallel discrete event simulation

ACM Reference Format:
Stefano Conoci, Mauro Ianni, Romolo Marotta, and Alessandro Pellegrini.

2020. Autonomic Power Management in Speculative Simulation Runtime

Environments. In Proceedings of the SIGSIM Principles of Advanced Discrete
Simulation (SIGSIM-PADS ’20), June 15–17, 2020, Miami, FL, USA. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3384441.3395980

1 INTRODUCTION
The power consumption of computing systems has emerged as the

key limiting factor in the up-hill battle of achieving application

speed-up in the post Dennard scaling era. The portion of cores’

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7592-4/20/06. . . $15.00

https://doi.org/10.1145/3384441.3395980

circuitry that must be turned off at any given time due to thermal

constraints for the phenomenon known as Dark Silicon [12] is

expected to increase significantly in the following years. In this

context, the allocation of the power budget of computing units

should be considered as a first-class citizen when targeting both

energy efficiency and application performance.

Hardware manufacturers introduced different mechanisms over

the years that provide a reduction in the system power consump-

tion in operational contexts, often at the expense of performance.

The most significant are Dynamic Voltage and Frequency Scal-

ing (DVFS), which allows lowering the voltage and the frequency

(hence the power consumption) of a processor/core in a controlled

manner, and Clock Gating, which disables some processor/core

circuitry during idle periods. DVFS can be controlled directly from

software, while Clock Gating can be exploited indirectly by limiting

the number of threads running in parallel. Literature results [9]

show that a proper use of these mechanisms at runtime can provide

a significant increase in the application performance achievable

within a fixed power budget, also known as a power cap.
Most literature approaches rely on either exploration-based solu-

tions or model-based solutions, both of which exploit the runtime

sampling of the application performance and power consumption

for different configurations to predict the most favorable setting.

This sampling is generally not trivial for speculative simulations,

based on the Time-Warp paradigm [19], where the rate of applica-

tion progress can only be measured accurately at specific points

in time—actual committed events are typically identified when a

new Global Virtual Time instant is cooperatively agreed upon by

the concurrent processing elements of the simulation. At the same

time, most Time Warp runtime environments [5, 23, 26] rely on a

(more or less static) binding between Logical Processes (LPs) and

Processing Elements. This approach—which usually boils down to

each thread managing a subset of all LPs for an execution phase or

even for the lifetime of the simulation—is an easy technical solution

to guarantee data separation and reduce the number of synchroniza-

tion points in the runtime environments. Changing the number of

threads involved in the simulation at runtime requires a rebinding

of LPs to Processing Elements, which might introduce a significant

degradation in performance. Similarly, simulation engines which

do not require explicit rebinding (see, e.g., [18, 22]) could suffer

from memory asymmetry or locality drawbacks.

In this paper, we study the problem of allocating a fixed power

budget of a system running speculative simulations at runtime

with the goal of maximizing application performance. We apply

a state-of-the-art power cap optimization technique to two anti-

thetical Time-Warp based runtime environments with the goal of

https://doi.org/10.1145/3384441.3395980
https://doi.org/10.1145/3384441.3395980


SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA Conoci, et al.

0

1

2

3

4

5

6

7

8

9

10

11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
-S

ta
te

Threads

Frontier

Exploration phases

(ps,ts) (ps,t1)

(p2,t2)

(p3,t3)

Phase 1

Phase 2

Phase 3

Figure 1: Example of the exploration phases of the power
capping technique presented in [9].

showing how the diversities in the underlying Time Warp imple-

mentation mechanics can result in significantly different outcomes.

We experimentally show how dynamically changing the degree of

parallelism in combination with DVFS enables higher performance

within the power cap compared to techniques that rely solely on

tuning the frequency and voltage of cores. Finally, we outline the

characteristics that a Time-Warp based simulation runtime should

bear to empower an effective use of the power budget.

2 TARGET MODEL AND MOTIVATIONS
We investigate the challenges and opportunities of optimizing the

performance under a power cap of speculative simulations by ap-

plying a state-of-the-art power capping technique that relies on the

exploration of a portion of the space of configurations, intended as

the CPU P-states (cores frequency and voltage) and the number of

threads running in parallel, that provides the highest performance

within the power constraint [9]. This technique has been proved to

find the optimal configurations under a set of assumptions—which

we experimentally prove in this paper to also apply for speculative

simulations—as long as the returned values of performance and

power consumption of the sampled configurations are accurate

with respect to their real values.

The selected technique has the distinctive feature of considering

application scalability as a decisive element in the power budget

allocation, and has been proved to be effective for a wide range of

multi-threaded application with very different scalability profiles.

This is particularly relevant for speculative simulations—and in

general for applications that rely on optimistic synchronization

schemes—where an increase in the degree of parallelism can lead

to a higher rollback probability, and consequently to an increase

in the fraction of power spent on operations that do no contribute

to application progress. In this context, considering a fixed power

budget, the selection of a configurationwith a relatively low number

of cores at a relative high core frequency over configurations with a

higher number of cores set at a lower operating frequency depends

on the specific characteristics of the model, the runtime dynamics

of the simulation engine, and the hardware running the simulation.

The exploration procedure relies on three phases, where each

phase selects the optimum of a different subset of configurations.

Phase 1 explores the space of configurations for a fixed P-state 𝑃1.

We note that the selection of 𝑃1 is irrelevant for the correctness of

the procedure. At the end of phase 1, the optimum configuration

within the sub-space is selected, denoted as (𝑃1, 𝑇 1
). Subsequently,

Phase 2 explores the space of configurations with P-state lower than

𝑃1 and with the number of active threads lower than 𝑇 1
. On the

opposite, Phase 3 explores the space of configurations with P-state

higher than 𝑃1 and with the number of active threads higher than

𝑇 1
. An example of the exploration steps performed by the technique

(with phases highlighted) is provided in Figure 1. By comparing

the configurations returned by the three phases, the exploration

procedure can select the optimum of the whole bi-dimensional

space of configurations in linear time.

To achieve this result, the technique relies on a set of experimen-

tal evidences that allow the exclusion of portions of the space of

configurations which surely cannot contain the optimum. These

experimental results are obtained by studying the effects on perfor-

mance and power consumption of changing in combination both

the CPU P-state and the degree of parallelism. The authors proved

the optimality of the proposed technique under the assumption of

these experimental results, which were found to be true for the

vast majority of the considered multi-threaded workloads. These

assumptions are:

(1) by fixing the CPU P-state and increasing the number of

parallel threads, the throughput either increases monotoni-

cally and then decreases, always decreases monotonically,

or always increases monotonically;

(2) the throughput curves preserve their shape when changing

P-state, i.e. the ordering relations on the throughput values

when changing the number of threads are not affected by

the P-state;

(3) by decreasing P-state, which results in an increase in perfor-

mance and voltage, the throughput always increases for any

fixed number of parallel threads;

(4) either decreasing P-state (increasing frequency and voltage)

or increasing the number of parallel threads increases the

system power consumption.

In this work, we consider the throughput as a generic metric that

measures the rate of application progress. In the context of specu-

lative simulation, we consider throughput as the rate of committed

events per second. Different general metrics could also be used,

such as the response time, as long as they reflect the different rate

of application progress when comparing different configurations.

We investigated these assumptions in the context of speculative

simulations based on the Time Warp paradigm by studying the

results of performance and power consumption of different mod-

els run on top of two distinct simulation runtime environments,

namely the ROme Optimistic Simulator (ROOT-Sim) [26] and the

Ultimate Share-Everything Simulator (USE) [18].
ROOT-Sim is based on non-blocking coordination algorithms

both on the single node, and in the distributed deployment, thus

enabling for enhanced scalability. For the purpose of this work, it is

interesting to note that ROOT-Sim enforces a loose binding between

LPs and worker threads, supporting a periodic rebalancing opera-

tion [33], whose principal goal is to even out the workload assigned

to every worker thread, so as to reduce clock skew probability.

USE is a highly-optimized PDES engine for shared-memory

multi-core machines, which provides non-blocking progress in

both virtual and wall-clock time. The key characteristic of USE is

the presence of a unique pool of events to be processed, which is

shared among all the compute units (worker threads) of the runtime



Autonomic Power Management in Speculative Simulation Runtime Environments SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30  35  40

S
p
e
e
d
 
U
p
 
w
.
r
.
t
.
 
P
1
3
 
a
n
d
 
1
 
t
h
r
e
a
d

#Threads

P1
P2
P3
P4
P5

P6
P7
P8
P9
P10

P11
P12
P13

(a) Speedup

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

A
V
G
 
P
o
w
e
r
 
(
W
)

#Threads

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

(b) Power

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

N
o
r
m
a
l
i
z
e
d
 
P
a
r
a
l
l
e
l
 
S
p
e
e
d
 
U
p

#Threads

phold-64
phold-256
phold-1024

traffic

(c) Scalability

Figure 2: Preliminary results which show that the assumptions used by the power capping technique in [9] apply also for
speculative simulation.

environment. This guarantees that the computing power is always

assigned to the processing of highest-priority events, thus reducing

the occurrence of causality violations, and consequently improving

the overall efficiency.

The four assumptions on which the power capping technique

relies on were found to hold experimentally for different models

on both runtime environments. As an example, Figures 2a–2c show

the speed-up and power consumption obtained for the whole space

of configurations considering the PHOLD simulation model [14]

with 64 LPs run on top of USE—further details on the considered

models, and the characteristics of the hardware will be discussed in

Section 4. The results shown in Figure 2a offer an example to assess

the validity of Assumption 2 and Assumption 3. Similarly, Figure 2b

affirms the soundness of Assumption 4. Finally, Figure 2c shows

the scalability curves of different models run on USE. The curves

adhere to the trends identified in Assumption 4. Similar results have

been observed also on ROOT-Sim with the same models.

3 RELATEDWORK
Runtime tuning and self optimization is a technique which has

been thoroughly studied in the context of speculative simulation,

focusing on diverse subsystems of traditional Time Warp runtime

environments [17]. For example, it has been used to fine tune the

checkpoint interval [1, 13, 30], to select the best checkpointing

strategy [27], for event scheduling [4, 24, 29, 31], to decide upon

the technique to implement a rollback (e.g. state saving vs. reverse

computation [7]), to find a proper binding between LPs and pro-

cessing elements performance-wise [23, 33], or to control overall

memory consumption [10].

Most of these optimizations have been tailored for a reduction

of the rollback probability [21], for a containment of the effects of

rollbacks on performance [11], for accelerating the critical path [32]

by dynamically adjusting the number of events executed in each

LP cycle, or to jointly reach many of these goals by limiting op-

timism [20], also in the face of irregular workloads [6]. Previous

research [28] has investigated the possibility to rely on DVFS to

improve the performance of a Time Warp simulation. Nevertheless,

the approach proposed in [28] aimed at controlling the effects of

rollbacks by means of core’s clock frequency adjustment.

Although recently witnessed as a fundamental aspect [15, 16],

energy efficiency in Time Warp simulation has only seen limited

attention, having been incidentally deal with either in indirect

ways [25], or with a focus on synchronization in distributed de-

ploys [2]. A recent work [8] has proposed a new organization of

Time-Warp runtime environments, to tackle performance under a

power cap, with a future eye on heterogeneous architectures. This

latter architecture could easily benefit from the results in this paper.

4 EXPERIMENTAL EVIDENCES
We have relied on one synthetic benchmark and one real-world

application. The synthetic benchmark is the classical PHOLD [14].

In this benchmark, every LP schedules events for any other LP in

the system, with an exponential timestamp increment. We have set

the loop duration to provide an event granularity ranging from 70𝜇𝑠

to 150𝜇𝑠 , depending on the selected P-state. We have run different

configurations, using from 60 to 1024 LPs.

We have also modified the standard PHOLD configuration to

have some LPs work as hot spots. In this varied configuration, all LPs
send 50% of their events to one of the hot-spot LPs. We configured

this PHOLD variant to use 1024 LPs, and only two hot spots. The

hot-spot dynamic is activated periodically, resulting in the model

alternativelyworkingwith andwithout hot spots. This kind ofwork-

load is traditionally known to be difficult to be managed by PDES

runtime environments, since they increase both the (cascading)

rollback probability, and the rollback length. It is therefore a good

worst-case candidate to stress test the performance-maximization

exploration strategy under a power cap. Moreover, its dynamism

makes it an ideal test case to assess the benefits of real-time tuning.

The second benchmark is traffic, a vehicular model initially pre-

sented in [34]. This model offers micro-simulation capabilities of

traffic jams at the details of a single car in a street. We have config-

ured the traffic model to simulate the entire Italian highway system

(islands excluded, to have a fully-connected graph), using 137 LPs.

Every node is described in terms of car inter-arrival time and car

leaving probability (therefore describing its load), while edges are

described in terms of their length. Given the high amount of data

to be processed, the duration of events in this case is much larger,

on the order of milliseconds, and varies significantly during the

simulation run. Moreover, the small number of LPs involved in the

simulation is an actual worst-case scenario, because it shows a very

high degree of speculation.

All experiments have been run on a dedicated bare-metal ma-

chine, equipped with dual Intel Xeon Silver 4210 CPUs, each with

10 physical cores and 20 threads (for a total of 40 hyper-threads),



SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA Conoci, et al.

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40

F
ra

ct
io

n
 o

f 
E

x
ec

u
ti

o
n

 (
%

)

# reads
0.2s 0.5s 1s 2s

(a) 60 LPs

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40

F
ra

ct
io

n
 o

f 
E

x
ec

u
ti

o
n

 (
%

)

# reads
0.2s 0.5s 1s 2s

(b) 256 LPs

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40

F
ra

ct
io

n
 o

f 
E

x
ec

u
ti

o
n

 (
%

)

# reads
0.2s 0.5s 1s 2s

(c) 1024 LPs

Figure 3: Fraction of time spent in LP rebinding with varying time interval

Table 1: Normalized standard deviation of throughput sam-
ples for PHOLD.

Root-sim USE

Sampling

period(s)

64 LP 256 LP 1024

LP

64 LP 256 LP 1024

LP

0.05 6.57 25.28 139.4 4.55 2.20 4.27

0.1 4,04 14.40 76.23 3.25 1.56 2.85

0.2 3.27 9.22 37.39 3.01 1.08 1.30

0.5 2.35 4.64 21.29 1.90 0.65 0.74

1.0 2.30 3.82 15.63 1.85 1.15 1.19

2.0 2.42 3.55 8.62 1.33 1.00 1.23

and 64 GB of main memory. As for environmental software, we

have used Debian 10.2, running Linux 4.19.0, and gcc 8.3.0.

Table 1 shows the normalized standard deviation of the through-

put samples taken by the two runtime environments when running

PHOLD, considering different sampling periods for 64, 256 and

1024 LPs. We computed the normalized standard deviation for each

number of active threads (from 1 to 40) with fixed P-state over

multiple hundreds of samples and calculated the average. The goal

of this study is to investigate the variability of the throughput mea-

surements of the samples for the two runtimes with both a static

configuration and a static workload. We recall that the power cap-

ping technique relies on the accuracy of the throughput samples

acquired during the exploration procedure to select the configura-

tion that maximizes the performance. We have varied the sampling

period from 0.05 to 2 seconds. A higher period is impractical: in

ROOT-Sim it corresponds to the GVT computation, which directly

triggers other fundamental operations, such as fossil collection.

As expected, the normalized standard deviation decreases as the

size of the sampling period increases. Longer intervals cover an

overall higher percentage of the execution time, which is generally

very similar when considering multiple executions of the same

static workload with the same configuration. In USE, we observe

significantly lower values than ROOT-Sim. This is related to the

fact that the implementations of the two runtime environments are

significantly different. In particular, USE relies on a single shared

event pool which is accessed in a non-blocking fashion. This allows

to avoid costly synchronization protocols to determine the GVT

(and hence the throughput), because the value corresponds to the

head element in the queue. Converesely, ROOT-Sim relies on a

traditional consensus protocol to determine the GVT (and hence

the number of committed events). Moreover, the need to rely on

multiple queues in ROOT-Sim determines increased costs when

the number of LPs varies, which depend on message-exchange

patterns, rollback dynamics, and coasting forward effects for state

reconstructions—this is confirmed by the fact that when running

models with only 64 LPs the ratio (ROOT-Sim deviation/USE devia-

tion) is 1.44, while with 1024 LPs the ratio is 32.64. All these aspects

determine a stabler behavior in USE. Overall, this means that tra-

ditional multi-queue implementations for Time Warp simulation

engines easily violate the heuristic assumption that, given a certain

configuration, throughput estimation is kept stable.

In Figure 3 we provide experimental data related to the rebinding

operation in ROOT-Sim. As mentioned, this operations is triggered

for two purposes in our experiment: on the one hand, we keep

the original goal of balancing at runtime the load of the different

Processing Elements, to reduce the rollback probabilty. On the other

hand, rebinding is required every time that the heuristic decides

upon the (de)activation of some worker thread. In our implemen-

tation, this operation is triggered at every new GVT computation,

which is the time instant at which a thread is possibly (de)activated.

By the results, where we assume to change the number of threads

at each GVT, we can observe that when the GVT computation is

triggered often (e.g., every 200 milliseconds), the impact of the re-

binding operation is as high as 25% of the overall execution time.

The impact grows linearly with the number of active threads, due

to the coordination nature of this operation, which requires at least

one barrier among all the threads, to avoid that an LP is concurrently

scheduled by multiple threads. Similarly, there is a proportional

growth in the cost with the number of LPs, which is also expected

due to the fact that the rebinding operation has to estimate the

future workload, to perform an even rebalancing. This result em-

phasizes that, to allow for dynamic management of threads for

energy optimization, this operation requires careful attention, not

to hamper the overall performance.

Figure 4 shows the effectiveness of the power capping technique

(referred to as DVFS+TS, where TS stands for thread scheduling) for

ROOT-Sim, considering different values of the sampling interval for

PHOLD with 64, 256 and 1024 LPs and two different power caps (55

and 65Watt). These results are compared to an oracle, which selects

the configuration that provides the maximum performance within

the cap, and a technique referred to as DVFS that only changes

P-state to meet the cap while keeping all the threads running. The

latter does not rely on throughput samples but only on power

consumption samples which are generally stable for intervals in

the tens of milliseconds or higher. Both DVFS+TS and DVFS rely

on a exploration procedure followed by an exploitation phase. We



Autonomic Power Management in Speculative Simulation Runtime Environments SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

55W 65W 55W 65W 55W 65W

phold-64 phold-256 phold-1024

S
p
e
e
d
u
p

    

ORACLE

DVFS

DVFS+TS (0.05s)

DVFS+TS (0.10s)

DVFS+TS (0.20s)

DVFS+TS (0.50s)

DVFS+TS (1.00s)

DVFS+TS (2.00s)

Figure 4: Performance Results using ROOT-Sim with different duration of the sampling interval.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

55W 65W 55W 65W 55W 65W 55W 65W 55W 65W

phold-64 phold-256 phold-1024 traffic hs-mixed

S
p
e
e
d
u
p

    

ORACLE DVFS DVFS+TS

Figure 5: Performance Results using USE with 0.2 seconds sampling interval.

set the duration of the exploitation phase dynamically such that

the percentage of time spent in the exploration is equal to 10% of

the overall execution time. We recall that during the exploration

the application is still generating progress, and that the techniques

tends to visit configurations that are close to the optimum, which

limits the overall exploration overhead. The percentage of power

cap violation is insignificant for both DVFS and DVFS+TS as they

both reduce core frequency whenever the cap is exceeded.

PHOLD with 256 and 1024 LPs are very scalable workloads as

their optimal configurations for both 55 watt and 65 watt use 40

active threads at scaled frequencies. These workloads are very

favorable to the DVFS-only technique—which obviously selects

the optimal configurations—showing only minor slow-downs com-

pared to the oracle due to the rebinding and exploration overheads.

According to the data shown in Table 1, the variance of the through-

put samples for these models is very significant, which makes it

unable to find the optimal configuration for any duration of the sam-

pling interval. As expected, with higher duration of the sampling

interval and higher accuracy of the measurements, the performance

of DVFS+TS gets closer to optimum, despite not reaching it. Con-

versely, the low variability of the samples for PHOLD on ROOT-Sim

with 64 LPs allows the power capping technique to find the opti-

mum when the duration of the sampling interval is equal to 0.2

seconds or higher. The DVFS technique shows a significant slow-

down compared to the optimum, which selects 20 threads with

P-state 8 and 3 for 55 Watt and 65 Watt respectively. Overall, these

results show that a non-stable throughput, typical of traditional

Time-Warp runtimes, is a limitation to the adoption of autonomic

energy-aware self-tuning schemes.

Conversely, Figure 5 shows the results on USE considering a fixed

sample interval of 0.2 seconds, which offers a sufficient accuracy

for all the considered workloads. The technique always manages

to find the optimum, thus matching the DVFS-only technique in

Table 2: PHOLD: Speedup with 40 threads wrt to Sequential.

60 LP 256 LP 1024 LP

ROOT-Sim 5.17 13.37 36.27

USE 8.86 16.96 38.43

its favorable workloads, while also being very close to the oracle

whenever a lower number of active threads at higher frequency

can be more beneficial to performance. The overhead is also lower

compared to ROOT-Sim, as USE does not require the rebinding of

LPs when changing the number of active threads. In Figure 5 we

also provide the results with traffic, where the high contention leads

to very poor performance for the DVFS technique, while DVFS+TS

reaches the performance level of the oracle. Morever, in the hot-

spot configuration (hs-mixed in the plots) the dynamic technique

manages to follow the variability of the workload, offering up to 26%

increased performance compared to the best static configuration.

Finally, to show that we have been discussing competitive par-

allel implementations, in Table 2 we provide the speedup over a

sequential simulation built relying on a fast Calendar Queue-based

scheduler [3] of the PHOLD model, when using all 40 cores.

5 DISCUSSION AND FUTUREWORK
In this work, we have provided experimental evidences of the be-

havior of state-of-the-art PDES runtime environments, when trying

to maximize their performance under a power cap. We have relied

on a technique [9] that explores a sub-set of the configurations of

number of active threads and P-States to find the configuration that

provides the maximum performance under the power cap. However,

the optimality of the technique depends on the accuracy of the sam-

ples acquired during the exploration. Our results attest the benefit

of this approach from an energy and performance point of view.

Beyond the numerical results, we can draw two different conclu-

sions, which call for an additional research effort in the upcoming



SIGSIM-PADS ’20, June 15–17, 2020, Miami, FL, USA Conoci, et al.

years to allow runtime environments to benefit even more from

this strategy, also in preparation for exascale computing systems.

We have emphasized the need for loose coupling between LPs

and processing elements. While this conclusion has already been

discussed in the literature (see, e.g., [23, 33]), we have shown to

what extent it is fundamental when dealing with energy-efficient

simulation runs. Indeed, as we have shown, being able to promptly

change the number of active threads at runtime is mandatory to

identify configurations which can provide effective speedups under

an imposed power cap. While we have shown that effective imple-

mentations of the rebalancing operation for traditionally-organized

runtime environments exist [33], this is a research topic which well

deserves attention, also trying to identify mixed configurations be-

tween share-everything and share-nothing runtime environments.

At the same time, we have shown that the greatest impairment

to enacting effective energy-efficient configurations in traditional

PDES runtime environments comes from the extremely slow rate at

which accurate throughput measurement can be provided. Indeed,

traditional runtime environments can accurately provide such a

measurement only when a new GVT value is computed. Increasing

the frequency of such a coordination protocol could be detrimental

for the performance, making any optimization strategy based on

exploration ineffective. Different approaches, such as the share-

everything one, allow to rely on much more accurate and stable

measurements. Nevertheless, by design, such runtime environments

cannot be immediately ported to distributed architectures, thus

making extremely large models intractable. Moreover, our through-

put metric relies on both event granularity and workload being

constant during exploration.

There is therefore an urgent need to either identify technical

solutions to bring the share-everything paradigm to distributed

environments, without violating the assumptions this paradigm

has been built upon, or to identify new accurate metrics to estimate

the throughput, also when committed information is not available.

We claim that if all the above aspects are not properly addressed,

then it will be extremely difficult to jointly meet performance and

energy-efficiency goals in the upcoming years.

REFERENCES
[1] Laurent R G Auriche, Francesco Quaglia, and Bruno Ciciani. 1998. Run-time

selection of the checkpoint interval in time warp based simulations. Simulation
Practice and Theory 6, 5 (1998), 461–478.

[2] Aradhya Biswas and Richard Fujimoto. 2018. Zero energy synchronization of

distributed simulations. In Proceedings of the 2018 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation.

[3] Randy Brown. 1988. Calendar queues: a fast O(1) priority queue implementation

for the simulation event set problem. Commun. ACM 31, 10 (1988), 1220–1227.

[4] Christopher Burdorf and Jed B.Marti. 1990. Non-Preemptive TimeWarp Scheduling
Algorithms. Technical Report. RAND Corporation.

[5] Christopher D Carothers, David W Bauer, and S Pearce. 2000. ROSS: a High

Performance Modular Time Warp System. In Proceedings of the 14th Workshop
on Parallel and Distributed Simulation. IEEE Computer Society, 53–60.

[6] Christopher D Carothers and Richard M Fujimoto. 2000. Efficient execution of

Time Warp programs on heterogeneous, NOW platforms. IEEE Transactions on
Parallel and Distributed Systems 11, 3 (2000), 299–317.

[7] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Trans-

parently Mixing Undo Logs and Software Reversibility for State Recovery in

Optimistic PDES. ACM Transactions on Modeling and Computer Simulation 27, 2

(may 2017), 1–26.

[8] Stefano Conoci, Davide Cingolani, Pierangelo Di Sanzo, Alessandro Pellegrini,

Bruno Ciciani, and Francesco Quaglia. 2018. A Power Cap Oriented Time Warp

Architecture. In Proceedings of the 2018 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. ACM.

[9] Stefano Conoci, Di Sanzo Pierangelo, Ciciani Bruno, and Quaglia Francesco.

2018. Adaptive Performance Optimization under Power Constraint in Multi-

thread Applications with Diverse Scalability. In Proceedings of the 9th ACM/SPEC
International Conference on Performance Engineering.

[10] Samir R Das and Richard M Fujimoto. 1997. An Empirical Evaluation of

Performance-Memory Trade-Offs in Time Warp. IEEE Transactions on Parallel
and Distributed Systems 8, 2 (1997), 210–224.

[11] Phillip M. Dickens, David M. Nicol, Paul F. Reynolds, and J. M. Duva. 1996.

Analysis of bounded time warp and comparison with YAWNS. ACM Transactions
on Modeling and Computer Simulation (1996).

[12] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. 2012. Dark Silicon and the End of Multicore Scaling. IEEE
Micro 32, 3 (may 2012), 122–134.

[13] Josef Fleischmann and Philip A. Wilsey. 1995. Comparative Analysis of Periodic

State Saving Techniques in Time Warp Simulators. In Proceedings of the 9th
Workshop on Parallel and Distributed Simulation. IEEE Computer Society, 50–58.

[14] Richard M Fujimoto. 1990. Performance of Time Warp Under Synthetic Work-

loads. In Proceedings of the Multiconference on Distributed Simulation. Society for

Computer Simulation, 23–28.

[15] Richard M. Fujimoto. 2019. Power consumption in modelling and simulation.

Journal of Simulation (oct 2019), 1–12.

[16] Richard M. Fujimoto, Michael Hunter, Aradhya Biswas, Mark Jackson, and Sabra

Neal. 2017. Power efficient distributed simulation. In Proceedings of the 2017 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation.

[17] Anurag Gupta, Ian F. Akyildiz, and Richard M. Fujimoto. 1991. Performance

analysis of time warp with multiple homogeneous processors. IEEE Transactions
on Software Engineering (1991).

[18] Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini, and

Francesco Quaglia. 2018. The Ultimate Share-Everything PDES System. In Pro-
ceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation. ACM Press, 73–84.

[19] David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming
Languages and System 7, 3 (1985), 404–425.

[20] Kevin Jones and Samir R. Das. 1998. Combining optimism limiting schemes in time

warp based parallel simulations. In Winter Simulation Conference Proceedings.
[21] Boris Lubachevsky, Adam Schwartz, and Alan Weiss. 1991. An Analysis of

Rollback-Based Simulation. ACM Transactions on Modeling and Computer Simu-
lation (1991).

[22] Dale EMartin, Timothy J McBrayer, and Philip A.Wilsey. 1996. WARPED: A Time

Warp simulation kernel for analysis and application development. In Proceedings
of the 29th Hawaii International Conference on System Sciences. Volume 1: Software
Technology and Architecture. IEEE Computer Society, 383–386.

[23] Eric Mikida and Laxmikant Kale. 2018. Adaptive methods for irregular parallel

discrete event simulation workloads. In Proceedings of the 2018 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation.

[24] Avinash C Palaniswamy and Philip A. Wilsey. 1994. Scheduling Time Warp

Processes Using Adaptive Control Techniques. In Proceedings of the 1994 Winter
Simulation Conference. Society for Computer Simulation, 731–738.

[25] Alessandro Pellegrini and Francesco Quaglia. 2017. A Fine-Grain Time-Sharing

Time Warp System. ACM Transactions on Modeling and Computer Simulation 27,

2 (jul 2017), 1–25.

[26] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2011. The ROme

OpTimistic Simulator: Core internals and programming model. In Proceedings of
the 4th ICST Conference of Simulation Tools and Techniques. ACM, 96–98.

[27] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2015. Autonomic

State Management for Optimistic Simulation Platforms. IEEE Transactions on
Parallel and Distributed Systems 26, 6 (2015), 1560–1569.

[28] Patrick Putnam, Philip A. Wilsey, and Karthik Vadambacheri Manian. 2012. Core

frequency adjustment to optimize Time Warp on many-core processors. Simula-
tion Modelling Practice and Theory (2012).

[29] Francesco Quaglia and Vittorio Cortellessa. 2002. On the processor scheduling

problem in time warp synchronization. ACM Transactions on Modeling and
Computer Simulation 12, 3 (jul 2002), 143–175.

[30] Robert Rönngren and Rassul Ayani. 1994. Adaptive Checkpointing in Time Warp.

In Proceedings of the 8th Workshop on Parallel and Distributed Simulation. Society
for Computer Simulation, 110–117.

[31] Tapas K Som and Robert G Sargent. 1998. A Probabilistic Event Scheduling

Policy for Optimistic Parallel Discrete Event Simulation. In Proceedings of the
12th Workshop on Parallel and Distributed Simulation. IEEE, 56–63.

[32] Seng Chuan Tay, Yong Meng Teo, and Siew Theng Kong. 1997. Speculative

parallel simulation with an adaptive throttle scheme. In Proceedings of the 11th
Workshop on Parallel and Distributed Simulation.

[33] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2012. Load sharing

for optimistic parallel simulations on multi core machines. ACM SIGMETRICS
Performance Evaluation Review 40, 3 (jan 2012), 2–11.

[34] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2012. Towards

Symmetric Multi-threaded Optimistic Simulation Kernels. In Proceedings of the
26th Workshop on Principles of Advanced and Distributed Simulation, 211–220.


	Abstract
	1 Introduction
	2 Target Model and Motivations
	3 Related Work
	4 Experimental Evidences
	5 Discussion and Future Work
	References

