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ABSTRACT
Controlling power usage has become a core objective in modern
computing platforms. In this article we present an innovative Time
Warp architecture oriented to efficiently run parallel simulations
under a power cap. Our architectural organization considers power
usage as a foundational design principle, as opposed to classical
power-unaware Time Warp design. We provide early experimental
results showing the potential of our proposal.

CCS CONCEPTS
• Computing methodologies→ Discrete-event simulation; •
Computer systems organization → Multicore architectures; •
Software and its engineering → Power management;
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1 INTRODUCTION
Power usage has become a major concern in software applications.
In this context, the objectives of power oriented design of simu-
lation systems can be disparate. They range from the elongation
of the lifetime of mobile devices involved in the simulation—as
for on-line simulations or volunteer computing on mobile devices
[2]—to the usage of power governors to optimize the execution of
the simulation model—as for the case of Time Warp parallel simula-
tions [4] where the CPU-core frequency is dynamically controlled
in order to throttle the execution of simulation objects out of the
critical path [8]. Within this panorama, we target the orthogonal
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objective of efficiently running Time Warp simulations under a
power budget constraint. This problem is generally known in the
literature as power capping, and is essentially related to the fact that
infrastructure/system owners may decide to limit the power con-
sumption of the employed machines for various reasons, including
data-center cooling costs

A trivial way of imposing a power cap to TimeWarp simulations
would consists in running the Time Warp platform on top of a
group of CPU-cores with properly tuned down performance states
(i.e. operating frequency and voltage). This approach would deliver
a scaled down computing power, resembling a scenario where the
Time Warp application is executed on less performing hardware.
However, we do not consider such an approach satisfactory, since
it does not consider power efficiency as a core aspect in the design
of the Time Warp architecture.

In this paper we take the different perspective of devising a new
TimeWarp architectural organizationwhich is by design oriented to
power capping. It allows us to control the power usage—hence the
speed—of operations performed by the threads selectively exploiting
different software paths for different classes of threads.

Typical TimeWarp architectures are generally based on a unique
control flow graph, which characterizes the execution of all the
involved threads. Along this graph each thread typically executes
both housekeeping operations and event processing. In our new
design, by imposing different control flow graphs to the different
threads, we propose an asymmetric scenario where a few threads
run tasks that are more time critical, while other threads run less
critical ones. Separating the tasks in such different classes leads
to the possibility of lowering down the power state and/or the
frequency of operations of a given CPU-core (running a specific
thread)—which allows meeting the power cap—while still enabling
more critical Time Warp tasks to be executed timely.

Our power cap oriented Time Warp architecture has been im-
plemented as a variation of the architectural organization of the
open source ROOT-Sim package [10]. In the concluding part of this
paper we report early experimental results that show the potential
of our proposal.

2 RELATEDWORK
Common power capping techniques in the literature (e.g. [9]) are
application-agnostic—they enforce power budgets at the level of
server machines, without accounting for workload features of the
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hosted applications. Contrariwise, we explicitly optimize the exe-
cution of Time Warp-based application under a power budget.

Regarding studies in the area of parallel simulation, the works
in [1, 3] provide evidence of how using different algorithms to run
specific simulation models can impact power and energy overheads.
One main outcome is that parallel and distributed simulations suffer
from power and energy overhead more intensely than sequential
simulation. This demands for innovative designs making parallel
simulation systems more prone to energy and power efficiency. Our
work is exactly in this direction since our objective is to devise a
Time Warp architecture specifically designed to deliver optimized
performance under a power cap.

The proposal in [8] controls the processor speed—via DVFS
(Dynamic Voltage and Frequency Scaling)—for optimizing Time
Warp performance. Lowering down the power usage can lead to
emulate a throttling scheme where excessively optimistic simula-
tion objects are slowed down by slowing down the speed of the
CPU-core/thread they are bound to. Our work is orthogonal to
[8] since we do not tune the performance state of threads based
on their degree of speculation, but based on the different type of
tasks they execute. Moreover, [8] does not address performance
optimization under a power budget, as instead we do via our Time
Warp architecture.

Asymmetry—in the form of the master/worker paradigm—has
been exploited in [5] to process distributed simulations on public
resources and desktop grid infrastructures. This work does not
cope with power budgets, thus our proposal is fully orthogonal to
it, although we share some baseline system design concepts such
as the idea of pipelined interactions across the asymmetric threads.

3 THE ARCHITECTURE
Our power-cap oriented TimeWarp architecture is based on the idea
of exploiting asymmetric thread operations to carry out different
tasks. In particular, we discriminate two classes of tasks, and hence
of threads:
Class-1 Forward mode processing of simulation events;
Class-2 All other tasks, namely GVT (Global Virtual Time) com-

putation, fossil collection, state saving, rollback (including
coasting forward), scheduling events to be processed in for-
ward mode, message exchange, and so on.

Threads runningClass-2 tasks are referred to as Controller Threads
(CTs). Threads executing simulation events in forwardmode, namely
Class-1 tasks, are instead referred to as Processing Threads (PTs).
In our architecture, threads are pinned to different CPU-cores, so
that we can control the performance states of the CPU-cores—with
the aim of matching the power budget—which reflects into the
speed of operations performed by the different threads. In this sce-
nario, PTs play a core role in controlling how to spend the overall
power budget assigned to the Time Warp system. More in detail,
running PTs on top of CPU-cores configured with lower perfor-
mance states generates the scenario where the execution of the
overall application workload (the actual simulation events to be pro-
cessed while moving forward along the simulation time) is slowed
down. However, slowing down those threads does not lead to slow-
ing down CTs, which can be hosted on other CPU-cores, which
can then be run at a relatively higher power state. This enables all

Class-2 tasks to be carried in a timely manner, which is crucial to
the goodness of the runtime dynamics. In fact, literature studies
have shown that fast completion of housekeeping tasks, such as
rollback (including state reconstruction via, e.g., coasting forward)
or GVT computation (see, e.g., [7]), is fundamental in order not
to impair synchronization dynamics, and not to incur the risk of
higher incidence of wasted speculative computation.

In this paper we focus on shared-memory multi-core machines,
so that a CT and the PTs bound to it always have access to the
same data related to the simulation execution. In any case, our
approach could be generalized by adopting it on top of each indi-
vidual machine within a distributed memory system and making
a CT and its controlled PTs reside on the same machine. On the
other hand CTs residing on remote machines may interact just like
traditional threads running a non-power cap oriented Time Warp
platform—as an example, they might exploit message passing in
case of event-communication between simulation objects managed
by two PTs, each of which associated with remote CTs.

Indicating with Ncores the number of available CPU-cores for
running the TimeWarp system, and withNCT andNPT the number
of used CTs and PTs, respectively, we have Ncores = NCT + NPT .

A CT controls at least one PT, thus in our architecture the in-
equality NCT ≤ NPT holds. This is perfectly aligned with the idea
of having fewer threads running more critical tasks in a timely
manner, via higher power demand, and more threads running the
normal forward workload, via lower power demand.

EachCTj is in charge of managing the execution of a subset of all
the simulation objects. It manages their event queues, by taking care
of incorporating into the proper queues any new event destined
to these objects, or canceling a previously inserted event in case
of an incoming anti-event. CTj also manages the state queues of
the simulation objects, by taking checkpoints of their states and
logging them into the state queue of the corresponding object.

CTj associates the managed objects with its bound PTs according
to a partitioning scheme. More in detail, a partition pi of all the
objects managed by CTj is bound to an individual PTi , meaning
that the object belonging to the partition pi can only be scheduled
for forward execution on PTi . This leads to the scenario where no
two different PTs can work simultaneously on the state of a same
object, thus preventing data conflicts. On the other hand,CTj and its
controlled PTi might need to work on the state of a same simulation
object, given that they carry out disjoint classes of tasks that may
anyhow lead to operate on the same object memory image. More in
detail, PTi is in charge of manipulating the state of the object when
an event is being processed in forward mode, while CTj , beyond
taking checkpoints, may also access the object state for reloading a
previous checkpoint and reprocessing coasting forward events in
case of a rollback. We recall that both CTj and PTi live on a same
shared-memory machine so that they can both directly access the
state image of a same object by relying on address space sharing.
Given such a sharing of the accesses to the object state, a CT and
all its controlled PTs need to put in place a scheduling mechanism
to determine which of them can operate on the object state at any
time, guaranteeing isolated access to prevent inconsistencies.

The scheduling of the actions on the objects’ states is put in place
in our architecture via the notion of port between CTj and PTi . A
port is a bidirectional communication structure—still exploiting
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Figure 1: Structure of the port between CT and PT.

shared memory support—based on the multiplexing of different
data flows. Data that flows from CTj to PTi are multiplexed along
two channels of the port, having different priorities. We refer to this
flow-direction as input. Conversely, data that flows from PTi toCTj
travels along a single channel, and we refer to this flow-direction
as output. Figure 1 shows the port scheme.

The low priority input channel is used by CTj to post to PTi
the events to be processed in forward mode, which are destined
to the objects belonging to the pi partition. CTj extracts unpro-
cessed events from the objects’ event queues following the Lowest-
Timestamp-First (LTF) rule, and posts them to the input channel
of the port. Hence it creates into the port a pipeline of events that
PTi can extract and process, accessing the state of the correspond-
ing objects. We note that LTF guarantees that, for each individual
simulation object, the extracted events from the pipeline respect
timestamp-ordering, unless (1) causal inconsistencies are revealed
due to the arrival of some straggler event at that object—possibly
injected by another PTk—or (2) the cancellation of some event that
passed through the pipeline, or (3) the objects produces for itself
some new event with timestamp lower than another one already
filled into the pipeline, which gets eventually processed. Once an
event is extracted and then processed, newly produced events (if
any) are posted by PTi to the output flow of the port. These are
in their turn extracted by CTi and are incorporated into the event
queues of the destination objects, if they belong to the pi partition.
Otherwise these events are sent towards the CT instance to which
the corresponding objects are bound.

The accesses byCTj and PTi to the port are asynchronous, mean-
ing that there is no blocking synchronization between the two
threads. This allowsCTj to switch to a different PTk it is managing
whenever a port of some other PTi—previously filled with event
records—does not yet provide in output new events to handle.

Clearly, we need to include the possibility to squash portions
of the current pipeline at low cost as soon as some inconsistency
is detected along the flow of event records that were previously
inserted, and to manage state restoration if requested because of
erroneous speculation involving already processed events at some
simulation object. This is the case of the arrival of a straggler event
for some object, leading to the need to retract event records destined
to that object which still stand into the pipeline, and to the need to
rollback the object state if out-of-order processing already happened
at that object. The same is true for the arrival of an anti-event
annihilating some previously processed event, or one that currently
stands into the pipeline. To manage these scenarios, we exploit the
high priority input channel of the port, together with a mechanism
that tags event records. Each event record that is inserted into the
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Figure 2: Example flow of event and control records.

pipeline is tagged with a unique per-object identifier, which in our
case is a monotonically increasing counter value. In the example
shown in Figure 2, tags for events of the simulation object obja
range from x to x + 2, while those destined to the object objb range
from y to y + 1. If the pipelined events destined to obja need to
be undone then CTj inserts into the high priority input channel a
squash control record bound to obja , and carrying the same counter
value of the last event record that was inserted into the pipeline.
For the example in Figure 2, the control record is structured as
squash[obja ,x +2]. PTi extracts such a control records as soon as it
finishes processing its last event record—given the higher priority
of the control flow information in input to the port—and switches
to a state where, upon extracting from the pipeline event records
destined to obja and tagged with counter value up to the one of
the squash control record, it simply discards them, thus avoiding
to carry out processing tasks touching the state of the destination
object. Essentially, squash tells to PTi to ignore events destined to
obja that still stand into the pipeline, which are no longer consistent
in terms of timestamp ordering at the destination object. Note that
event timestamps are uncorrelated from the counter value used to
tag event records.

To indicate to CTj that the squash message has been processed,
and that the target object will be not accessed by PTi till any new
valid event record—tagged with a larger counter value with respect
to the squash tag—will be posted, PTi simply routes the squash
control record to the output flow of the port. Upon detecting the
presence of this control record,CTj can safely act on the state of the
target object in order to possibly restore a correct state snapshot, if
requested. We note that when the squash control record is inserted
by CTj it is possible that the out-of-timestamp-order events for
the destination object were only those standing into the pipeline.
This is the scenario where the last event processed by PTi for that
object had a timestamp still compliant with causality—and CTj
does not need to perform any state restore action for the simulation
object. To detect this condition, CTj accesses a meta-data table,
with one entry for each managed object, which is updated by PTi
with the timestamp of the last event it processed on any object. If
the table-value associated with the object indicates that the last
processed event had timestamp lower that the one associated with
the causality violation that generated the squash, then no state
restore operation is carried out byCTj , which simply resumes filling
the pipeline with event records destined to that object in renewed
correct timestamp order.

Another important aspect in the separation of the tasks per-
formed by CTs and PTs is the one related to checkpointing for
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Figure 3: Performance with power cap = 30 Watt.
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Figure 4: Percentage of idle time for CT and PTs.

creating correct snapshots for state restoration. As hinted, in our
power capping oriented Time Warp architecture checkpointing is
a Class-2 task, namely one to be carried out by CTs. In order for
CTj to detect that it can safely access the state of some object to
perform checkpointing, with no interference caused by forward
event processing carried out by PTi , we rely on the concept of
“bubbles”, similar to those used in conventional pipelined CPUs.
More in detail, when CTj determines that time has come to take a
checkpoint for a given object, it inserts into the pipeline a bubble
event-record, tagged with the object identifier. Upon extracting this
bubble, PTi does not carry out any processing action, rather it sim-
ply forwards the bubble towards the output flow of the port. When
CTj detects that the bubble has been posted on the port output flow
it gains information that any other event that was posted before
the bubble to the pipeline, which was destined to the same object,
has been already processed by PTi . Hence, CTj can safely access
in isolation the state of the object in order to take a checkpoint.
Clearly, any existing policy that selects when (and of which LPs)
the checkpoints should be taken can be adopted in our scheme to
determine when to introduce the bubble event. The assumption for
the correctness of this approach is that, once the bubble is posted
to the port, no other event is posted to the port input flow for the
same object till the time the bubble is observed along the output
flow, and the checkpoint of the object state is taken. To achieve
this, we devise a management of the objects—inspired by [6]—such
that some objects can be temporarily “unschedulable’ thus being
not considered by the LTF scheduler.

4 EARLY EXPERIMENTAL RESULTS
To asses our proposal we have ran the widespread PHOLD bench-
mark, configured with 1024 objects in a bi-dimensional mesh, inter-
acting with each other with probability set to 0.8. We set the event
granularity to the coarse grain value of about 1 msec, so as to not
be adverse to classical Time Warp. In fact in such a scenario most
of the computation resides in forward event processing, so that

housekeeping operations, which are the most critical ones when
all the threads are slowed down at the same manner to meet the
power cap, represent a reduced percentage of the overall computa-
tional cost of the simulation. All runs have been executed on a 10
CPU-core machine equipped with an Intel Xeon E5-2630 v4, 256
GB of ECC memory running Debian 9 with kernel release 4.9.0.
The CPU frequency ranges from 1.2 GHz at P-state 11 to 2.2 GHz
at P-state 1. We do not consider turbo boosting (P-state 0) in this
evaluation since it cannot be easily controlled from software and it
is generally power inefficient. In Figure 3 we show the variation of
the execution time with power cap set to 30 Watt for classical Time
Warp1 (named Symmetric) with all CPU-cores slowed uniformly
for meeting the power budget, and our architecture with differenti-
ated slow-down of CT and PTs (named Asymmetric). In the latter
case we plot the curve as a function of the power assigned to the
CT, which determines the residual power budget to be assigned to
the PTs. By the plot we see that our architecture allows reducing
the completion time, with increased gain when we fine tune the
respective power budgets to be assigned to the asymmetric threads
operating within the platform. On the other hand, the Asymmetric
architecture pays the cost of leading both CT and PTs to remain
sometimes idle—when no work to be carried out is posted to the
opposite side of the port—as shown in Figure 4 2. Future work
will focus on the runtime optimization of the pipelined interaction
across threads and on the dynamic reallocation of the power budget
based on the evolution of the simulation.
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