
Test of Time Award: Transparently Mixing Undo Logs and
Software Reversibility for State Recovery in Optimistic PDES

Davide Cingolani
davide.cingolani@huawei.com
Huawei Technologies R&D
Cambridge, United Kingdom

Alessandro Pellegrini
a.pellegrini@ing.uniroma2.it

Tor Vergata University of Rome
Rome, Italy

Francesco Quaglia
francesco.quaglia@uniroma2.it
Tor Vergata University of Rome

Rome, Italy

ABSTRACT
The paper “Transparently Mixing Undo Logs and Software Reversibil-
ity for State Recovery in Optimistic PDES” introduced a seminal
hybrid rollback technique that efficiently and transparently com-
bines checkpointing and reverse computation methods through
runtime-generated undo instructions. This short abstract, which
accompanies the Test of Time Award received at PADS 2025, sum-
marises the fundamental challenges presented in the original paper
and reflects on its impact in the decade after its publication.

ACM Reference Format:
Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2025. Test
of Time Award: Transparently Mixing Undo Logs and Software Reversibility
for State Recovery in Optimistic PDES. In 39th ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’25), June 23–
26, 2025, Santa Fe, NM, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3726301.3733243

1 INTRODUCTION
The article “Transparently Mixing Undo Logs and Software Reversibil-
ity for State Recovery in Optimistic PDES” [6] introduced an inno-
vative approach to efficiently supporting rollback operations in
optimistic Parallel Discrete Event Simulation (PDES). The main
contribution lies in a hybrid strategy combining traditional check-
pointing and reverse computation techniques [4] to restore previous
simulation states after a causality violation. An expanded version
of the article has been then published in [7].

The fundamental idea behind the work is that both checkpoint-
ing and reverse computation could be suboptimal for performing a
rollback operation. Checkpointing tends to incur significant mem-
ory and CPU overhead, especially if full-state copies are saved fre-
quently. Conversely, reverse computation could become expensive
with complex event logic. Moreover, the modeller should typically
provide reverse event-handlers, a process that requires additional
manual effort and could be error-prone. To address limitations
from both worlds, we proposed a hybrid recoverability architec-
ture that relies on automatically-generated undo code blocks, i.e.
a minimalistic form of reverse event-handlers that are generated
on-the-fly while running forward events. One core peculiarity of
such undo code blocks is that they revert state updates with no
actual re-computation of the original state-location values. Rather,

SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA
© 2025 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 39th ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’25), June 23–26,
2025, Santa Fe, NM, USA, https://doi.org/10.1145/3726301.3733243.

each instruction in an undo code block already embeds immediate
operands for restoring the state-location value.

Overall, undo code blocks differ significantly from traditional
reverse event-handlers because they are independent of event gran-
ularity, depending solely on the actual number of memory loca-
tions modified. They also differ from traditional undo logs because
they do not require managing metadata to identify the correspon-
dence between a saved state-location value and the corresponding
memory location where to restore it at rollback time; as hinted,
instructions in an undo code block are encoded directly as assembly
operations that precisely revert state updates that have occurred at
specific memory addresses. This is an interesting aspect, which is
also linked to the effectiveness of the exploitation of the caching
hierarchy, thanks to the reduction of the number of cache lines
required for performing the reverse of the events’ updates when a
rollback occurs.

We also incorporated and readapted an analytical model bor-
rowed from existing literature [9], to determine the optimal balance
between checkpoint distance and the use of undo code blocks based
on runtime dynamics. The experimental results showed that the
hybrid technique provides substantial performance benefits, partic-
ularly in large-scale and high-load scenarios, typically those where
optimistic PDES finds its most critical application.

2 A REFLECTION ON THE IMPACT
State restore is one of the core aspects in optimistic PDES, and
relates to both performance aspects and transparency vs the ap-
plication level code. Our original article has inspired additional
research in both of these directions. Additionally, it has played a
role in other fields of research. This section discusses a few works
that have used our solution as a baseline.

Our software instrumentation technique—as mentioned, tailored
for the runtime generation of undo code blocks—has been a ref-
erence for works where instrumentation has been exploited in
orthogonal ways. In particular, we can mention solutions suited
for offering reversibility of third-party libraries [8] or for tracking
memory updates via the inclusion of Hardware-Level instrumenta-
tion [5] to reduce the CPU cycles needed for making the memory
update reversible. Additionally, the solutions provided in [17, 20]
exploit variations the baseline techniques characterizing our instru-
mentation process to build fully new mechanisms for the manage-
ment of memory accesses, either for virtualizing a shared-memory
platform on top of a distributed PDES system, or for supporting
new typologies of simulation events no longer confined to a single
simulation object of the PDES application. Also, the work in [16]
provides the support for the exploitation of variations of the instru-
mentation technique to enable preemptability of simulation events,

https://orcid.org/0000-0002-7351-7241
https://orcid.org/0000-0002-0179-9868
https://orcid.org/0000-0002-5616-7980
https://doi.org/10.1145/3726301.3733243
https://doi.org/10.1145/3726301.3733243
https://doi.org/10.1145/3726301.3733243


SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Davide Cingolani, Alessandro Pellegrini, and FrancescoQuaglia

which have instead been treated as atomic un-preemptable units in
the previous literature.

At the same time, our proposal has been taken as a reference
by works attempting to enlarge the possibility of reverting generic
application code developed relying on specific programming lan-
guages [21]. Also, it has been considered when designing and evalu-
ating orthogonal instrumentation schemes, not based on on-the-fly
generation of reverse-handlers’ instructions [22].

In general, the core reversibility technique we have presented
has played a role in the design and development of the support
for reversible programming, in particular when considering both
concurrency in the operations [10] and program debugging [13].
Still in the field of PDES, the work in [1] presents a reversibility
solution suited for a specific class of application models, which
accounts for our proposal as a baseline reference.

Another area where our solution has had attention as a possible
baseline is memoization. In particular, in [23] the authors discuss
how a memoization process based on compile-time software instru-
mentation is somehow linked to our instrumentation scheme.

Our work has also been taken into account by publications where
core techniques and methods in the area of (speculative) PDES are
summarised, discussed and compared, thus forming the basis for
additional research in the area [11, 18].

The core idea of mixing different algorithms in PDES to support
runtime operations based on their cost has also been explored, with
particular attention to synchronisation, in several works [11, 19].
This mixing approach has been moved from the software to the
hardware level in [2, 15], where it has been shown that jointly using
different classes of hardware can benefit the overall performance.
At the same time, these works have highlighted that, when tar-
geting heterogeneous architecture, methodologies different from
instrumentation could be employed, such as model-driven engi-
neering [3, 14], to support hybrid simulation.

Finally, real-time distributed applications have also been inves-
tigated in [12], taking our work into account as a means for effec-
tiveness in the context of synchronisation.

REFERENCES
[1] Philipp Andelfinger, Jordan Ivanchev, David Eckhoff, Wentong Cai, and Alois

Knoll. 2019. From effects to causes: Reversible simulation and reverse exploration
of microscopic traffic models. In Proceedings of the 2019 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’19). ACM, New York,
NY, USA, 173–184. https://doi.org/10.1145/3316480.3322891

[2] Philipp Andelfinger, Alessandro Pellegrini, and Romolo Marotta. 2024. Sampling
policies for near-optimal device choice in parallel simulations on CPU/GPU
platforms. In Proceedings of the 28th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT ’24). IEEE, Piscataway, NJ, USA,
101–109. https://doi.org/10.1109/ds-rt62209.2024.00023

[3] Simone Bauco, RomoloMarotta, and Alessandro Pellegrini. 2025. DESL: A Literate
Programming Language Framework for Interoperable Parallel Discrete Event
Simulation. In Proceedings of the 2025 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation (SIGSIM-PADS ’25). ACM, New York, NY, USA, 12.
https://doi.org/10.1145/3726301.3728420

[4] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.
Efficient Optimistic Parallel Simulations Using Reverse Computation. ACM
Transactions on Modeling and Computer Simulation 9, 3 (July 1999), 224–253.
https://doi.org/10.1145/347823.347828

[5] Davide Cingolani, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia.
2016. Mixing hardware and software reversibility for speculative parallel discrete
event simulation. In Reversible Computation. Springer International Publishing,
Cham, 137–152. https://doi.org/10.1007/978-3-319-40578-0_9

[6] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2015. Trans-
parently mixing undo logs and software reversibility for state recovery in op-
timistic PDES. In Proceedings of the 3rd ACM SIGSIM Conference on Principles

of Advanced Discrete Simulation (SIGSIM-PADS ’15). ACM, New York, NY, USA,
211–222. https://doi.org/10.1145/2769458.2769482

[7] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Trans-
parently mixing undo logs and software reversibility for state recovery in op-
timistic PDES. ACM transactions on modeling and computer simulation: a pub-
lication of the Association for Computing Machinery 27, 2 (April 2017), 1–26.
https://doi.org/10.1145/3077583

[8] Davide Cingolani, Alessandro Pellegrini, Markus Schordan, Francesco Quaglia,
and David R Jefferson. 2017. Dealing with reversibility of shared libraries in
PDES. In Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (SIGSIM-PADS ’17). ACM, New York, NY, USA, 41–52. https:
//doi.org/10.1145/3064911.3064927

[9] Vittorio Cortellessa and Francesco Quaglia. 2000. Aggressiveness/Risk Effects
Based Scheduling in Time Warp. In Proceedings of the 2000 Winter Simulation
Conference, Jeffrey A Joines, Russel R Barton, Keebom Kang, and Paul A Fishwick
(Eds.). IEEE, Piascatawy, NJ, USA, 409–417. https://doi.org/10.1109/WSC.2000.
899746

[10] James Hoey and Irek Ulidowski. 2022. Reversing an imperative concurrent
programming language. Science of Computer Programming 223 (2022), 102873.
https://doi.org/10.1016/j.scico.2022.102873

[11] David R Jefferson and Peter D Barnes, Jr. 2022. Virtual time III, Part 1: Unified
Virtual Time synchronization for parallel discrete event simulation. ACM trans-
actions on modeling and computer simulation: a publication of the Association for
Computing Machinery 32, 4 (Oct. 2022), 1–29. https://doi.org/10.1145/3505248

[12] Akio Kawabata, Bijoy Chand Chatterjee, Seydou Ba, and Eiji Oki. 2017. A real-
time delay-sensitive communication approach based on distributed processing.
IEEE access: practical innovations, open solutions 5 (2017), 20235–20248. https:
//doi.org/10.1109/access.2017.2758803

[13] Ivan Lanese. 2018. From reversible semantics to reversible debugging. In Re-
versible Computation. Springer International Publishing, Cham, 34–46. https:
//doi.org/10.1007/978-3-319-99498-7_2

[14] Romolo Marotta and Alessandro Pellegrini. 2024. Model-Driven Engineering
for High-Performance Parallel Discrete Event Simulations on Heterogeneous
Architectures. In Proceedings of the 2024 Winter Simulation Conference (WSC ’24),
H Lam, E Azar, D Batur, S Gao, W Xie, S R Hunter, and M D Rossetti (Eds.).
IEEE, Piscataway, NJ, USA, 2202–2213. https://doi.org/10.1109/WSC63780.2024.
10838978

[15] Romolo Marotta, Alessandro Pellegrini, and Philipp Andelfinger. 2024. Follow the
leader: Alternating CPU/GPU computations in PDES. In Proceedings of the 38th
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-
PADS’24). ACM, New York, NY, USA, 47–51. https://doi.org/10.1145/3615979.
3656056

[16] Alessandro Pellegrini and Francesco Quaglia. 2017. A fine-grain time-sharing
Time Warp system. ACM transactions on modeling and computer simulation: a
publication of the Association for Computing Machinery 27, 2 (April 2017), 1–25.
https://doi.org/10.1145/3013528

[17] Alessandro Pellegrini and Francesco Quaglia. 2019. Cross-state events: A new
approach to parallel discrete event simulation and its speculative runtime support.
Journal of parallel and distributed computing 132 (Oct. 2019), 48–68. https:
//doi.org/10.1016/j.jpdc.2019.05.003

[18] Kalyan Perumalla, Maximilian Bremer, Kevin Brown, Cy Chan, Stephan Eiden-
benz, K Scott Hemmert, Adolfy Hoisie, Benjamin Newton, James Nutaro, Tomas
Oppelstrup, Robert Ross, Markus Schordan, and Nathan Urban. 2022. Computer
Science Research Needs for Parallel Discrete Event Simulation (PDES). Technical
Report 1855247. U.S. Department of Energy. https://doi.org/10.2172/1855247

[19] Andrea Piccione, Philipp Andelfinger, and Alessandro Pellegrini. 2023. Hybrid
Speculative Synchronisation for Parallel Discrete Event Simulation. In Proceedings
of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
(SIGSIM-PADS ’23). Association for Computing Machinery, New York, NY, USA,
84–95. https://doi.org/10.1145/3573900.3591124

[20] Matteo Principe, Tommaso Tocci, Pierangelo Di Sanzo, Francesco Quaglia, and
Alessandro Pellegrini. 2020. A distributed shared memory middleware for spec-
ulative Parallel Discrete Event Simulation. ACM transactions on modeling and
computer simulation: a publication of the Association for Computing Machinery
30, 2 (April 2020), 1–26. https://doi.org/10.1145/3373335

[21] Markus Schordan, Tomas Oppelstrup, David Jefferson, and Peter D Barnes.
2018. Generation of Reversible C++ Code for Optimistic Parallel Discrete
Event Simulation. New Generation Computing 36 (2018), 257–280. https:
//doi.org/10.1007/s00354-018-0038-2

[22] Markus Schordan, Tomas Oppelstrup, Michael Kirkedal Thomsen, and Robert
Glück. 2020. Reversible languages and incremental state saving in optimistic
parallel discrete event simulation. In Reversible Computation: Extending Horizons
of Computing. Springer International Publishing, Cham, 187–207. https://doi.
org/10.1007/978-3-030-47361-7_9

[23] Mirko Stoffers, Daniel Schemmel, Oscar Soria Dustmann, and Klaus Wehrle. 2018.
On automated memoization in the field of simulation parameter studies. ACM
transactions on modeling and computer simulation: a publication of the Association
for Computing Machinery 28, 4 (Oct. 2018), 1–25. https://doi.org/10.1145/3186316

https://doi.org/10.1145/3316480.3322891
https://doi.org/10.1109/ds-rt62209.2024.00023
https://doi.org/10.1145/3726301.3728420
https://doi.org/10.1145/347823.347828
https://doi.org/10.1007/978-3-319-40578-0_9
https://doi.org/10.1145/2769458.2769482
https://doi.org/10.1145/3077583
https://doi.org/10.1145/3064911.3064927
https://doi.org/10.1145/3064911.3064927
https://doi.org/10.1109/WSC.2000.899746
https://doi.org/10.1109/WSC.2000.899746
https://doi.org/10.1016/j.scico.2022.102873
https://doi.org/10.1145/3505248
https://doi.org/10.1109/access.2017.2758803
https://doi.org/10.1109/access.2017.2758803
https://doi.org/10.1007/978-3-319-99498-7_2
https://doi.org/10.1007/978-3-319-99498-7_2
https://doi.org/10.1109/WSC63780.2024.10838978
https://doi.org/10.1109/WSC63780.2024.10838978
https://doi.org/10.1145/3615979.3656056
https://doi.org/10.1145/3615979.3656056
https://doi.org/10.1145/3013528
https://doi.org/10.1016/j.jpdc.2019.05.003
https://doi.org/10.1016/j.jpdc.2019.05.003
https://doi.org/10.2172/1855247
https://doi.org/10.1145/3573900.3591124
https://doi.org/10.1145/3373335
https://doi.org/10.1007/s00354-018-0038-2
https://doi.org/10.1007/s00354-018-0038-2
https://doi.org/10.1007/978-3-030-47361-7_9
https://doi.org/10.1007/978-3-030-47361-7_9
https://doi.org/10.1145/3186316

	Abstract
	1 Introduction
	2 A Reflection on the Impact
	References

