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ABSTRACT
The paper “Transparently Mixing Undo Logs and Software Reversibil-
ity for State Recovery in Optimistic PDES” introduced a seminal
hybrid rollback technique that efficiently and transparently com-
bines checkpointing and reverse computation methods through
runtime-generated undo instructions. This short abstract, which
accompanies the Test of Time Award received at PADS 2025, sum-
marises the fundamental challenges presented in the original paper
and reflects on its impact in the decade after its publication.
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1 INTRODUCTION
The article “Transparently Mixing Undo Logs and Software Reversibil-
ity for State Recovery in Optimistic PDES” [6] introduced an inno-
vative approach to efficiently supporting rollback operations in
optimistic Parallel Discrete Event Simulation (PDES). The main
contribution lies in a hybrid strategy combining traditional check-
pointing and reverse computation techniques [4] to restore previous
simulation states after a causality violation. An expanded version
of the article has been then published in [7].

The fundamental idea behind the work is that both checkpoint-
ing and reverse computation could be suboptimal for performing a
rollback operation. Checkpointing tends to incur significant mem-
ory and CPU overhead, especially if full-state copies are saved fre-
quently. Conversely, reverse computation could become expensive
with complex event logic. Moreover, the modeller should typically
provide reverse event-handlers, a process that requires additional
manual effort and could be error-prone. To address limitations
from both worlds, we proposed a hybrid recoverability architec-
ture that relies on automatically-generated undo code blocks, i.e.
a minimalistic form of reverse event-handlers that are generated
on-the-fly while running forward events. One core peculiarity of
such undo code blocks is that they revert state updates with no
actual re-computation of the original state-location values. Rather,
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each instruction in an undo code block already embeds immediate
operands for restoring the state-location value.

Overall, undo code blocks differ significantly from traditional
reverse event-handlers because they are independent of event gran-
ularity, depending solely on the actual number of memory loca-
tions modified. They also differ from traditional undo logs because
they do not require managing metadata to identify the correspon-
dence between a saved state-location value and the corresponding
memory location where to restore it at rollback time; as hinted,
instructions in an undo code block are encoded directly as assembly
operations that precisely revert state updates that have occurred at
specific memory addresses. This is an interesting aspect, which is
also linked to the effectiveness of the exploitation of the caching
hierarchy, thanks to the reduction of the number of cache lines
required for performing the reverse of the events’ updates when a
rollback occurs.

We also incorporated and readapted an analytical model bor-
rowed from existing literature [9], to determine the optimal balance
between checkpoint distance and the use of undo code blocks based
on runtime dynamics. The experimental results showed that the
hybrid technique provides substantial performance benefits, partic-
ularly in large-scale and high-load scenarios, typically those where
optimistic PDES finds its most critical application.

2 A REFLECTION ON THE IMPACT
State restore is one of the core aspects in optimistic PDES, and
relates to both performance aspects and transparency vs the ap-
plication level code. Our original article has inspired additional
research in both of these directions. Additionally, it has played a
role in other fields of research. This section discusses a few works
that have used our solution as a baseline.

Our software instrumentation technique—as mentioned, tailored
for the runtime generation of undo code blocks—has been a ref-
erence for works where instrumentation has been exploited in
orthogonal ways. In particular, we can mention solutions suited
for offering reversibility of third-party libraries [8] or for tracking
memory updates via the inclusion of Hardware-Level instrumenta-
tion [5] to reduce the CPU cycles needed for making the memory
update reversible. Additionally, the solutions provided in [17, 20]
exploit variations the baseline techniques characterizing our instru-
mentation process to build fully new mechanisms for the manage-
ment of memory accesses, either for virtualizing a shared-memory
platform on top of a distributed PDES system, or for supporting
new typologies of simulation events no longer confined to a single
simulation object of the PDES application. Also, the work in [16]
provides the support for the exploitation of variations of the instru-
mentation technique to enable preemptability of simulation events,
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which have instead been treated as atomic un-preemptable units in
the previous literature.

At the same time, our proposal has been taken as a reference
by works attempting to enlarge the possibility of reverting generic
application code developed relying on specific programming lan-
guages [21]. Also, it has been considered when designing and evalu-
ating orthogonal instrumentation schemes, not based on on-the-fly
generation of reverse-handlers’ instructions [22].

In general, the core reversibility technique we have presented
has played a role in the design and development of the support
for reversible programming, in particular when considering both
concurrency in the operations [10] and program debugging [13].
Still in the field of PDES, the work in [1] presents a reversibility
solution suited for a specific class of application models, which
accounts for our proposal as a baseline reference.

Another area where our solution has had attention as a possible
baseline is memoization. In particular, in [23] the authors discuss
how a memoization process based on compile-time software instru-
mentation is somehow linked to our instrumentation scheme.

Our work has also been taken into account by publications where
core techniques and methods in the area of (speculative) PDES are
summarised, discussed and compared, thus forming the basis for
additional research in the area [11, 18].

The core idea of mixing different algorithms in PDES to support
runtime operations based on their cost has also been explored, with
particular attention to synchronisation, in several works [11, 19].
This mixing approach has been moved from the software to the
hardware level in [2, 15], where it has been shown that jointly using
different classes of hardware can benefit the overall performance.
At the same time, these works have highlighted that, when tar-
geting heterogeneous architecture, methodologies different from
instrumentation could be employed, such as model-driven engi-
neering [3, 14], to support hybrid simulation.

Finally, real-time distributed applications have also been inves-
tigated in [12], taking our work into account as a means for effec-
tiveness in the context of synchronisation.
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