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The Time Warp synchronization protocol for Parallel Discrete Event Simulation (PDES) is universally con-
sidered as a viable solution to exploit the intrinsic simulation model parallelism and to provide model ex-
ecution speedup. Yet, it leads the PDES system to execute events in an order which may generate causal
inconsistencies that need to be recovered via rollback, which requires restoration of a previous (consistent)
simulation state any time a causality violation is detected. The rollback operation is so critical for the per-
formance of a Time Warp system that it has been extensively studied in the literature for decades, to find
approaches suitable to optimize it. The proposed solutions can be roughly classified as based on either check-
pointing or reverse computing. In this article, we explore the practical design and implementation of a fully
new approach based on the runtime generation of so called undo code blocks, which are blocks of instructions
implementing the reverse memory side-effects generated by the forward execution of the events. However,
this is not done by recomputing the original values to be restored, as instead it occurs in reverse computing
schemes. Hence, the philosophy undo code blocks rely on is similar in spirit to that of undo-logs (as a form
of checkpointing). Nevertheless, they are not data logs (as instead checkpoints are), rather they are logs of
instructions. Our proposal is fully-transparent, thanks to the reliance on static software instrumentation
(targeting the x86 architecture and Linux systems). Also, as we show, it can be combined with classical
checkpointing, so as to further improve the runtime behavior of the state recoverability support as a func-
tion of the workload. We also present experimental results related to our implementation, which is released
as free software and fully integrated into the open source ROOT-Sim (The ROme OpTimistic Simulator)
package. Experimental data support the viability and effectiveness of our proposal.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code Generation; I.6.8
[Simulation and Modeling]: Types of Simulation—discrete event; parallel

General Terms: Theory, Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Parallel Discrete Event Simulation, Optimistic synchronization, Time
Warp, Software Reversibility

1. INTRODUCTION
Discrete Event Simulation (DES) is a methodology that models the behavior of a given
system using a sequence of events, and associated state transitions, occurring at dis-
crete points in time [Robinson 2004]. Parallel Discrete Event Simulation (PDES) [Fuji-
moto 1990] is the set of techniques aimed at exploiting hardware parallelism for speed-
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ing up the execution of DES models. In this area, Time Warp [Jefferson 1985] is one of
the fundamental PDES synchronization protocols proposed in literature.

According to classical PDES, in Time Warp the simulation model is partitioned into
distinct simulation objects, which are mapped to Logical Processes (LPs). They handle
the execution of the discrete events, which ultimately produce updates to the actual
simulation model’s state, and which may schedule other events to occur in the future.
Given its speculative nature, also referred to as optimism, Time Warp leads the LPs to
process events independently of their safety (or causal consistency). Therefore, there is
a potential for great exploitation of the intrinsic model’s parallelism. If some processed
event is a-posteriori detected to be violating causality (i.e., it has been processed out
of timestamp order), its effects on the simulation state are undone via the rollback
operation. Correctly and efficiently rolling back the states of the LPs is therefore a
fundamental building block for an effective Time Warp system. In the literature, this
operation has been thoroughly studied, and different approaches have been proposed,
which can be roughly grouped into two separate families: checkpoint-based [Jefferson
1985] and reverse computing-based [Carothers et al. 1999], depending on the technique
that is used to bring the LP state to a previous (consistent) snapshot.

The checkpoint-based rollback operation requires the PDES engine to know the
memory location of each part of the state of an LP. By exploiting this information,
the engine can create a copy of the state before the execution of operations leading to
state updates. In this context, different solutions have been presented, all aimed at
reducing the cost, in terms of memory and CPU usage, paid to create a state snap-
shot, which will be (possibly) used for a later restore operation. Among the various
research lines, we find two main approaches. On the one hand, we find solutions to
reduce the frequency according to which the snapshots of the LP state are taken—
the so-called sparse or periodic state saving [Lin and Lazowska 1990; Bellenot 1992;
Palaniswamy and Wilsey 1993; Preiss et al. 1994; Rönngren and Ayani 1994; Fleis-
chmann and Wilsey 1995; Skold and Rönngren 1996; Quaglia 2001]—with a focus on
detecting the best-suited checkpointing interval to minimize unfruitful work (i.e., tak-
ing checkpoints whose overhead does not pay off in reducing state recovery costs). On
the other hand, we find solutions which try to reduce the amount of data copied into a
state snapshot, ensuring that no meaningful piece of information is lost—the so-called
incremental state saving [West and Panesar 1996; Pellegrini et al. 2009]. Mixtures of
these approaches have been proposed as well [Cortellessa and Quaglia 2001; Pelle-
grini et al. 2015], which modify (possibly at runtime) the execution mode of the state
saving operation, depending on the execution dynamics of the overlying model. Fur-
ther, approaches based on offloading checkpoint tasks from the CPU have also been in
investigated [Fujimoto et al. 1992; Quaglia and Santoro 2003].

The reverse computing-based rollback operation is based instead on the availability
of reverse event handlers, such that if the forward execution of an event e on an LP
state S produces a state transition e(S) → S′, then the corresponding reverse handler
r would produce on S′ the inverse transition r(S′) → S. Reverse event handlers can
be provided either manually [Carothers et al. 1999; Seal and Perumalla 2011] or auto-
matically [Hou et al. 2012b; LaPre et al. 2014]. Overall, while the reverse computing
approach is able to significantly reduce the impact of memory usage from which check-
pointing may suffer—checkpoints are no longer the systematic means to achieve state
recoverability—the execution cost of the rollback operation is directly proportional to
the execution time of simulation events, particularly in reverse mode.

To some extent, all the proposed approaches have some drawback. One above all
is the dependency of the recovery cost on the granularity of the events (either their
forward mode execution or their reverse mode execution). Particularly, when relying
on infrequent checkpointing, the lower the frequency with which the snapshots (in-
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cremental or not) are taken, the higher is the cost for restoring a state that is not
checkpointed. In fact, the restore operation needs to reload an older snapshot and to
reprocess intermediate events. As shown in the literature, the best tradeoff is a func-
tion of the ratio between average checkpointing cost and event granularity (see, e.g.,
[Palaniswamy and Wilsey 1993; Preiss et al. 1994; Rönngren and Ayani 1994; Fleis-
chmann and Wilsey 1995]). On the opposite side, pure reverse computing may suffer
from high restore costs when the rollback length is non-minimal, since many backward
events would need to be processed as input to reverse event handlers. This is unfavor-
able especially if the reverse handlers need to implement costly reverse computation
steps, which might be the case for complex events.

By mixing the different philosophies behind these recoverability techniques, we
present a new approach based on the combination of undo-logs with software re-
versibility. In our proposal, data typically recorded by undo-log systems (which are
essentially checkpointing systems) are used to generate so called undo code blocks,
which are not undo-logs of data, rather of runtime (dynamically) assembled machine
instructions. Undo code blocks can be used to squash memory updates generated by a
causally-inconsistent portion of the computation. However, this does not rely on back-
ward re-computation of the values to be restored via reverse event handlers, as it
happens in reverse computing. To achieve our goal, we rely on software instrumen-
tation, which allows us to capture the effects on memory by the forward execution of
the events. This information is then used to build at runtime the undo code blocks,
which are compact undo-logs of actual operations. They are compact because they are
directly encoded as a set of consecutive machine instructions which cancel the effects
of the execution of forward events. As hinted, this is different from the reverse comput-
ing technique, as our approach is independent of the actual event granularity. In fact,
the execution cost of an undo code block is only proportional to the amount of memory
areas touched in write mode during forward execution.

As pointed out, our approach is also different from classical undo-logs, which are
not based on dynamic generation of reversibility code, rather they only log (and re-
store) data. Further, our solution is specifically designed to avoid the cost paid by in-
cremental checkpointing systems when executing a rollback operation. In fact, while
the latter generally require inspection of some (arbitrarily complex) metadata to de-
termine where each portion of the incremental log should be placed in memory, undo
code blocks can be simply executed with no additional overhead associated with meta-
data management. Indeed, they are specifically generated so as to keep all the relevant
information already packed within a block of machine code.

Nevertheless, our proposal can be combined with classical checkpointing. Particu-
larly, by taking infrequent checkpoints, we can generate checkpoint intervals where
some passed-through snapshots are not recoverable by undo code blocks, while oth-
ers are. Hence state restore can be executed by either reloading a previous checkpoint
and executing a classical coasting forward phase, or by applying backwards opera-
tions encoded within undo code blocks starting from the current state snapshot (or
from a conveniently selected checkpoint). While the former case occurs for the restore
of a snapshot uncovered by the undo facility, the latter occurs for the restore of cov-
ered snapshots. In other words, a single checkpoint interval can be optimized by the
combination of the two techniques, in terms of the tradeoff between overhead for re-
coverability tasks and actual recovery costs.

Borrowing from the results in [Cortellessa and Quaglia 2001], we devise an ana-
lytic model and a heuristic scheme for the dynamical re-configuration of recoverability
based on undo code blocks. This allows us to determine how to optimize the parti-
tioning of each single checkpoint interval, also depending on factors like the event
granularity. The result is an optimization of the the length of the interval, as well as
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Fig. 1. Relation between memory updates in the forward execution of an event e and the corresponding
undo code block. Old values are represented in brackets.

the selection of what are the snapshots to reconstruct in case of a rollback by relying
either on coasting forward or undo code blocks.

We also report experimental data for an assessment of our proposal which, we re-
mark, is fully application-transparent and has been released as free software1 via the
integration into the open source ROOT-Sim package [Pellegrini and Quaglia 2013].

The remainder of this article is structured as follows. The undo code block-based re-
coverability approach is described in Section 2. In Section 3 we present the implemen-
tation of the overall recoverability architecture based on undo code blocks. Section 4 is
devoted to the experimental assessment. Related work is discussed in Section 5.

2. UNDO CODE BLOCK-BASED STATE RECOVERABILITY
In this section we initially provide the basic concepts underlying our innovative state
recoverability proposal. Then we discuss optimizations related to locality of the up-
dates occurring along forward execution of the events at the LPs. Finally, we describe
how the undo code block-based technique can be exploited in synergy with classical
checkpointing, also illustrating a performance model for tuning the parameters driv-
ing the operations of the integrated recoverability support.

2.1. Basics
Any event e speculatively executed at LPi produces the state transition e(Si) → S′i
on the private state Si of LPi. Our approach to undo the processing of e in a rollback
phase is based on a reverse transition re(S

′
i) → Si which is only aimed at canceling

the effects on memory of the forward execution of e. Hence, reversing memory side
effects associated with the transition e(Si)→ S′i is the exact objective of the undo code
block to be associated with the event e. We again recall that an undo code block is a
runtime-built set of machine instructions.

Every memory update operation executed by any event e during its forward execu-
tion must be intercepted, and this needs to be done transparently, with no intervention
by the simulation model programmer. As we shall describe in detail in Section 3, we
rely on static binary instrumentation2, a technique which modifies at compile time
the image of an executable by inserting, according to some rules, additional assembly
instructions that are later executed at runtime. These instructions must avoid any
change in the semantics of the program, namely the final outcome of the execution of
an event must be the same as if no additional instructions were injected at all.

The role of the additional instructions is to determine the target address of a
memory-update operation before it takes place, so that the memory location being mod-

1https://github.com/HPDCS/ROOT-Sim
2We target the x86 64 ISA and the ELF file format on Linux systems, which allows us to cover more than
95% of current high-performance clusters on top500 [Pellegrini 2015]. In any case, the methodology we
propose can be easily ported to other operating systems, executable formats and ISAs.
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ified can be accessed to read its current value. This value is what the undo code block
should restore upon the execution of a rollback operation. Overall, by using static bi-
nary instrumentation, the simulation engine can determine at runtime what memory
locations are being updated by the execution of an event e during its forward execution
phase, and this information is what we exploit to implement the reverse transition
re(S

′
i)→ Si to be fired in case of rollback.

In more detail, the simulation engine generates at runtime an assembly instruc-
tion which uses the original memory value (namely, the value found at the computed
memory address before the update operation takes place) as the source operand, and
the computed memory address as the destination operand. Such an instruction is then
placed in a contiguous buffer used as a stack of generated reverse instructions, which
are found in reverse order from the top of the stack. Executing them according to such
reverse order undoes the effects of memory updates perpetrated by the forward exe-
cution of any event e. This scheme is illustrated in Figure 1, where different memory
locations are updated when running in forward mode. The corresponding reverse in-
structions generated at runtime in the undo code block associated with e, which we
refer to as ube, put back in the correct place the previous values found in memory.

It is interesting to note that the computation in forward mode generating the val-
ues used to update the target memory locations can be of any arbitrary complexity.
Indeed, the updates performed by the event e along forward execution can result from
any kind of algorithm used by the simulation code. Since we are generating ube at
runtime, we are not interested in how this value was computed. We are just inter-
ested in determining what is the value of the target memory location which is about
to become “old.” Therefore, since we track memory update operations at runtime right
before they take place, the corresponding reverse phase will not entail recomputing the
“old” value, since it is already encoded in the dynamically-generated reverse instruc-
tion corresponding to the memory update. Overall, a reverse instruction in an undo
code block does not depend on the complexity of the algorithm which generates the
forward memory update. Hence, it can undo in constant-time the side effect generated
by the computation of a value, regardless of the generation complexity.

Anyhow, a single event e executed in forward mode might update multiple times the
same memory location. This could be the case of algorithms using simulation state
variables as accumulators, where partial results of the computation of an event are
temporarily stored, since the computation of the final value requires multiple steps
within the same event. In this case, to reduce the amount of negative instructions
which must be generated during the forward execution of the event e (and therefore
the number of reverse instructions placed within ube to be executed in reverse mode in
case of rollback) we exploit the Instruction Dominance property:

Property 1 (Instruction Dominance): any memory-update operation o
executed by an event e in forward mode which updates a memory location a
is said to dominate any other memory-update operation o′ executed later by
the same event e if and only if o′ updates the very same memory location a.

Intuitively, we can exploit this property noting that if o and o′ both update a, then
in ube we will find first the reverse operation ō′ and then ō. Therefore, if o causes on
memory location a the transition a1 → a2, and o′ causes the transition a2 → a3, exe-
cuting ube causes first the inverse transition a3 → a2 and then a2 → a1. Nevertheless,
a discrete event can be seen as an atomic unit of computation. Therefore, if the event
e is executed, either the value of a is updated from a1 to a3, or it needs to figure as
not updated at all in case of rollback of e. Thereby, we can prevent ube to produce two
inverse transitions: only the transition a3 → a1 must be present within ube. Overall,
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Fig. 2. Instruction dominance.

only the first memory update to a given location will lead to the generation of a reverse
instruction. Any other memory update can be simply discarded, as shown in Figure 2.

2.2. Exploiting Locality: Per-chunk Undo Code Blocks
A further optimization to reduce both the overhead in forward execution mode (due to
the generation of reverse instructions) and the overhead when executing an undo code
block, comes directly from the way simulation models, and more in general software
applications, are often implemented. Specifically, the states of the LPs may rely on
structures or objects (that could point to other structures/objects), which are commonly
stored in the heap, e.g., via calls to the malloc standard library or via the new operator.

In this case, we can extend Property 1, and define the Object Dominance property,
where we use the term object in a broader way than the common usage in object-
oriented programming, identifying any memory area that keeps a portion of the LP
state and that was instantiated by a single memory allocation in the heap:

Property 2 (Object Dominance): any memory-update operation o exe-
cuted by an event e in forward mode which updates a memory location a
is said to dominate any other memory-update operation o′ executed later by
the same event e if and only if o′ updates a memory location a′ such that a
and a′ belong to the same object.

Intuitively, Property 2 extends Property 1 on the basis of the consideration that
if a field of a structure, or an attribute of an object, is updated during the execution
of an event, then other elements within the same (logically coupled) memory area will
be likely updated as well. This is a consideration clearly related to classical locality
principles for software applications.

For execution patterns where Property 2 appears to be satisfied for a significant
percentage of memory update operations, it could be more efficient to generate simpler
undo code blocks. These can rely on compact instructions to restore the image of the
whole structure/object as it was seen by the LP at the beginning of the execution of the
event. We refer to this technique as reversibility with per-chunk granularity, a target
that can be achieved creating a compact snapshot of the structure/object before the first
memory-update operation falling within its address boundary is executed. This snap-
shot can be stored directly within the undo code block, along with instructions that
copy it back on the original memory address3. The potential advantages of per-chunk
reversibility arise especially in contexts where memory update operations dominated
according to Property 2 involve a non-minimal percentage of the chunk area, which

3We note that ISAs such as the x86 offer the optimized family of string instructions which can perform the
restore operation of memory blocks very quickly.
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Fig. 3. Simulation engine organization with a per-LP memory-map manager

can be expected especially for small to medium chunks. We will come back to aspects
related to the fragmentation of the operations within chunks in Section 3.4, where we
discuss a heuristic for determining whether it is convenient to switch to per-chunk
undo code blocks or not.

To make the detection of structures/objects involved in a memory-update operation
completely transparent, the described static binary instrumentation technique alone
is not sufficient. In fact, a memory-update operation can fall within a structure/object
in any place, and determining the base address of the structure/object along with its
size in memory is an aside problem with respect to the determination of the target loca-
tion for the memory update. This problem can be tackled by introducing an additional
layer to intercept all the calls to malloc functions or to the new operator, as shown
in Figure 3. This approach has already been exploited in the context of checkpoint-
ing in Time Warp platforms to deliver memory to the application layer in a controlled
manner, so that the exact memory map of LPs’ states is known, and snapshots can be
correctly taken when needed. In more detail, when the simulation model requests for
memory, the underlying PDES engine can serve the request from buffers that are un-
der the control of so-called memory map managers—many techniques exist to this end;
see, e.g., [Bonwick 1994; Lea 1996; Peterson and Norman 1977; Toccaceli and Quaglia
2008]. These managers map any memory request to a suitably-sized chunk of memory.

These memory maps kept at the level of the PDES engine, along with instrumenta-
tion, allow us to put in place the per-chunk reversibility approach. Whenever a memory
access falling within a structure/object composing the simulation state is detected, this
access can be associated with one of the memory maps managed by the simulation en-
gine, more specifically with a specific chunk (and its size). We propose two techniques
for this association, both compatible with the generic map organization in Figure 3:

(1) per-size memory maps, with aligned addresses: the fastest possibility is to main-
tain multiple per-LP memory maps. Each map keeps same-sized chunks within
the same memory segment. If chunk sizes are powers of two (which is typical), and
the map is properly aligned in memory, then a simple bit-masking operation on
the intercepted address will provide the base address of a chunk. To determine the
number of bits to be masked, the size of the involved chunk is required. Neverthe-
less, the memory map manager knows the boundaries of the memory maps, and
can infer the size by looking at the intercepted address. With this approach, care
should be taken in allocating properly-sized maps to avoid map-internal (chunk ex-
ternal) fragmentation. Classical schemes based on dynamically doubling the size
of a map associated with highly requested chunk sizes are generally adequate.

(2) per-chunk hash tables: a completely different solution is to use a hash table where
a tuple 〈base address, end address, size〉 is stored. This hash table can be organized
using the n most significant bits of base address as the key. To obtain the base
address and the size of a chunk from any address falling within it, the address
targeted by the intercepted memory write instruction is masked so as to obtain
the n most significant bits. This part of the address is then used to query the hash
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table. To make a query conflict-free, any conflict-resolution technique (e.g., sep-
arate chaining) proper of hash tables could be exploited. Clearly, the hash table
may significantly grow, depending on the number of chunks which are allocated.
Moreover, in case of a free/destroy operation, the corresponding entries in the
hash table should be removed/invalidated, leading to additional management cost.
However, unlike the above approach, this one does not require pre-allocation of
memory segments hosting the chunks, thus avoiding fragmentation.

When the simulation engine determines the base address of the updated chunk, an
undo instruction is generated. The information associated with this generation can be
maintained to avoid generating undo instructions for the same chunk by a same event.

In scenarios with good update locality, generating per-chunk undo code blocks in
combination with the exploitation of dominance likely allows for reducing both the
cost of the operations carried out along the critical path during the forward execution
phase, and the cost to undo events during the reverse execution phase. We shall discuss
in Section 3.4 how it is possible to devise an efficient implementation of the checks
required by the per-chunk reversibility optimization, also exploiting a combination of
the two different approaches in points (1) and (2).

2.3. State Recovery with (not only) Undo Code Blocks: Concepts and Cost Analysis
A baseline scheme to exploit undo code blocks for state recovery upon the detection of
a causality violation is to execute the undo code blocks associated with all the events
to be rolled back, starting from the current live image of the LP state. However, this
approach would make the recovery latency directly proportional to the length of roll-
back, which is unfavorable to performance in executions with long rollbacks. In order
to make the state restore latency independent of the rollback length, the approach
that needs to be exploited is to rely on infrequent checkpointing in combination with
the undo code block approach.

Let us initially recall how pure (infrequent) checkpoint based approaches (see, e.g.,
[Preiss et al. 1994]) achieve restore latency that is independent of the rollback length.
The state recovery procedure is based on identifying: (a) the last causally consistent
event ê, associated with timestamp Tê, and (b) a simulation state snapshot Ŝ associated
with timestamp TŜ ≤ Tê. Clearly, after checkpoint Ŝ was taken, any number of events
could have been executed before the execution of ê—this is the classical case when
TŜ < Tê. Hence, reloading Ŝ is not enough to bring the simulation state back to the
restore time Tê, as the effect of one or multiple events in the interval (TŜ , Tê] would
have been undone as well. To realign the simulation state exactly to Tê, the so-called
coasting forward phase must be executed, which is a silent replay of the intermediate
events in the interval (TŜ , Tê]. An illustration of the recovery operation to simulation
time Tê is reported in Figure 4(a).

As it is well known [Preiss et al. 1994], the cost associated with the coasting forward
phase depends on two factors: the average granularity δe of any event to be replayed,
and the actual number of the replayed events. Since when relying on periodic check-
pointing a rollback operation can occur at any place in between two consecutive check-
pointed states S1 and S2, denoting with χ the number of events which are executed
between S1 and S2, the coasting forward phase requires to reprocess χ−1

2 events on
the average, thus leading to an average restore cost of δe · χ−12 . This makes state re-
store independent of the rollback length, and only dependent on the distance between
checkpoints, and the average event granularity.

A similar combination of checkpoint reload and successive realignment can be em-
ployed when relying on undo code blocks, again in order to make the state recovery
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Fig. 4. Different ways to support the state recovery operation

operation independent of the rollback length4. In such a case, rather than the coasting
forward phase, we have to undertake what we call the reverse scrubbing phase. Partic-
ularly, we can reload the checkpoint Ŝ associated with a timestamp TŜ ≥ Tê, starting
from which undo code blocks are then used to annihilate the effects of events5. This
scenario is depicted in Figure 4(b), where the restore point (namely, event ê) is two
events before the selected checkpoint Ŝ. In this case, the rollback algorithm has to
reload checkpoint Ŝ, and then execute the undo code block of just one event. The cost
of the reverse scrubbing phase depends on the average cost δub for executing an undo
code block, and the average number of events that have to be reverted, still χ−12 when
taking checkpoints each χ events. The average scrubbing phase cost is then δub · χ−12 .

Let us now consider the relation between δe and δub. Given that undo code blocks
are not real reverse event handlers, since they revert side effects with no explicit re-
computation of the values to be restored, we may expect that for complex event pro-
cessing logics, δe would be greater than δub. The consequence is that we may achieve,
on average, the same state recovery cost via reverse scrubbing, compared to coasting
forward, by taking periodic checkpoints less frequently.

However, relying on undo code blocks produces a forward computation overhead
which is not present in classical approaches based only on periodic checkpointing. This
is the overhead to generate at runtime undo code blocks, which makes the average
event granularity to be no longer δe, rather δe + δinst, where δinst is the average per-
event cost for executing the instrumentation code to generate undo code blocks.

In order to take the best of the two methodologies, including the benefits from the
relation δe > δub, a checkpoint interval χ can be selected where the initial portion χ−ν
of events in the interval are not covered by undo code blocks, while the remaining ν
are. Then, either coasting forward is executed, if one of the uncovered events is to be
restored, or reverse scrubbing, in the opposite case. Clearly, this approach is really
effective only if no instrumentation cost is paid while processing the first χ− ν events
in any checkpoint interval. As we will discuss in Section 3, we achieve this via an
optimized multi-coding scheme, still transparent to the application level software.

The combination of forward and backward restore capabilities within a checkpoint
interval is a topic that has already been investigated, particularly in [Cortellessa and
Quaglia 2001], however limited to the usage of incremental checkpoints (not undo code
blocks) for backward recovery starting from the upper checkpoint within the interval.
Re-adapting the performance model presented in that work to our context, we can
obtain an expression to determine the expected overhead of both recoverability sup-
port, and of actual recovery operations. This expression is a function of the param-
eters discussed before, of the parameters δs and δr expressing the average cost for

4Full independence would need avoiding full backward traversal of checkpoint chains, which is an issue
aside of the main techniques we are presenting.
5A corner case occurs when that checkpoint does not exist. In this situation we can apply the undo code
blocks starting from the live state image of the LP.
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taking/reloading a checkpoint, and of the LP rollback frequency Fr. Overall, the final
re-adapted expression of the per-LP expected overhead OH is:

OH =
(δs + ν · δinst)

χ
+ Fr

[
χ− ν
χ

(
δr +

χ− ν − 1

2
δe

)
+
ν

χ

(
δr +

ν

2
δub

)]
(1)

In Equation (1), the independent parameters are χ and ν, since all the other pa-
rameters depend on the specific runtime dynamics of model execution. The values of χ
and ν that minimize the overhead OH can be computed according to the method pro-
vided in [Cortellessa and Quaglia 2001]. However, one aspect that is uncovered by that
method is whether the values δinst and δub need to refer to the per-chunk reversibility
approach or not. In fact, selecting one or the other approach is an issue intrinsically
related to our undo code block based technique. As we will discuss in Section 3.4, our
support for state recoverability entails a heuristic allowing the runtime selection of
either per-chunk or baseline reversibility. Once the best-suited reversibility mode is
selected, the runtime minimization of Equation (1) via the selection of χ and ν takes
place by filling it with values of δinst and δub sampled with the selected mode.

3. IMPLEMENTATION OF THE OVERALL STATE RECOVERABILITY ARCHITECTURE
As mentioned, we target Linux/x86 64 platforms and the ELF executable format. To in-
strument the application-level code, we rely on the Hijacker open-source static instru-
mentation tool [Pellegrini 2013]. For the purpose of this article, we have augmented
the set of operations which this tool can perform.

Hijacker is conceived to be part of the compiling tool-chain, placing itself at a pre-
linking stage. Our state recoverability architecture can be thus easily integrated into
different simulation engines. The core support provided by Hijacker is to let the user
specify (by using simple xml-based rules) how to manipulate the original application
code. It allows to instrument at different scopes, namely executable-wide or at the
level of single functions/instructions. Additionally, Hijacker allows creating multiple
differently-instrumented copies of the same executable modules, packed within the
same final executable. This technique, known as multi-coding, creates different ver-
sions of the code which share the same data sections within the virtual address space.
Hijacker transparently allows changing the name of all the instrumented functions
when it generates multiple versions of the software, by simply appending a user-
defined suffix to them. This allows the simulation engine to identify which version
of each function is instrumented in a specific way, or is not instrumented at all.

Overall, after the generation of multiple versions of the code, the final memory or-
ganization of the executable complies with Figure 5, where we provide an example
with only two versions. This scenario is suited to support the recoverability scheme
presented in Section 2.3, which is based on the combination of periodic checkpointing
and undo code blocks. In fact, a non-instrumented version can be exploited to execute
events that do not need reversibility, while an instrumented one can be used to run
those events to be undone via reversibility.

3.1. The Instrumentation Scheme
To trace memory updates at runtime, we have specified the rules reported in Figure 6.
This configuration instructs Hijacker to generate a modified application-level relocat-
able object which has two different versions (sharing the same data), one of which is by
default the original non-instrumented code version. Specifically, by using the rules in
the <Executable> tag, which generates the version associated with the reverse suffix,
Hijacker scans the whole application code to find instructions belonging to the I MEMWR
family, namely assembly instructions which have a memory address as the destina-
tion operand. Among the various ones, the most significant x86 instructions are mov,
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Fig. 5. Multi-coding scheme

<hijacker:Rules xmlns:hijacker="http://www.dis.uniroma1.it/~hpdcs/">
<hijacker:Executable suffix="reverse"> <!-- instrumented code version -->

<hijacker:Instruction type="I_MEMWR" skip="I_STACK">
<hijacker:AddCall where="before" function="reverse_generator" arguments="target_address"/>

</hijacker:Instruction>
</hijacker:Executable>

</hijacker:Rules>

Fig. 6. Hijacker rules to instrument the application-level code

movs, and cmov instructions. Before each of them (in the whole original program’s im-
age) a call to a specific internal trampoline is placed, along with some instructions
which generate an invocation context for it, therefore allowing to identify the charac-
teristics of the original memory update instruction that has been instrumented. This
is done via the <AddCall> tag, with the arguments attribute set to target address.
Memory-write instructions targeting locations into the stack (e.g., accessing memory
using displacement from the stack pointer) are not instrumented in our rules. In fact,
while processing whichever event via the associated handler, the stack is used as an
area for transient data, that do not belong to the actual LP state, thus not needing
recoverability of their updates.

According to the above instrumentation rule, Hijacker generates a cache of disas-
sembly information, which can be exploited at runtime, particularly to avoid costly
on-the-fly disassembly steps. In more detail, Hijacker extracts from the memory-write
instruction the information related to the size of the memory area being updated, and
the destination address. According to the x86 addressing mode, each memory address
is identified by the expression base address + (index · scale) + displacement, where the
parameters scale and displacement are already encoded in the instruction binary rep-
resentation, while base address and index refer to the content of registers, which can
be evaluated only at runtime. To cope with runtime evaluation of the address, while
jointly avoiding on-the-fly disassembly, the compile-time retrieved data defining the
address are used as a template that is then instantiated at runtime by simply pushing6

the below described data structure, named insn entry, onto the stack (see Figure 7):
struct insn_entry {

char flags;
char base;
char idx;
char scale;
int size;
long long offset;

}

where flags tells which are the relevant fields of insn entry to compute the target
address, or to identify the class of data-movement instructions; base keeps the (3 or

6In the appendix we illustrate the injected instructions that set up this information on the stack.
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Fig. 7. Trampoline call stack frame

4 bits) base register binary representation; idx keeps the (3 or 4 bits) index register
binary representation; scale is used to store the scale factor of the addressing mode;
size holds the size (in bytes) of the memory area being affected by the memory update
instruction (when available at disassemble time); offset keeps the displacement of
the addressing mode7.

Additionally, Hijacker places onto the stack the address of the function spec-
ified in the function attribute of the <AddCall> tag. In our case, this is
reverse generator(void *address, size t size), which is in charge of generating
the negative instruction that will undo the effect of the memory update on the LP
state. Since this function was not present in the original executable8, Hijacker sim-
ply creates a relocation entry in the final relocatable object file, leaving to the linker
the task of identifying its correct address. At this point, the trampoline block of code,
which is a part of the code injected via instrumentation, computes the actual value of
address, and passes it as input to the reverse generator function.

A few additional steps are carried out if the instrumented memory update was ei-
ther a cmov (conditional-move) or a movs (move-string) instruction. Particularly, the
cmov instruction is managed directly by the trampoline, which uses 4 bits in the flags
field of insn info to record what is the check to be emulated in order to determine
if the conditional memory update will be executed or not. Specifically, the trampoline
checks whether the bits are different from zero, and in the positive case the corre-
sponding snapshot of the status bits at trampoline startup are checked to determine
whether the condition is met or not. If the check is positive, then control is passed to
the reverse generator function, exactly as for the case of classical mov instructions.
In the negative case, control is simply returned back to the application. This check
is performed right after the trampoline has taken control, in order to avoid the cost
of computing the target address in case this information is not useful, thus trying to
reduce the cost of this operation.

Concerning the movs instruction, the size flag only tells the size of one single data
move iteration (of the ones to be carried out for string-move). To compute the total
size, the trampoline checks the value of the rcx register, and multiplies it by size.
The starting address of the memory update is then computed by first checking the
direction flag of the flags register. If this flag is zero, the destination address is already
present in the rdi register. Otherwise, the movs will make a backwards copy, therefore
the (logical) initial address of the move is computed as rdi - rcx * size. Then, the
invocation of reverse generator takes place.

7We provide 64-bit space in the insn entry structure due to the fact that the x86 64 assembly language
allows one single instruction, namely movabs, to directly use a 64-bits addressing mode. In all the other
cases, only 32 bits of the offset field are actually used.
8In fact it is part of the state recoverability manager, not of the simulation model.
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We emphasize that the trampoline has been developed directly in x86 assembly, in a
very efficient way, thus reducing as much as possible the overhead to compute the tar-
get address. Additionally, the use of cached disassembly information allows the tram-
poline to access all the relevant information very quickly, which avoids the need for
costly runtime disassembly.

Finally, as mentioned, the adopted instrumentation technique allows us to keep in
the same executable two different versions of the original code, one instrumented
to track memory accesses, and one which simply executes the original code. Since
by using Hijacker we are able to differentiate functions’ versions by a name suffix,
the underlying PDES engine can easily pass control to either instrumented or non-
intrumented event handlers just depending on the target structure of the checkpoint
interval of the LP.

3.2. Runtime Generation of Undo Code Blocks
The instrumentation architecture described so far allows to activate at runtime
the reverse generator(void *address, size t size) API just before any memory-
update operation is performed. At this point, the state recoverability manager is no-
tified of the application intent to update the LP state, and therefore negative instruc-
tions can be built on-the-fly.

If the invocation of reverse generator is related to the execution of a mov or a cmov
instruction, the negative instruction is built by accessing memory at address and by
reading size bytes. The “old” value is placed within a reverse data movement instruc-
tion (a mov instruction) as the source immediate operand. The destination of this nega-
tive instruction is address. On the other hand, if the activation of reverse generation
is due to a movs instruction, then the reverse instruction we put in the undo code block
is another movs. We also note that the movs instruction, which allows for memory mov-
ing blocks of bytes, is what we have exploited for implementing the undo code block
that restores a whole chunk when working with per-chunk reversibility.

Since the set of instructions to be generated within undo code blocks is very limited
(namely, some variants of mov instructions), the opcodes are known beforehand. This
allows us to use pre-compiled tables of instructions to be filled with relevant parame-
ters, namely the old value and the destination address.

Our state recoverability architecture also offers the initialize event(int LP) API
that, when invoked by the PDES engine, informs the recoverability support that a
simulation event is about to be delivered to some LP for processing. In this scenario, a
fast cached allocation (backed from the heap), similar in spirit to the ones supported
by the Linux slab allocator, is used to reserve room for storing the dynamically gener-
ated instructions. In more detail, these instructions are packed into a reverse window
structure, which is depicted in Figure 8. When the reverse window is created, the
reverse generator module places at the end of the associated memory area a ret in-
struction allowing the undo code block to return control to the caller function after
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Fig. 9. The index and offset bitmasks of revwin’s hashmap

its processing. Additionally, the pointer field of the revwin structure is initially set to
the address of this ret instruction. Each time the reverse generator module is called,
the new memory-update reversing instruction is inserted right before the address of
pointer, whose value is then updated accordingly. Therefore, the reversing instruc-
tions are placed into a stack forming the undo code block, whose activation takes place
via a single call to pointer as the target9.

3.3. Tracking Instruction Dominance
As mentioned, dominance properties are important for reducing both the generation
cost of reversing instructions and the actual number of reverse instructions to be pro-
cessed in a rollback phase. To determine whether memory write operations match In-
struction Dominance, we employ an ad-hoc data structure to keep track of already
referenced addresses (while processing an individual event), namely a fast hashmap.

Whenever reverse generator is activated, this hashmap is queried to determine
whether the destination address was already involved in a reversing instruction gen-
eration. Basically, this hashmap exploits a two-level bitmap to coalesce multiple ad-
dresses within a single word, so as to optimize space requirements for address map-
ping. A toggle bit is used to indicate if an address is already referenced by some
memory-write instruction or not. The structure is a linear array of elements treated
as a bi-dimensional matrix. Each element of the array is a quadword of 64 bits used as
basic storage unit for a single range of family’s addresses10. To access the map, the fol-
lowing two values are needed: (i) an index providing the address family range, and (ii)
the offset which identifies the address’ bit within the quadword. These are computed
by properly masking the address value. A family range is therefore composed of all
the addresses whose value starts with the same prefix. Given the address, the offset is
computed by extracting the least n− 1 significant bits, while index is computed as the
result of a bitwise AND with the remainder of most significant bits. Figure 9 shows an
example of address’ binding for a 32-bit architecture.

To correctly keep a per-event reverse window, whenever the simulation engine in-
vokes the initialize event API, the hashmap’s content is flushed, so as to allow
the new reverse window to store all the needed reversing instructions, even though
previously-executed events touched the same memory addresses. Also, false positives
are avoided by flushing a cache line each time a new family of addresses requires up-
dating the line itself.

3.4. Tracking Object Dominance and Heuristic Switch to Per-chunk Undo Code Blocks
The above described hashmap is used in our implementation also for keeping track
of Object Dominance, which is done by associating one hashmap entry to each chunk.

9The appendix discusses how to cope with memory exhaustion within the reverse window buffer.
10This allows us to handle both 64-bit x86 architectures and 32-bit ones, at the cost of wasting some space
when running on older CPUs.
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This is where we combine the two approaches presented in Section 2.2 in order to
determine (upon any new memory update) whether a specific chunk has already been
dirtied. In fact, each hashmap element is organized as a map of elements (already
referenced or not) within a same chunk.

By keeping track of Object Dominance this way, we can jointly put in place a sim-
ple heuristic for determining whether to switch the operating mode of the undo code
block-based recoverability support to per-chunk granularity, or not. Specifically, the in-
formation kept by the hashmap entry associated with a chuck can be used to represent
the so called chunk fragmentation. This is evaluated as the percentage of elements of
the chunk, which have not been accessed in write mode. If the fragmentation factor fri
for the i-th chunk falls below a given threshold α (set in the interval [0, 1]) then locality
of the accesses in write mode to different portions of that chunk is to be considered low.
Therefore, it would not be convenient to rely on per-chunk undo code blocks. Clearly,
the choice on whether to switch to per-chunk undo code blocks needs to consider an
average fragmentation factor (across all the chunks) that can be easily computed as:

FR =

∑n
1 fri
n

(2)

As a general rule, for applications mostly using small-size chunks, higher values of α
could lead to better performance tradeoffs between the cost of per-chunk reversibility
and that of basic reversibility of memory updates on individual locations.

4. EXPERIMENTAL ASSESSMENT
4.1. Test-bed Platform
Our undo code block-based reversibility support has been fully integrated within the
open source ROOT-Sim package [Pellegrini and Quaglia 2013], which we use as the
reference PDES environment in this experimental study. ROOT-Sim already supports
fully-transparent checkpointing (see [Pellegrini et al. 2015]), based on the DyMeLoR
memory map manager [Toccaceli and Quaglia 2008]. This same memory map manager
has been exploited while integrating our undo code block approach to generate the com-
bined (checkpoint/reversibility-based) restore technique presented in Section 2.3. Our
parallel runs have been carried out on a 32-core HP ProLiant server (equipped with
64GB of RAM) running Debian 6 on top of the 3.16.7 Linux kernel. A ROOT-Sim con-
figuration with 32 worker threads has been used in all the experiments, with Global-
Virtual-Time (GVT) computation and fossil collection (of committed data records and
of no longer useful recoverability data) taking place every second.

4.2. The Test-bed Application
As test-bed application, we have selected a cellular system simulation model. The sig-
nificance of this model is due to its complex simulation workload, which is also highly
variable (e.g., in terms of memory access pattern to the states of the LPs, and intensity
of the write activity on these states) depending on how it is configured. Overall, this
test-bed application allows us to assess our recoverability support by exploiting a suite
of different workload profiles.

In this application, each cell is modeled as a hexagonal coverage-area whose evolu-
tion is simulated by an individual LP, by simulating the evolution of the state of its
hosted N radio channels. Each channel is modeled in a high fidelity fashion by relying
on the results provided in [Kandukuri and Boyd 2002], which state how interference
and fading phenomena affect the experienced Signal-to-Interference Ratio (SIR). Ac-
cordingly, power regulation is actuated in order to achieve predetermined SIR levels,
which is also explicitly modeled.
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The current state of any channel is kept via a dynamically-allocated record, placed
into a list. Also, two variants for the LP state layout have been considered, exhibit-
ing different tradeoffs. In the first variant, each channel record points to a power-
management record, which is also dynamically allocated upon call setup. In the second
variant, power-management records are dynamically allocated in block, and are used
to serve multiple call installations. Particularly, a block is made up by 100 records, and
the different stocks are recorded within a hash-table, which is indexed by relying on
the channel-identifier. We will refer to the second variant as Clustered. This variant
allows for improved memory locality (since multiple power-management records be-
long to the same contiguous chunk), at the expense of internal memory fragmentation
(within the LP state) if a reduced percentage of entries are used within a block.

The latter aspect is linked to the workload intensity of simulated calls, which is an-
other parameter we have varied in our experiments. In more detail, the model includes
a parameter τA, which expresses the inter-arrival time of subsequent channel assign-
ment requests to any target cell. The lower τA, the higher the workload. An additional
parameter τduration expresses the expected duration of a communication burst on a
channel after its assignment; hence the channel utilization factor can be computed as
τduration/(τA ·N). Higher utilization factors require handling more power-management
records at any time instant. This impacts the event granularity (which depends on the
number of channel records and power-management records to be scanned and/or up-
dated) and the memory footprint of the LP state. The additional parameter τcell switch
is used to express the residual residence time of a mobile device into the current cell.
This parameter determines, in combination with τduration, the interactions across the
LPs, in the form of hand-off events cross-scheduled among them.

In our study, we consider a scenario with 1024 cells covering a square region, each
one managingN = 1000 wireless channels (resembling macro-cell technology). τduration
is exponentially distributed with average value 120 seconds, while τcell switch is expo-
nentially distributed with average value 300 seconds. Also, the inter-arrival time τA
(still exponentially distributed) is varied in terms of its mean value in order to achieve
two different values for the average wireless channels’ utilization factor, namely 25%
and 75%. This diversifies the actual execution pattern (CPU/memory demand) by the
application. These two scenarios will be referred to as Low-Load and High-Load.

Further, we consider two different read/write operations profiles. The first one is
based on computing the SIR value only when performing power regulation upon
new call setup. We will refer to this profile as Read-Intensive, since channel/power-
management data records are scanned (but not updated) while determining power
regulation for the new call. A second profile is instead based on updating SIR values
(only depending on fading) for all the on-going calls upon new call setup. This profile
leads to updating all the active power-management records upon the installation of
any call, hence we will refer to it as Read-Write profile.

On the basis of the varied parameters, a total number of six different configurations
have been run, which are summarized in Table 4.2. The Clustered variant of the LP
state layout has been tested only in the Read-Write profile, given that it is intrinsically
tailored to capturing the effects on the recoverability architecture by locality of the
updates (if any) into the LP state layout.

As a last preliminary note, the average event execution times have been observed
to be of the order of 80–100 µs for LL profiles, and of the order of 150–200 µs for HL
profiles. The time to take a checkpoint has been observed to be of the order of 30 µs for
LL profiles and 55 µs for HL profiles (slightly smaller values have been observed for
the Clustered setting). The average time to generate a single reversing instruction for
an individual 64-bit memory location has been observed to be of the order of 0.15 µs.
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Table I. Summary of test-bed configurations

Read-Intensive Read-Write

Low-Load RI-LL RW-LL
High-Load RI-HL RW-HL

Low-Load Clustered — C-LL
High-Load Clustered — C-HL

4.3. Performance Data
In a first set of experiments, we compare the performance of either traditional peri-
odic checkpointing, in combination with coasting forward for restoring the LP state to
non-logged values, or of periodic checkpointing in combination with reverse scrubbing.
As explained in Section 2.3, the latter recovery scheme is based on either applying the
undo code blocks starting from the current state image of the LP, or by applying them
after reloading a conveniently-selected checkpoint. Also, for the configuration based on
reverse scrubbing, we generate undo code blocks for all the processed events, thereby
excluding the possibility of combined usage of coasting forward and reverse scrubbing
within a same checkpoint interval. The effects of this combination, and the optimiza-
tion of the combination on the basis of the cost/benefit model in Equation (1), will be
assessed later via a second set of experiments.

For completeness, we also consider a configuration where state recoverability is
based on pure reverse scrubbing (no checkpoint is taken). Further, for all the con-
figurations entailing the generation of undo code blocks, we run the experiments by
either activating or disabling the hashmap to track already-updated memory locations
(or memory objects) in the processing of a single event. This allows us to evaluate over-
head and benefits by the hashmap (via the exploitation of dominance). The hashmap is
configured with 128 lines. Data referring to the pure reverse scrubbing configurations
are shown as bars, since they are independent of the checkpoint interval.

We report in Figure 10 the execution speed variation of the simulation (evaluated
as the amount of committed simulation time units per second) for both the RI-LL and
RI-HL configurations11. The curves for reverse scrubbing, either in combination with
checkpointing or not, refer to the case of baseline undo code block generation (see Sec-
tion 2.1), where every memory update is reverted via a corresponding memory-move
instruction. For the RI-LL configuration, we observe similar peak performance for both
coasting forward and reverse scrubbing. However, reverse scrubbing shows higher re-
silience to performance degradation vs. sub-optimal values of the checkpoint interval.
This is somehow expected, given that the RI profile produces undo code blocks with
very few instructions. Thus, the reconstruction of non-checkpointed state images is a
reduced-cost operation even if the distance between the state image to be recovered
and the starting point of the reverse scrubbing operation is non-minimal. This is also
evident when looking at the performance provided by pure reverse scrubbing, which
stands slightly better than the configuration with reverse scrubbing in combination
with checkpointing when the interval between checkpoints is set to 40. Good resilience
to performance degradation is instead not achieved by classical periodic checkpointing
with coasting forward. In fact, this configuration shows a rapid performance increase
when moving the checkpoint period from one to five events, thanks to a significant
reduction of the checkpointing overhead. However, for larger values of the checkpoint
period, the additional reduction of the checkpointing overhead does not pay off, since
the longer expected coasting forward degrades performance due to the need for replay-
ing events to restore the target state, which is instead avoided by reverse scrubbing.

11All reported samples refer an average value computed over 5 different runs of a same configuration.
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Fig. 10. Results for the Read-Intensive profile

Another interesting point is that, for checkpoint period set to one, both classical coast-
ing forward and reverse scrubbing only need to reload one checkpointed state image
upon a rollback operation. However, for the reverse scrubbing configuration all the pro-
cessed events give rise to their associated undo code blocks. Hence, the reduced perfor-
mance by reverse scrubbing vs. coasting forward in this configuration is representative
of the extra cost for generating undo code blocks and tracing memory write operations.
This cost does not allow reverse scrubbing to achieve the same performance boost as
coasting forward when moving a checkpoint interval of five events—in fact the perfor-
mance curve of reverse scrubbing is slightly smoother. However, the cost to generate
undo code blocks pays off for larger values of the checkpoint interval, as discussed.
Concerning the exclusion of the hashmap with reverse scrubbing, it leads to a slight
performance increase compared to the scenario when it is used. This is because the RI
configuration has no advantages from the hashmap, since one event updates memory
locations belonging to the LP state only once. Hence, querying the hashmap leads to
misses with high likelihood. On the other hand, this is a good test case to assess the
cost for manipulating the hashmap, especially in relation to the operation of resetting
it at the beginning of the processing phase of any event, given the low intensity of
write operations within the LP state.

For the RI-HL configuration, the advantages by reverse scrubbing are amplified. In
fact, HL gives rise to coarser-grain events which are adverse to coasting forward, es-
pecially for sub-optimal values of the checkpoint interval. In more detail, avoiding to
take checkpoints at each event does not provide the same performance improvement
as compared to RI-LL. Indeed, the costs for replaying coarser-grain events in coasting
forward become non-negligible, as soon as the length of the coasting forward phase
is non-minimal. As hinted, reverse scrubbing avoids at all these costs. Hence, thanks
to the RI profile generating per-event undo code blocks with reduced numbers of in-
structions, the reverse scrubbing phase is still not costly. This allows for a better per-
formance boost while increasing the checkpoint period. Overall, the reverse-scrubbing
peak performance is about 10% higher than the coasting-forward peak performance.
Further, similarly to the RI-LL configuration, reverse scrubbing still provides better
resilience to performance degradation vs. sub-optimal values of the checkpoint period.
Also, pure reverse scrubbing gives a performance that is slightly better than when
using checkpointing with an interval set to 40. This is an interesting phenomenon
caused by the fact that when the checkpoint interval is longer, reverse scrubbing is
forced to reprocess more undo code blocks, and the latency to restore the last correct
checkpoint form which to apply the undo code blocks does not pay off, compared to
state reconstruction via pure reverse scrubbing. This is clearly linked to (and ampli-
fied by) the larger state footprint of the HL configuration, as compared to LL, which
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Fig. 11. Results for the Read-Write profile

leads to larger state/checkpint size, and more costly checkpoint reload. Finally, with
more costly events, which lead to query the hashmap infrequently given the RI profile
of memory interactions, the overhead for managing the hasmap tends to disappear, as
compared to the LL configuration.

In Figure 11, we show the results from the RW profile. In this scenario, reverse
scrubbing still undoes memory updates via single memory-move instructions placed
into the undo code block. Compared to RI, this profile leads to increased frequency
of per-event generation of undo code blocks, given that more memory-update opera-
tions are carried out by the events. For RW-LL, reverse scrubbing allows for better
peak performance (with a gain of about 5% compared to coasting forward), and this
time the performance of reverse scrubbing has a trend similar to coasting forward,
with a peak speed at checkpoint period set to five. This is due to increased frequency
of write operations, leading to larger per-event undo code blocks, whose generation/
processing costs penalize the state restore latency for longer reverse scrubbing phases
(similarly to what happens with longer coasting forward phases). However, reverse
scrubbing still looks more resilient to performance degradation for sub-optimal values
of the checkpoint period (namely, excessively longer checkpoint periods). In fact, the
pure reverse scrubbing configuration does not degrade performance, if compared to
reverse scrubbing used in combination with checkpointing and large checkpoint inter-
vals. For RW-HL, coasting forward is instead able to provide better peak performance
(with a gain of about 6% over reverse scrubbing). This trend is due to RW-HL lead-
ing to further increased intensity of per-event write operations (compared to RW-LL),
since a larger number of records are updated while processing the events. This makes
memory-tracing and undo code block generation overheads the dominating factors. In
fact, for checkpoint interval set to one, i.e. when the undo code block generation rep-
resents pure overhead with no benefit, we have a performance decrease of reverse
scrubbing vs. coasting forward of about 33%. However, for longer checkpoint periods
(beyond the optimal value for the coasting forward configuration), avoiding at all to
replay events thanks to reverse scrubbing still pays off, leading to better performance
compared to coasting forward. Also, the usage of pure reverse scrubbing again pays off
compared to the combination of reverse scrubbing with checkpointing and large check-
point intervals, because of the already-discussed reasons and possibly a decrease of
locality caused by the need for restoring larger states while still needing long reverse
scrubbing phases involving a higher number of machine instructions within undo code
blocks touching memory sparsely. Finally, in the RW configuration we see a more pro-
nounced difference in the performance achieved with the inclusion or exclusion of the
hasmap. We remind that the RW profile still leads to memory updates mostly scattered
on different locations, which prevents the hashmap from providing significant benefits.
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Fig. 12. Results for the Clustered configuration (RW profile)

On the other hand, the higher write intensity in the RW configuration (compared to
RI) leads to querying the hashmap more frequently, which leads to an increase in the
overhead. Such phenomenon has a higher relative incidence on HL due to the higher
relative cost to manipulate and update records within the LP state vs. other operations
carried out by the events.

As hinted, in the baseline memory layout of the benchmark application, the higher
intensity of write operations in the RW profile is implicitly coupled with reduced local-
ity of the updates, since the data records that are updated are scattered in memory.
The Clustered variant of the memory layout is aimed at assessing the undo code block
based recoverability support when employing per-chunk undo code blocks (recall that
chunks represent this time blocks of records). We show in Figure 12 the execution
speed curve for the Clustered configuration for both classical coasting forward and
reverse scrubbing (either in combination with checkpointing or not) with undo code
blocks based on per-chunk granularity. In the latter configuration, a single movs in-
struction restores the whole content of a block. Also, when the hashmap is employed,
multiple updates on a same block performed while processing an event are discarded
(in terms of generation of reverse instructions within the undo code block) thanks to
the Object Dominance property. By the results, we see how the exploitation of locality
of the memory updates, via the reliance on per-chunk undo code blocks, allows re-
verse scrubbing to provide performance improvements for the Clustered configuration
(which exhibits a RW profile) in both LL and HL scenarios. Also, compared to the pre-
vious configurations, the resilience to performance degradation by reverse scrubbing
is even more evident, given that longer checkpoint intervals lead to reduced amounts
of reverse instructions to be processed in a rollback phase, since a single reverse movs
instruction allows to restore the state of multiple records within the LP state. Overall,
when some locality is guaranteed for memory update operations, reverse scrubbing is
competitive even with higher intensity of memory write operations by the events. On
the other hand, the exclusion of the support for tracing such locality, i.e. the hashmap,
leads reverse scrubbing to provide definitely reduced performance caused by the work
for generating/processing undo code blocks. Overall, saving the cost to manage the
hashmap does not pay off in scenarios with actual dominance. As a last note, the us-
age of pure reverse scrubbing in combination with the hashmap, although revealing
highly efficient, does not outperform reverse scrubbing in combination with check-
pointing with larger checkpoint intervals. This phenomenon is due to the fact that
with clustered allocation a checkpoint is more compact, since a reduced amount of
metadata are involved. Hence, the cost of restoring a checkpoint from which to apply
undo code blocks still pais off thanks to the statistical incidence of the reduction of the
length of the reverse scrubbing phase (compared to pure reverse scrubbing).
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Fig. 13. Execution speed ratio (new approach vs traditional periodic checkpointing)

In the final part of this study we provide data related to the combined usage of re-
verse scrubbing and traditional coasting forward, according to the scheme proposed
in Section 2.3. The potential for further performance improvements when generating
checkpoint intervals where an initial portion of the events do not generate undo code
blocks (i.e. restore is based on coasting forward) and a subsequent portion generate
undo blocks (i.e. restore is based on reverse scrubbing) looks evident when consider-
ing that the undo code block technique makes the recovery latency less influenced by
the distance between checkpoints. So we might set longer checkpoint intervals, while
jointly avoiding long reverse scrubbing phases thanks to coasting forward limited to
the initial, possibly reduced, portion of the checkpoint interval. To assess the advan-
tages by the combined approach, we have run the same six configurations of the bench-
mark by optimizing the partitioning of the checkpoint interval according to the model
in Equation 1. In our runs, the model is resolved at runtime after having collected
data for its input parameters, which are also used to determine whether to switch
to per-chunk based undo code blocks. This is done using Equation (2) after setting
the fragmentation factor threshold α to the value 0.75 (we remind that it determines
whether a chunk of memory has to be considered as fragmented or not, in terms of
the updates occurring on it). The competitor configuration is identified as one based
on periodic checkpointing, where the checkpoint period is still selected at runtime as
the one minimizing Equation (1) once fixed the parameter ν to zero. With this settings,
the equation boils down to one determining the optimal periodic checkpoint interval in
traditional coasting forward based recoverability [Rönngren and Ayani 1994].

The achieved results are plotted in Figure 13. We report the ratio between the exe-
cution speed when using the mixed technique and traditional periodic checkpointing.
The data refer to the steady state speed observed after the model-based performance
optimization is already put in place. We simply discarded the initial speed samples
collected when (for both recoverability techniques) no optimization of the parameters
driving their behavior was already actuated. By the data, we see how the performance
benefits from reverse scrubbing in combination with coasting forward are further am-
plified, especially for RI-HL, and for the C-LL and C-HL configurations (the latter
being both RW in their profile). Further, relying on the model-based optimization al-
lows the integrated recoverability support to avoid performance penalties when run-
ning applications with more intense memory write activity and with updates that are
scattered (thus not favoring locality). In fact, for the RW-HL configuration, we observe
that the model-based approach leads to excluding the usage of undo code blocks (thus
leading to a pure checkpoint based recoverability scheme), hence avoiding the costs
(and penalties) associated with the reverse scrubbing approach evidenced by the data
in Figure 11.
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5. RELATED WORK
Due to its fundamental role in optimistic PDES, state recoverability is a deeply in-
vestigated topic. As for checkpoint-based recoverability, several solutions have been
introduced for logging the whole state of a simulation object (at each event execu-
tion or after an interval of executed events) [Fleischmann and Wilsey 1995; Preiss
et al. 1994; Quaglia and Santoro 2003; Rönngren and Ayani 1994], or incrementally
logging modified state portions [Rönngren et al. 1996; Steinman 1993; West and Pane-
sar 1996], or supporting a mix of the two approaches [Franks et al. 1997; Soliman
and Elmaghraby 1998]. Most of these solutions demand from the application-model
developer the implementation of state-saving callbacks which are explicitly invoked
when the simulation environment determines that a state log is necessary, or require
the modeler to issue a call to some specific API used to identify the simulation state
location in memory, or request to statically identify (e.g., at compile-time) which por-
tions of the address space need to be considered part of the state. The works in [Das
et al. 1994; Steinman 1992; Toccaceli and Quaglia 2008] address the management of
dynamic memory maps forming the LP state, and how to (transparently) log/restore
them. Our proposal is complementary to all the aforementioned ones, as we integrate
traditional checkpointing with the runtime generation of undo code blocks.

The general concept of using logs of instructions for reverse execution is not
novel [Frank 1999; Biswas and Mall 1999; Sosič 1994], although we are not aware of
works dealing with the speculative PDES context, where other reversibility schemes
have been investigated. A recent work [LaPre et al. 2014] presents a software-
instrumentation based approach (at the level of LLVM IR) to automatically generate
the code associated with negative events. This work is similar in spirit to ours, as one
of our final goals is to relieve the user from the burden of implementing the negative
version of the events as well. Nevertheless, in the approach in [LaPre et al. 2014],
binary instrumentation is used to generate at compile time exact negated versions
of code blocks, while we generate at runtime the instructions which undo the effects
of the execution of the events in memory. Therefore, our solution’s cost (in terms of
recovery latency) is not proportional to the granularity of the events, rather to the
amount of memory locations which are updated during the execution in forward mode.
The final tradeoff by our solution is different from the one in [LaPre et al. 2014] also
because our instrumentation scheme leads to the runtime tracing of memory write op-
erations, thus inducing some cost for the dynamic generation of undo code blocks. A
reverse-computing based approach working on executables is provided in [Hou et al.
2012b], where the authors implement the reverse execution logic by automatically in-
specting data dependencies within executable images. This approach is still a pure
reverse-computing one, while our proposal reverts memory updates with no backward
re-computation of the values to be restored.

The work in [Pellegrini et al. 2009], similarly to what we do, relies on static binary
instrumentation to track memory updates during the forward execution of the events.
Nevertheless, its goal is to use this information to generate periodic incremental check-
points. Contrarily, we use tracked memory updates to build update undo code blocks.
This is similar, as well, to the proposal in [West and Panesar 1996], but rather than
packing the undo log in linked data structures, we pack on the fly assembly instruc-
tions which are later executed consecutively, so as to reduce to the highest extent the
execution time of the restore operation.

In [Schordan et al. 2015] the address and old value of each updated memory location
is saved during forward execution. Nevertheless, in this approach binary instructions
are not generated at runtime. Consequently, the approach has to loop over saved data
to restore the state during rollback, possibly adding a cost compared to our undo code
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block based scheme. At the same time, the proposal in [Schordan et al. 2015] is based
on Backstroke [Hou et al. 2012a], a C++ source-to-source translator based on the ROSE
compiler, which can provide the advantage of enabling the instrumented code to rely
on compiler-based optimizations.

As for the possibility to mix together different recoverability techniques (say check-
pointing and undo code blocks in our case), our approach shares underlying principles
with the works in [Cortellessa and Quaglia 2001; Pellegrini et al. 2015]. In [Pelle-
grini et al. 2015], an autonomic system to determine at runtime the best suited check-
pointing mode (incremental vs. full) is presented. Efficiency is ensured by relying on a
dual-version executable technique, which allows to switch between the two execution
modes changing only a couple of function pointers. We keep the same ability to change
the support for state recoverability (using the same software dual-version technique),
but we do this within each single checkpoint interval (by enabling the recoverability
of a subset of the states passed through in the interval via update undo code blocks).
Hence we target the optimization of runtime dynamics at smaller granularity levels
(single events within a checkpoint interval). With respect to [Cortellessa and Quaglia
2001], we rely on a similar model for the optimization of the parameters driving the
operation of the recoverability architecture. However, in that work no support for ap-
plication transparency of recoverability tasks is presented, while our proposal is fully
application transparent.

Our approach is also related to proposals in the field of program execution tracing
(see, e.g., [gdb ; Bala et al. 2000; Qin et al. 2006; Zhao et al. 2008]). They provide de-
tailed analysis of changes in the state and/or execution flow of programs. However, this
is achieved via performance-intrusive techniques relying on dynamic instrumentation
and/or kernel-level services, unsuited for contexts where performance cannot be sac-
rificed, like PDES. Debugging facilities exhibiting basic operating modes comparable
to the one we employ (namely, the usage of trap mechanisms based on code injection
and/or replacement to detect memory write accesses) are those addressing data watch
points (see, e.g., [Wahbe et al. 1993]). However they have performance targets different
from ours since optimizations mostly cope with search techniques for verifying whether
a memory reference falls inside a region that is currently subject to a watch point. In
other words, aspects related to the identification of areas that have been modified and
to log/restore or, more in general, recoverability operations are not considered.

6. CONCLUSIONS
In this article we have presented a new technique for enabling state restore of simu-
lation objects in speculative PDES systems. It is based on the runtime generation of
undo code blocks, which are blocks of machine instructions able to revert the memory
updates performed by incorrectly executed simulation events along the speculative ex-
ecution path. The philosophy at the core of our proposal is to combine undo-logs with
software reversibility concepts, since undo code blocks are compact logs of machine in-
structions (rather than of data). Our approach operates transparently, via automatic
instrumentation of the application code, particularly ELF objects on x86/Linux sys-
tems. Also, the new recoverability support can be combined with classical checkpoint-
ing, which allows for exploiting the best of both worlds. This is done via the generation
of a recoverability architecture that is able to restore a passed through state by ei-
ther reloading a checkpoint, and fictitiously reprocessing intermediate events, or by
applying undo code blocks starting from the current state image (or from a conve-
niently selected checkpoint). This improves the flexibility in determining the length
of the checkpoint period, and the subset of events for which undo code blocks should
be (or should not be) generated within any period, for performance optimization. We
tested our approach on a suite of application execution profiles generated via parame-
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terizing a mobile communication simulation application. The resulting data show how
the undo code block approach has good potential for performance improvements with
highly differentiated workloads.
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A. APPENDIX
A.1. Effect of the Instrumentation Process on the Program Image
In this section we discuss what is the nature and the amount of instructions injected by
our instrumentation technique in order to activate the reverse generator() module.
This discussion and analysis allows the reader to fully understand how our technique
guarantees the correct execution of an instrumented application, and to perceive what
is the execution cost associated with this technique.

1:  66 9c                    pushfw 

2:  48 81 ec 80 00 00 00      sub    $0x80,%rsp

3:  c7 44 24 00 04 00 00 00   movl   $0x4,0x0(%rsp)

4:  c7 44 24 04 02 00 00 00   movl   $0x2,0x4(%rsp)

5:  c7 44 24 08 28 00 00 00   movl   $0x28,0x8(%rsp)

6:  c7 44 24 0c 00 00 00 00   movl   $0x0,0xc(%rsp)

7:  c7 44 24 10 DD CC BB AA   movl   $0x0,0x10(%rsp) 

8:  c7 44 24 14 00 00 EE FF   movl   $0x0,0x14(%rsp)

9:  e8 00 00 00 00            callq  trampoline

10: 48 81 c4 80 00 00 00      add    $0x80,%rsp

11: 66 9d                    popfw

12: f2 0f 11 40 28            movsd  %xmm0,0x28(%rax)

Callback function's address:

void reverse_generator()

at 0xAABBCCDDEEFF

Orignal memory-write

instruction to instrument

Make room in the stack

and replace the stack

pointer when done

04 00 00 00

02 00 00 00

28 00 00 00

00 00 00 00

DD CC BB AA

00 00 FF EE

    ...

STACK

RSP

RSP

Size of the data to be saved

Flags of the memory-write instruction

Fig. 14. Illustration of the instructions injected by the instrumentation process

Figure 14 illustrates an example of the outcome of the instrumentation process,
along with the effect on stack by the execution of the injected instructions. The pro-
vided example refers to the movsd %xmm0, 0x28(%rax) x86 instruction, which is usually
generated by compilers to store the result of a floating-point instructions into a field of
a C struct. As mentioned, the instrumentation process installs a call to a trampoline
function which activates a generic routine specified in the Hijacker’s configuration file.
In our case, this routine is reverse generator(), which generates the reverse instruc-
tion for the movsd instruction, in this case.

To this end, the trampoline function requires the entry address of
reverse generator() to call it at runtime—in this example, this function is lo-
cated at virtual address 0xAABBCCDDEEFF. This information is placed on stack, for
later retrieval by trampoline. Similarly, we place on stack additional information
generated at compile time by Hijacker, which is used by trampoline to compute the
target address and the size of the memory-update operation. In particular, we place
an offset/address (0x28 in our case) as a 64-bits value, the size of the memory update
determined at compile-time (if possible; 4 bytes in our case), and packed set of flags
which are used to drive the execution of trampoline. These flags tell, e.g., whether
base/index registers (and which ones) are used, and whether the memory update
operation is a string instruction or not.
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push reverse

instruction
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Fig. 15. Undo code block composed of multiple buffers

Since all this information is generated at compile time, and is placed directly on the
stack, we rely on 6 properly-generated movl instructions12. The destination of these
instructions is the top of the stack, which is therefore moved before the actual moves
using a sub $0x80, %rsp instruction. This is an arithmetic operation, and therefore
might clobber the x86 FLAGS register. We have no guarantee—at least, not without
more complex binary analysis covering all possible execution flows—that the memory-
update operation which triggered the generation of this code does not come after any
cmp instruction. Therefore, we cannot ensure that the content of FLAGS will not be used
by any conditional instruction after the movsd instruction is executed. To this end, we
save the content of FLAGS. This is represented in the picture by the pushfw instruction
for visual simplicity. The actual code that we inject, on the other hand, is as follows:

pushq %rax
lahf
seto %al
pushq %rax

This is a semantically-equivalent snippet to save arithmetic-instruction-related
flags which, differently from a pushfw instruction, avoids a possible flush of the X86
pipeline, thus reducing an additional cost—this is despite the fact that more instruc-
tions are actually executed.

Once the call to trampoline returns, the instruction to reverse the execution of movsd
has already been generated13. Yet, before resuming the normal execution of the instru-
mented software, we still have to undo the effects of the previous injected instructions.
This is done using an add $0x80, %rsp and a (logical) popfw.

A.2. Managing Variable Size Undo Code Blocks
As we have mentioned in Section 3.2, undo code blocks are stored into memory buffers
served from the heap using a Linux-like slab allocator. This means that each buffer

12We do not use movq instructions to make the code backwards compatible with 32-bit systems, and since
movqs do not allow 64-bit immediate operands on 64-bit systems.
13We note that in this case, the corresponding reverse instruction is a simple movl instruction, which simply
copies the bitmask corresponding to the old floating point value. This means that the generation of reverse
instructions is agnostic with respect to the actual datatype.
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has a fixed size. Nevertheless, the actual number (and size) of the reverse instructions
generated at runtime is not know beforehand. To account for this, we have adopted
two different strategies.

The first one is as well related to the way undo code blocks are executed. In fact, as
already mentioned, we place at the very end of this buffer a ret instruction, and we
push newly-generated instructed using the buffer in a stack-like fashion. In this way, if
the size of all generated instructions is smaller than the size of one buffer delivered by
the slab allocator, the undo of an event simply entails calling into the first instruction
in the undo code block. This is correct, at the cost of wasting some memory from that
buffer.

On the other hand, if the size of runtime-generated instructions is larger than the
size of one buffer, two different buffers must be connected together. This can be eas-
ily done by requesting to the slab allocator a new buffer, yet we do not place a ret
instruction at the very end of the newly-allocated one. Rather, we place a jmp instruc-
tion, having as the destination address the one associated with the first instruction
stored into the previous buffer. The final organization of a multiple-buffered undo code
block is reported in Figure 15, where we show that the actual destination of the jmp
instruction is computed as an offset to be x86-compliant.

A.3. Details on the Interaction with the Memory Map Manager
Another point which deserves a discussion, is the way our rollback scheme interacts
with memory management. In fact, being able to undo the effects on the content of
a memory buffer might not be enough to guarantee a correct rollback operations: the
state of the buffer must be properly managed as well. In fact, if a generic simulation is
allowed to rely on dynamic memory, the forward execution of an event might allocate
new memory (via, e.g., a malloc() call) or release buffers which are no longer needed
(e.g., via a free() call). If events involving such calls are undone, the undo operation
must correctly restore the allocation state of buffers.

While releasing a buffer to undo an allocation can be trivial (a corresponding free()
might be executed), the other way round is more complicated. In fact, a sequence of
malloc(), free(), malloc() is never garanteed to deliver the same buffer which was
allocated by the first call.

We note, however, that this anomaly is independent of the technique used to undo a
portion of the speculative simulation. In fact, event checkpoint-based rollback execu-
tions might present similar side effects. In particular, we adopt an approach already
studied in the literature [Toccaceli and Quaglia 2008], which is implemented within
DyMeLoR [Pellegrini et al. 2015], the memory management subsystem used in our
experimentation.

In particular, in DyMeLoR the execution of a free() call does not really releases the
associated buffer. Rather, it simply clears a bit in a metadata table (see Figure 16(a) for
the organization of the memory map within DyMeLoR). In case of a checkpoint-based
rollback operation, both the metadata table and the content of the memory chunks are
restored. For a complete discussion on the correctness of this approach, we refer the
reader to [Toccaceli and Quaglia 2008].

Since in the presented approach we do not only rely on checkpoint-based rollback,
rather we also undo in the opposite order the effects of updates on the memory map,
it is enough to explicitly interact with DyMeLoR so as to correctly restore its inter-
nal state. To this end, we couple our undo code blocks with the set chunk state()
internal API offered by DyMeLoR—Figure 16(b) illustrates the internal organization
of DyMeLoR and its API. This is a interface which allows to specify the base address
of a memory chunk and a new state (true for allocated, false for non-allocated).
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Fig. 16. DyMeLoR data structures and organization

By having this API function, whenever a call to malloc is intercepted by DyMeLoR,
the memory management subsystem notifies this to the undo code block manager
which generated the bytes associated with a call to set chunk state(chunk addr,
false). On the other hand, whenever a call to free is intercepted, the undo code block
will keep a call to set chunk state(chunk addr, true). Given that every memory op-
eration is undone in the inverse order, introducing these two changes to manage the
state of buffers is enough to guarantee a correct restore.

A.4. Additional Performance Data
In this section we report additional performance data for an assessment of our undo
code block based recoverability technique, and its employment in combination with
classical checkpointing. This study complements the one presented in the main body
of this article because of the significantly different execution profile of the benchmark
application we used. In particular, we run experiments with a model of an in-memory
data platform, where a cluster of servers maintain the state of a set of data items,
and where transactional requests are delivered at the servers, whose simulation leads
to the detection of whether conflicting (read/write or write/write) accesses take place,
which gives rise to the abort of the transaction contending in an already locked data
item. This kind of models have recently acquired relevance, e.g. as a support for (on-
line) dimensioning/configuring of cloud oriented in-memory data platforms in face of
specific data sets and differentiated data access patterns [Di Sanzo et al. 2015].

An illustration of the layout of the state of each LP, which models an individual
server, is shown in Figure 17. The state is made up by a table keeping basic metadata
(e.g. related to statistics associated with the outcomes of simulated transactions), an
array of pointers to buckets, each one keeping the current state of a given data item
(associated with a specific key), and an array of pointers to the state of the currently
processed transactions.

We simulated a data store with 256 servers, each one managing a data partition
made up by 104 items, for a total of more than 2.5 million items. Batches of transac-
tional data access requests are delivered to each server by proper simulation events,
which are scheduled following an exponential distribution of their timestamps. The
transactions may entail accessing the local partition or remote partitions, and the ac-
cess to remote data partitions leads to cross-LP exchange of simulation events, car-
rying as payload the set of transactional requests that require access to the remote
partition. In our experiments we set the batching factor to 5, and the likelihood of
accessing a remote partition to 0.2. Each transactional request may access a reduced
number of different data items within the data platform, say 5 to 10. Also, the evolu-
tion of the transactions in each batch is modeled by having their accesses processed in
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Fig. 17. Layout of the LP state in the data platform model

round-robin fashion. All the parallel runs have been carried out by relying on the same
platform already described in Section 4, and by still relying on 32 worker threads.

One interesting point in the settings we used for this benchmark application is that,
differently from the case study presented in Section 4, the average latency to take a
checkpoint of the whole state of an LP is definitely greater than the average latency
for processing and event, in fact the former is of the order of 35 microseconds while the
latter is of the order 15 microseconds. Also, the events are write intensive since the
access of each item by a transaction leads to updating both the transaction record and
the data item record.

We report simulation speed data related to the execution with checkpointing plus
coasting forward, with pure reverse scrubbing, with reverse scrubbing used in com-
bination with checkpointing, and finally with the combined usage of coasting forward
and reverse scrubbing within a same checkpoint interval (according to the scheme pre-
sented in Section 2.3). For the latter configuration we selected 3 different values of the
ratio between ν and χ, say 0.75, 0.5 and 0.25.

The results are shown in Figure 18. As expected, for all the curves that relate to the
usage of checkpointing, we see a great performance gain when setting larger check-
point intervals, with no significant performance degradation for very large intervals
just due to the reduced event granularity for the case of coasting forward based re-
covery. Such a fine granularity is also the reason why pure reverse scrubbing is not
able to provide the same level of performance of coasting forward. The same is true for
reverse scrubbing used in combination with checkpointing. However, the performance
curves show the high potential for a combined usage of coasting forward and reverse
scrubbing, even in scenarios with fine grain events. In more detail, the combined us-
age of the two techniques leads to the same (or slightly better) performance when the
checkpoint interval is partitioned into equal portions, covered either by coasting for-
ward or reverse scrubbing (say ν

χ = 0.5). However, we see how a combination of the
two techniques that tends to partition the interval in such a way that a larger por-
tion is covered by coasting forward (say ν

χ = 0.25) leads to up to 8% performance gain,
thanks to the avoidance of excessive overhead for the generation of undo code blocks,
and the joint possibility to avoid excessively long coasting forwards, which may lead
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Fig. 18. Results with the data platform model

to non-minimal overhead even with fine grain events. Overall, in synergy with the re-
sults reported in Section 4, these curves show how the introduction of the undo code
block based technique and its combination with more traditional techniques provides
a more efficient support for state recoverability with general workloads, such as fine
grain events with write intensive profile as in this tests case.
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