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Summary

Hardware Performance Counters (HPCs) are facilities offered by most off-the-shelf
CPU architectures. They are a vital support to post-mortem performance profiling
and are exploited by standard tools such as Linux or Intel V-Tune. Nevertheless,
an increasing number of application domains (e.g., simulation, task-based high-
performance computing, or cybersecurity) are exploiting them to perform different
activities, such as self-tuning, autonomic optimization, and/or system inspection.
This repurposing of HPCs can be difficult, e.g., because of the overhead for extracting
relevant information. This overhead might render any online or self-tuning activ-
ity ineffective. This article discusses various practical strategies to exploit HPCs
beyond post-mortem profiling, suitable for different application contexts. The pre-
sented strategies are accompanied by a general primer on HPCs usage on Linux.
We also provide reference x86 (both Intel and AMD) implementations targeting the
Linux kernel, upon which we present an experimental assessment of the viability of
our proposals.
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1 INTRODUCTION

Most families of CPUs currently include specialized components within their architecture, collectively named Hardware Per-
formance Counters (HPCs) or Performance Monitor Counters (PMCs), which can be used to gather information about what is
going on at the hardware level during code execution. While HPCs have been available since very old architectures like Intel
Pentium and AMDAthlon, their importance has made them see a considerable expansion over the last decades. In fact, they have
been used not only to profile the execution of software in terms of actual hardware reactiveness and achievable performance1, or
for relating software execution to power and energy consumption2,3, but also to support security4 or specific functional tasks5
thus offloading them from software modules.
At their simplest, HPCs come in the form of a set of programmable hardware registers directly connected to the circuitry of

the CPU and controlled by a Performance Monitoring Unit (PMU). Once they are programmed to track a specific hardware-
level event (e.g., a cache hit at a particular cache level), their value is automatically and transparently increased every time such
events occur through dedicated data paths in the chip. This makes them particularly efficient. Due to their importance, many
additional extensions (e.g., the Intel Precise Event-Based Sampling—PEBS6, which allows collecting also memory addresses
involved in application access) have been introduced over the years.
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Profiling has been for sure one of the core motivations for the evolution of HPCs, and well-established profilers have exten-
sively used them (e.g., Linux perf or Intel V-Tune). Also, recent research lines have highlighted the opportunity to rely on
HPCs’ innovations for online self-tuning of applications or to carry out near real-time monitoring activities. In this scenario,
the capability to effectively monitor the behaviour of applications using non-intrusive facilities enables new applications of
the Autonomic Computing paradigm7,8. In this direction, HPCs have been used in a myriad of applications, such as dynamic
software profiling9, CPU power modelling2, children privacy protection10, failure prediction in computing systems11, random
number generators12, or for the generation of test programs via fuzzing to enhance code coverage13 just to mention a few diverse
applications.
These solutions share the need for efficient management and analysis of the generated samples, which is the activity associated

with the most considerable overhead. Indeed, while HPCs are fast and non-intrusive at generating samples, managing these
samples to create higher-level information to be exploited online is costly.
The overhead introduced in the system to collect and manage HPC samples is thus relevant for many modern applications.

This overhead is exacerbated if an application requires the collection of these samples at a higher frequency—this is the case
of HPC exploitation for supporting incremental checkpointing via the HPC-based identification of memory areas accessed in
write mode5.
Beyond pure overhead aspects for the collection and management of HPC samples, we also need to consider that i) HPCs, in

general, do not differentiate between user space and kernel space, therefore if an application wants to filter out data related to
execution in kernel mode, this must be explicitly done; ii) HPCs do not differentiate between processes; therefore the samples
should be manually filtered; iii) many sources in the system might induce some non-deterministic behaviour14, which should
be explicitly taken into consideration; iv) performance counters may overcount certain events on some processors14.
Some of these aspects—like points i) and ii)—are explicitly dealt with by standard tools exploiting HPCs, such as Linux

perf or Intel V-Tune. Nevertheless, such tools only offer post-mortem capabilities to exploit HPC data. Furthermore, as we
also show in our experimental analysis, they can lose PMU samples under the high frequency of their production, which can be
undesirable in specific application contexts, like for example PMU exploitation for security4. Hence, how to cope with all the
aforementioned aspects in the context of online exploitation of HPCs is still an ongoing research activity.
In this article, we propose and discuss several approaches which can be used to program, control, and read data from HPCs.

Our approaches try to solve some or all of the limitations mentioned above, thus serving as building blocks for online operations.
Every approach is accompanied by code samples, enabling developers and practitioners to find a comprehensive guide to HPC
usage in the context of online exploitation of the samples, e.g., for self-optimization. We couple our reference implementations1
with an extensive assessment, which shows the benefits and limitations of each solution.
The interactions between the software layer and HPCs has some technical difference among the various CPU architectures.

We tailor our solutions for x86 architectures, encompassing both Intel and AMD chipsets—we explicitly focus on hardware
supports from different CPU generations. Nevertheless, our approaches can be easily ported to other architectures. Our reference
implementations target the Linux kernel. Furthermore, rather than requiring kernel recompilation and re-installation, we target
an implementation based on a Linux kernel Module (LKM) just for ease of use—it enables loading/unloading the required
kernel-level software at runtime.
The remainder of this article is structured as follows. In Section 2, we provide the background on HPC facilities offered by

modern off-the-shelf CPUs. In Section 3, we discuss related work. The various interaction schemes with HPCs are presented in
Section 4. Our experimental assessment is provided in Section 5.

2 BACKGROUND

HPCs enable an event-based sampling, allowing a profile generation complying with specific event occurrences. The events
driving the execution of HPC operations are so-called hardware events. They define the classes of phenomena that can occur
in architectural elements because of the processor state evolution during code execution. Examples of hardware events are the
occurrence of a write operation in memory, an L3 cache miss, an L1 line replacement, or the fact that a conditional branch in
the execution flow of the program has been taken.

1Available at https://doi.org/10.5281/zenodo.6621964

https://doi.org/10.5281/zenodo.6621964


Stefano Carnà ET AL. 3

In the literature, this extremely low-level information is often referred to as micro-architectural events. The benefit of relying
on micro-architectural events is that their support is highly optimised and does not slow down the speed of the CPU, which is
highly desirable. At the same time, micro-architectural events are directly linked to design choices and may vary among different
manufacturer products, accounting for innovative features shipped with new design generations. Consequently, there is no guar-
antee that a micro-architectural event can be monitored with different processor models or associated with the same hardware
phenomenon. The complexity of these low-level micro-architectural events is sometimes masked by hardware manufacturers,
which try to select some events, called architectural events, that are deemed common to different processor models. Relying on
architectural events increases the portability of solutions based on these supports, although they are typically reduced in number.
Modern CPUs support hundreds of micro-architectural events, but only a handful of HPCs are available (at the time of this

writing, off-the-shelf CPUs offer between 4 and 8 HPCs per core). Among the rich set of events that can be monitored, it is
possible to identify the following classes:

1. Time events: these are events that can track time evolution. They are often based on a particular hardware counter, often
called TimeStamp Counter (TSC), expected to be incremented at each clock cycle.

2. Instructions progress: a dedicated counter tracks the retired instructions during CPU activity, providing a primary form
of processor throughput—for instructions composed of multiple micro-operations, the counter is incremented when the
last micro-operation is retired.

3. Memory access patterns: caches can be monitored at several levels, and counters can be incremented for each miss/hit
event.

4. Branches: a counter can provide information on branch instructions, such as the number of branchmispredictions or retired
branch instructions.

On typical off-the-shelf architectures, each HPC can be configured to track exactly one micro-architectural event at a time.
Despite all the implementation differences, the software interface to control an HPC is typically based on a couple of model-
specific registers (MSRs):

1. a selector (or control) register, which is used to specify the HPC operating mode and the architectural event to be observed;
2. a counter register, which is incremented every time the associated architectural event is triggered—of course, the counter

can overflow.
The typical way to access these counters is through a read/write on model-specific registers (MSRs) exposed by the underlying

architecture. MSRs differ from traditional registers (like general-purpose ones) because they are used to configure and toggle
specific features on the CPU that may not be present in other models. On x86 architectures, it is possible to operate on MSRs via
rdmsr and wrmsr15,16 instructions (which are privileged instructions), and it is also possible to read the HPC from userspace
via the rdpmc instruction15.
An HPC can be configured to work in two different modes: counting and sampling modes. The counting mode makes the

counter register simply accumulate the number of target architectural events observed while any program is running on the CPU.
On the other hand, when the HPC is working in sampling mode, the system generates a hardware interrupt when the counter
register overflows. The operating system handler associated with this interrupt can be programmed to take a CPU snapshot to
investigate the context that generated the hardware event.
When the interrupt service routine is activated, the program counter stored in the interrupt frame on the stack might not be

associated with the actual instruction whose execution triggered the overflow of the counter. This aspect is exacerbated inmodern
superscalar architectures that rely on out-of-order execution engines to speed up the execution of applications. Here, multiple
operations are executed concurrently—as an example, the AMD Fam 10h processor can have up to 72 in-flight operations at
any time. Therefore, due to the high number of concurrent pipelines and the different orderings associated with micro-operation
execution and instruction retirement, the actual sampling notification may be late compared to its generation point. This delay is
called skid. Its presence is the reason behind additional capabilities embedded within PMUs, which we describe in the following
sections.

2.1 Intel’s Precise Event-Based Sampling (PEBS)
PEBS15,6 is an Intel extension to traditional HPCs to increase their precision. It is an event-based sampling solution that intro-
duces the concept of precise events, i.e., events exposed at a minimal (mostly zero) skid effect. Even though PEBS is built on
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FIGURE 1 Organization and relation of the data structures used in the context of PEBS.

top HPCs, it does not take complete control over them: it is, therefore, possible to exploit both PEBS and traditional HPCs
simultaneously.
PEBS cannot be applied to all the events supported by PMUs, yet it provides a new hardware-based mechanism that automat-

ically saves the processor context when the counter overflows. This solution, called PEBS assist, is implemented at the firmware
level, and it avoids any code interruption to gather extra processor information related to the event itself—no hardware interrupt
is required to save the CPU context, which can be inspected at a later time. PEBS is still based on the usage of the standard
counters to work in a combined manner. In particular, a PMU can still be configured to work in sampling mode. In this way,
when the counter reaches the configured threshold, a hardware interrupt is fired.
When gathering the event-related data, the information is packed into a structure called PEBS record, which represents the

base element of the PEBS buffer. This buffer is located in the Debug store (DS) save area, whose size can be defined at setup
time by writing into the DS model-specific register. Every time an architectural event monitored using the PEBS support is
triggered, a data sample is produced to snapshot the whole CPU state. In the PEBS buffer, the next record to be filled with a
newly-generated sample is identified thanks to the PEBS index. When the PEBS index reaches the PEBS threshold, which can
be configured at setup time, a hardware interrupt is used to notify that the buffer is almost full, and a read operation should be
carried out as soon as possible to avoid losing samples. The overall organisation and the relation between the data structures
used to support PEBS execution are depicted in Figure 1.

2.2 AMD’s Instruction-Based Sampling (IBS)
IBS16,17 is another precise support that adopts a different methodology for generating data that, in some ways, can be consid-
ered as a variation of the time-based sampling (TBS). The yardstick of this sampling technique is the instruction2: the counter
increments every time an instruction is executed, and, similarly to the HPC’s strategy, an interrupt is sent to the processor as
soon as a threshold is reached. The magic lies in the hardware-firmware cooperation that is in charge of collecting the CPU state
combined with additional information at the precise moment the culprit instruction is fetched3 from the CPU frontend and fol-
lowing its execution through the entire pipeline until its retirement. All the events generated by the instruction computation are
recorded into dedicated MSRs, realising a complete execution snapshot. IBS defines an orthogonal solution to PEBS, providing
a detailed information set that aims for a comprehensive and complete analysis rather than studying more specific dynamics.

2Actually the user can define if the counting process has to be based on either executed micro-operations or elapsed clock cycles.
3IBS is split into the fetch and the execution units that provide information concerning the processor frontend and backend, respectively.
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3 RELATEDWORK

Since their initial implementations, PMUs have been largely investigated in the literature, providing a full spectrum of their
capabilities. At the same time, despite their implementation by means of dedicated circuitry, the overhead introduced for their
usage is not always negligible18,14 and can sensibly vary according to the profiling mode, the frequency period, and the tech-
niques adopted to collect and read the gathered data. This reinforces the well-known accuracy/overhead tradeoff, which at high
rates might slow down the entire system’s execution (making the exploitation of PMUs too invasive for online tasks) and also
introduces side-effects such as profile data perturbation, making the measurements possibly unreliable19,6.
HPCs lack a standard interface. The policies to interact with this support differ across processor vendors and can require

different actions even among models of the same vendor. Consequently, most hardware-enhanced software analysis programs
rely on external libraries or tools to nimbly integrate PMU functionality and extend solution portability. OProfile20, Perfctr21,
Perfmon222 or PAPI23 are some of the most used interfaces exploited by applications to take advantage of hardware supports.
PAPI is undoubtedly the most adopted solution, whose design evolution is directly supported bymajor semiconductor companies
such as Intel, AMD, ARM, IBM, and Nvidia. However, its goal is only related to simplifying the access to PMUs on various
architectures, while the task of interpreting the generated information is still demanded from the user. AMD code analyst24,
Intel VTune25, HPCTool26 and LikWid27 are advanced tools which do not export a PMU interface, but provide a full-fledged
set of configuration and interpretation functionalities. Indeed, they provide a useful UI assisting non-experts during session
configuration and offer a built-in analysis tool that pinpoints critical problems in the analysed executions to carry out complex
tasks such as performance optimisation.
Nonetheless, they do not provide any means for external software interaction, limiting their activities to local (though very

precise) application profiling, which cannot be exploited in online tuning actions. The most versatile framework in the Linux
system is perf_events28. It is directly integrated into kernel modules and can be engaged in either system component activities
or user applications to leverage both software and hardware instrumentation. Moreover, it is coupled with a user-space utility
accounting for the same high-level capabilities of the aforementioned advanced tools. Even though perf_events has all the
elements to support the realisation of self-tuning software components,Weaver14 demonstrated how its evolution path introduced
system performance degradation in favour of more advanced features integration. Generally, profilers do not care about this
drawback because they just gather data to perform post-mortem analysis. Even so, this represents a fundamental limitation for
techniques acting in an online fashion, which requires the identification of the suitable trade-off between the generated data and
the polling frequency of such information without overloading the system and perturbing the original program flow with the
profiling activity29.
Despite all the highlighted problems, hardware monitoring support has been used to address disparate research challenges.

HPCs have been employed to improve energy efficiency30 of systems. In this context, Singh et al.31 proposed a newmethodology
to estimate real-time power consumption and devise a power-aware system scheduler. Wang and Boyle32 showed that hardware
instrumentation could drive compilers to achieve optimal mapping of program parallelism on the underlying architecture by
performing automatic profiling runs. The works in33,34 have focused on the properties of HPCs that are needed for accurate
power/energy modelling. These works also studied how raw HPC data collected using existing Linux solutions satisfy these
properties. The work in35 presents a study on how to combine HPC data with utilization variables for the accurate modeling of
power/energy usage.
Various methods have been proposed for correcting sampled HPC values, which can be classified into two main groups. The

first group interpolates between two sampled events using linear or piece-wise interpolation to artificially fill data gaps in col-
lected samples (e.g.,28). However, these interpolation methods may not provide accurate imputations36 despite being able to
run in real-time. The second group of methods correct measurements by removing outlier values instead of adding new inter-
polated values. These methods require the entire trace of an application before providing corrections and cannot be run in real
time. For example, Lv et al.37 use the Gumbel test for outlier detection, and Neill et al.38 use fork-join aware agglomerative clus-
tering to remove outlier points. These methods are unsuitable for dynamic control situations requiring online HPC correction.
Furthermore, the core statistical technique these variance methods use is limited in effectiveness. BayesPerf39 uses statistical
relationships between events to correct measurements accurately. When dealing with well-documented processors, these rela-
tionships can be known in advance, allowing the entire correction algorithm to be executed without the need to pre-collect
data. BayesPerf allows corrected HPCs to be accessed with nearly native latency, making them suitable for dynamic control
processes. Differently from these proposals, we focus on developing a technique that effectively enables using HPC values for
non-functional operations.
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Many supports have been diagnosed with several elusive problems40 and anomaly detection41 in a large-scale production
system. Memory management is fundamental to achieve the desired system responsiveness and novel strategies for runtime
memory allocation on NUMA systems adopted PMUs to retrieve low-overhead and accurate information on allocator choices
and memory access path42. However, the solutions are based on either a hybrid approach—which collects data in preliminary
analysis and uses results as a hint to conduct the runtime optimisation in a subsequent phase43—or a pure online logic exploiting
specific experimental measurements for parameters tuning, which indeed does not represent a flexible solution over general
application domains44. Molka et al.45 studied the memory footprint of an application detecting its memory-boundedness, also
highlighting the complexity to choose the right metrics14. In the context of speculative High-Performance Simulation, HPCs
have been used to trace memory accesses to build incremental logs of application states to support low-overhead memory
checkpoint/restore activities5.
Hardware introspection capabilities provided by HPCs are suitable to address multiple security challenges46,47, ranging from

the identification of Return-Oriented Programming (ROP) attacks48 to the detection of several exploits of side-channel vulnera-
bilities49,50. Furthermore, the design of countermeasures for new transient execution vulnerabilities51 present in most processors
required new strategies featured by hardware instrumentation52,53 to observe the stealth activities performed by attackers, also
in a system-wide fashion4. All these works highlight the relevance of PMUs as a support for the online profiling of applica-
tions. Nevertheless, carrying out this kind of activity might incur severe performance penalties. Tackling these issues, while still
providing a general-purpose tool for accessing HPCs in an easy to configure and efficient manner, is the goal of this article.

4 EFFICIENT ONLINE GATHERING OF HPC DATA

In this section, we provide a comprehensive panoramic of the various techniques that could enable effective exploitation of PMUs
for online operations (e.g., inline optimisation), possibly covering all the research lines mentioned in Section 3. Our techniques
are discussed as a way to realise a profiling agent that works partially in kernel mode and partially in user mode. The kernel-
mode agent can be implemented as a Loadable Kernel Module (LKM) or a patch to the kernel, depending on its inner workings.
We stress its implementation via LKM just for ease of use (it can be installed with no kernel recompilation and installation).

4.1 Efficient Collection of PMU Data
In common tools, like the well-known perf_events in Linux28, PMUs are configured to generate performance monitor inter-
rupts (PMIs) on the Non-Maskable Interrupt (NMI) line. This interrupt vector is commonly used to register routines linked
to exceptional hardware events related to low-level machine management or more complicated hardware faults. Consequently,
it demands a more advanced software routine than an ordinary interrupt line. On the x86 architecture, each core has a single
non-maskable interrupt line4. Linux implements the NMI handler as a dispatcher that iterates over a chain of handlers whose ele-
ments are explicitly registered. The NMI routine starts walking through the chain upon an NMI generation, and all the enrolled
handlers get called until one handles the interrupt. Each one shall assess the interrupt causes by querying specific registers (or
memory locations), revealing whether the NMI was intended for it or another handler. For instance, the PMI handler must check
fixed bits in specific MSRs to determine if HPCs or other supports overflowed and thus generated the NMI.
Directly modifying the interrupt management strategy—rather than relying on NMI via the installation of an additional NMI

handler—can be an effective intervention to achieve a more timely system response. In particular, in our proposal, we want
to minimise the interrupt latency that, in this case, not only denotes the hardware delay to deliver the interrupt request to the
operating system but also encompasses the total number of instructions executed before and after the actual management routine
is activated.
Compared to the NMI code, the generic IRQ entry routine comprises fewer instructions for the platform-independent handler

function. From a high-level perspective, it performs the following operations:
1) it checks if we are coming from a user- or a kernel-mode and, if needed, swaps the GS segment;
2) it creates a complete registers snapshot, swaps to the kernel-level page table (this is required for hardware-level security

bugs like Meltdown54, and is supported by the Page-Table-Isolation service55, namely, PTI) and switches to the dedicated
IRQ stack;

4All NMIs go into interrupt line 2.
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3) it calls the do_IRQ function, which sets some system flags and executes the actual handler;
4) it leaves the IRQ stack;
5) it calls the kernel function in charge of managing the interrupt;
6) it restores the registers snapshot and executes swapgs and the swap to the user-level page table if required;
7) it returns from interrupt.
On x86 architectures, the number of available interrupt descriptor table (IDT) vectors is limited to 256, each associated with

a dedicated management routine, even if that specific interrupt is not actually used by the operating system—it is a spurious
one. This is done in order to allow the kernel to actually access the software needed to respond to an interrupt (or a trap) under
any circumstance.
In our solution, the exploitation of a specific entry of the IDT to manage PMU interrupts has been organized without the

need for a new entry installation on the IDT. In fact, this solution would require the inclusion of the IRQ routine at the level
of the kernel entry portion, already visible in user-level page tables. This would require, in turn, recompiling and reinstalling
the kernel. Instead, to avoid this problem and to exclusively rely on an LKM, we identify one IDT entry hosting the spurious
interrupt IRQ routine, and then we simply binary patch the call carried out by that routine in point 5) of the above task list
(directed to the platform-independent manager of the spurious interrupt) to our own manager embedded within the LKM. Given
that the kernel-level page table gets opened by the IRQ routine (see point 2) in the above task list) before the call is executed,
our handler is correctly visible and usable by the CPU, even if it stands in the memory area used for an LKM. Clearly, this
solution still works if the kernel is booted with the no-page-table-isolation option since, in this case, the IRQ routine we binary
patch still offers the call instruction we have exploited. Also, in order to correctly identify that instruction, we exploit the
“kallsyms” service offered by the Linux kernel—particularly via the kallsyms_lookup_name() function—to discover where
the original handler of the spurious interrupt stands in the memory address space. This is done by simply passing the name of
the smp_spurious_interrupt kernel handler to the kallsyms_lookup_name() service. This enables us to perform pattern
matching of the call-instruction displacement, so as to locate the correct call to be binary patched. This solution still works with
kernel-level randomization of the address space, since the kallsyms service is offered at runtime.
Thanks to this approach, the PMI routine has direct access to the code managing HPC samples because such an IDT entry is

not shared with other routines/handlers. Consequently, we save the cost of polling multiple handles, which is instead spent when
using NMI. Clearly, the higher the frequency of PMI events, the larger the benefits of our approach and the overhead reduction.
This aspect is deeply discussed in our experimental study in Section 5.

4.2 Discriminating the Profiling Domain
PMUs work at the architectural level, thus ignoring operating system dynamics such as context switches. In a time-sharing
system, discriminating what application was running when a PMU captured a particular event needs therefore specific support
at the software level. Therefore, thread discrimination is an essential feature for the association of PMU data to the activities
carried out on behalf of any application.
Furthermore, another relevant aspect to consider is mode discrimination, namely the capability to filter events depending on

the privilege level when they occur. While x86 architectures offer four different privilege levels, only two are used in practice
by standard off-the-shelf operating systems. PMUs abide by this practice and offer specific bits in control MSRs to select the
desired mode discrimination. Regrettably, this Current-Privilege-Level (CPL) filter is not reliable on many architectures56.
This section presents different software-level solutions that we devise to offer both thread and mode discrimination, with

reduced overhead. This makes them suitable for online PMU-exploitation purposes.

4.2.1 Per-thread Profiling
It is possible to implement per-thread filtering of the generated PMU data provided that: i) we can associate a memory area to
store the trace of generated samples with the current thread; ii) we can intercept a context switch to determine what memory
area needs to be used for the newly CPU-dispatched thread; iii) we can let the system know the pool of threads that the profiling
agent should actively manage.
To cope with these aspects, we propose an explicit “registering” procedure, which allows the profiling agent to collect data

related to specific threads (based on pid numbers in Linux) or to multi-threaded processes (based on tgids). For simplicity, in
the following, we generically use the term thread for both cases, with no loss of generality.
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CONFIG_THREAD_INFO_IN_TASK! CONFIG_THREAD_INFO_IN_TASK

FIGURE 2 Flagging a Thread on its Kernel Stack.

This registering phase allocates all the required memory needed by our profiling agent for each registered thread (e.g., memory
buffers for storing the sample trace). Since we are interested in maintaining the overhead as low as possible, retrieving the
location of sample buffers for a given thread must be a very efficient activity, especially considering that such a step could
be performed at least once for each context switch. Hence, the profiling agent should leverage some efficient data structure to
perform thread lookups.
For this purpose, we could extend the task_struct (a process control block, aka PCB, associated with the thread) with a

dedicated flag to keep the monitoring state and a pointer to the memory area used to host the sample trace. While this solution
appears immediate, it is not viable if the monitoring agent is implemented purely via an LKM, since it requires recompiling the
kernel. Consequently, we explored three different approaches for which we provide performance data in Section 5.
The first solution is based on a global shared data structure that can be updated whenever some thread is registered for moni-

toring. From our empirical experience, hash tables well fit the performance requirements under general settings. To determine
whether a thread should be profiled, the monitoring agent can check whether its ID is stored in the hash table.
A second solution exploits the already-available perf_events subsystem in Linux, an advanced analytics suite available in

the Linux Kernel. The tight integration with the Linux kernel is also manifested in the presence of dedicated fields within the
task_struct that we can use to flag a thread as under monitoring. We therefore take advantage of the possibility of registering
a so-called software dummy event for each process we want to monitor. This event is not actually associated with any profiling
rule but is used only to mark a thread as under profiling. Furthermore, by registering this custom event without associating
any profiling rule, we can leverage its instance as a container of custom data, e.g. references to memory buffers for storing the
currently generated sample trace—we will discuss this aspect in more detail in Section 4.3. Listing 1 shows an example of how
to register, deregister and query a perf event. Once the perf event is instantiated, it is queued into the dedicated per-process
perf_event list. To check whether a process should be monitored, the monitoring agent can search the dummy event in the
corresponding list and check the related private data. Even though all the operations are kept consistent through a mutex, our
experience shows that no significant overhead is introduced.
The third solution is based on storing a monitoring flag directly on the kernel stack of the profiled thread. Figure 2 depicts

the overall schema under two different circumstances. The general idea is to use the last available stack entry to store the profile
status for the corresponding thread. In this case, determining whether a thread should be profiled involves accessing the process
control block (PCB) of the currently-scheduled thread via the currentmacro. The PCB contains a reference to the kernel stack
associated with the thread, which can be accessed in constant time when that thread is executing. When a PMI is fired, its handler
can quickly access the current thread stack to determine what should be done with the generated samples.
There are two issues to consider if this strategy is adopted. First, the last entry on the thread stack might not be the very

topmost memory address in the stack pages. Indeed, depending on the Linux version or the underlying hardware architecture,
we might find the thread_info data structure at the end of the stack area, as shown in Figure 2. Therefore, care must be taken
to determine the proper placement of the thread_info data structure, not to overwrite its content—this is a check that can be
performed at the LKM compile-time anyhow.
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Listing 1 Example of perf_event Creation, Release and Query Functions.
1 bool create_task_data(struct task_struct *task, void *data)
2 {
3 struct perf_event *event;
4 struct perf_event_attr attr = {
5 .type = PERF_TYPE_SOFTWARE,
6 .config = PERF_COUNT_SW_DUMMY,
7 .size = sizeof(attr),
8 .disabled = true,
9 };
10
11 event = perf_event_create_kernel_counter(&attr, -1, task, NULL, NULL);
12
13 if (IS_ERR(event))
14 return false;
15 // Insert custom data inside event
16 event->pmu_private = data;
17
18 mutex_lock(&task->perf_event_mutex);
19 list_add_tail(&event->owner_entry, &task->perf_event_list);
20 mutex_unlock(&task->perf_event_mutex);
21
22 return true;
23 }
24
25 void destroy_task_data(struct task_struct *task)
26 {
27 struct perf_event *event;
28
29 event = __get_perf_event(task);
30 perf_event_release_kernel(event);
31
32 mutex_lock(&task->perf_event_mutex);
33 list_del(&event->owner_entry);
34 mutex_unlock(&task->perf_event_mutex);
35 }
36
37 static void *is_profiled(struct task_struct *task)
38 {
39 struct perf_event *event;
40
41 mutex_lock(&task->perf_event_mutex);
42 event = list_first_entry_or_null(&(task->perf_event_list),
43 struct perf_event, owner_entry);
44 mutex_unlock(&task->perf_event_mutex);
45
46 return event ? (void *)event->pmu_private : NULL;
47 }

The second issue to consider is related to the natural growth of the stack. Indeed, if the stack grows, our flag might be
overwritten. This circumstance might not be easily detected, as this might be due to a perfectly legit memory write5. Some
techniques can be used as mitigation. One possibility is to rely on a cyclic redundancy check (CRC) to assess before the flag
is read—the probability of a false negative depends on the robustness of CRC. This solution introduces a minimal level of
uncertainty that affects the system’s reliability. A second possibility entails relying on dedicated hardware debug registers that
are typically used to define hardware breakpoints. The firmware generates a trap every time the address is accessed—according
to the debug register configuration, it may filter reads, writes, or even execution accesses. The associated trap routine should
then manage the event accordingly. Relying on debug registers does not introduce concurrency issues because each hyper-thread
on board of the processor can leverage its own set. Nevertheless, both relying on a CRC check or a debug register introduces
additional overhead to the simple task of determining whether a thread should be profiled or not.
The second essential requirement to perform per-thread profiling is being able to intercept a context switch. As mentioned,

this is fundamental because PMUs observe the CPU’s execution at a system level. Still, if the scheduler switches a thread off the

5This problem is one reason that led kernel developers to map the kernel stack from physical onto virtual memory and to move the thread_info data structure out of
the stack, as also shown in Figure 2.



10 Stefano Carnà ET AL.

CPU, the PMU data of the thread must be updated to allow resetting the profiling trace. Actually, the context switch kernel code
is not exposed to LKMs, because it is considered part of the operating system’s internals. Therefore, if our monitoring agent is
implemented as a module, we must rely on additional facilities exposed by Linux to be informed of the occurrence of a context
switch.
The Linux kernel is disseminated of several fixed hook points, called tracepoints, which can be used to install an arbitrary

function (probe) to be invoked every time the tracepoint is met. This facility has been designed to help kernel developers perform
debugging activities of specific portions of the kernel. Nevertheless, we propose to repurpose this facility as a generic callback
capability that also allows modules to be informed of specific activities taking place—in our case, a context switch.
A tracepoint can be either enabled or disabled. It is enabled if at least one probe is installed in the specific tracepoint. All

installed probes are queued and are called one by one when the tracepoint is reached, thus allowing a redirection of the flow
to custom registered functions. If a tracepoint is disabled, the introduced overhead is minimal. Tracepoints are declared via
the macro DECLARE_TRACE(name, proto, args), requiring as input the tracepoint’s name, the prototype of the callback
functions, and the parameters name. The Linux kernel already ships a tracepoint named sched_switch, which is triggered
every time the scheduler selects the next task to be scheduled, thus allowing us to observe both the old and the new threads
installed on the CPU.
In Listing 2, we present our approach for implementing in an LKM-based monitoring agent a callback function to selec-

tively profile the system at a thread-level basis. The function register_ctx_hook allows registering the callback function
at the selected sched_switch tracepoint if it is found in the running kernel. To perform this check, we rely on the
for_each_kernel_tracepoint macro. It iterates among all the tracepoints defined at kernel compile time, performing the
check implemented in the lookup_tracepoint function, eventually selecting the correct tracepoint reference, if present6. Once
identified, we rely on tracepoint_probe_register to register our custom callback function ctx_hook_func.
Deregistering the callback is a simpler action but requires some care. We rely on tracepoint_probe_unregister to notify

the kernel that ctx_hook_func should not be called anymore upon a context switch. Nevertheless, this operation can be delayed.
This delay can create a race condition if the deregistering operation is executed when the LKM is unmounted. Indeed, some
CPU cores might try to invoke that function after the unloading is completed, thus causing a system crash. To prevent this
possibility, we explicitly perform a call to tracepoint_synchronize_unregister, which ensures that all execution traces
upon all CPUs are synchronised about the removal of the callback function.
In Listing 2 we also show the actual implementation of the callback function, namely ctx_hook_func. This function imple-

ments the logic to drive PMUs according to the profiling status of the scheduled/descheduled threads. This implementation also
shows an additional optimisation related to the per-thread processing scheme we are discussing. Indeed, the profiling agent can
inspect the old and new scheduled threads’ profiling state to reduce the number of unnecessary MSR writes. Whenever a pro-
filed thread replaces another profiled thread, the PMUs’ configuration does not change, since reconfiguring the involved MSRs
would not bring any gain but only a cost. A PMU’s configuration transition occurs only when the switch between two threads
bumps into a switch-off/on of the profiling activity. To this end, we have introduced the per-CPU pcpu_pmcs_active variable
that tells whether the current-core PMUs are active.
Beyond tracepoints, another technique can be used to inform the monitoring agent that a context switch is taking place. In

particular, Linux can be configured to offer an additional dynamic probing subsystem, generally called kprobes. The kernel
can install such probes in almost any code location. Typically, they are used to dynamically attach a callback function to any
function’s entry point, return point (a kretprobe), or even after the execution of every instruction. In order to inject the probe at
the desired point, the kernel replaces part of the machine instruction that should trigger the callback activation with a debug trap
instruction7. Once the control flow reaches the trap, a dedicated exception handler is activated to implement the logic associated
with the management of the kprobe.
The exception handler knows the installed probe and carries out the additional logic before or after instrumenting the code

instruction. This logic entails reconstructing the original instruction in a different memory location, invoking the associated call-
back function, and resuming the initial execution flow. If a kretprobe is installed, the kernel silently installs a kprobe associated
with a special callback that installs a trampoline on the called function stack by replacing the return address. In this way, the
callback can gain control after a return instruction is executed.

6In the proposed code example, struct hook is only a helper structure to aggregate all the information of interest.
7On x86 architectures, this is typically done by relying on the int3 assembly instruction. It is a 1-byte instruction that can therefore be used to (partially) overwrite

any instruction.
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Listing 2 Context Switch Callback based on Tracepoints.
1 struct hook {
2 char *name;
3 void *func;
4 struct tracepoint *tp;
5 };
6
7 static void ctx_hook_func(void *data, bool preempt, struct task_struct *prev,
8 struct task_struct *next))
9 {
10 if (this_cpu_read(pcpu_pmcs_active) && !is_profiled(next))
11 // Do something with prev's profiling data (see Section 4.3)
12 disable_pmc_on_this_cpu();
13 else if (!this_cpu_read(pcpu_pmcs_active) && is_profiled(next))
14 enable_pmc_on_this_cpu();
15 }
16
17 static struct hook ctx_hook = {"sched_switch", ctx_hook_func, NULL};
18
19 static void lookup_tracepoint(struct tracepoint *tp, void *hook_ptr)
20 {
21 struct hook *hook = (struct hook *)hook_ptr;
22
23 if (strcmp(hook->name, tp->name) == 0)
24 hook->tp = tp;
25 }
26
27 int register_ctx_hook(char *name, void *func)
28 {
29 /* Fill the hook's tracepoint */
30 for_each_kernel_tracepoint(lookup_tracepoint, hook);
31
32 if (!hook->tp)
33 goto err;
34
35 if (tracepoint_probe_register(hook->tp, hook->func, NULL))
36 goto err;
37
38 return 0;
39 err:
40 return -ENXIO;
41 }
42
43 void unregister_ctx_hook(enum hook_type type, void *func)
44 {
45 tracepoint_probe_unregister(hook->tp, hook->func, NULL);
46 tracepoint_synchronize_unregister();
47 }

To notify the monitoring agent of the upcoming context switch, we insert a kprobe into the finish_task_switch(struct
task_struct *prev) function, which is invoked at the end of the schedule() function just before the new thread gets control
of the CPU. At the end of that function, the old process can be identified via the prev parameter, while the newly-scheduled
one can be already reached via current. We provide in Listing 3 the reference code to install a context switch callback by
relying on kprobes—the install_kprobe function (lines 30–42). In particular, we rely on a kretprobe to be notified when the
finish_task_switch function is returning. We have set the maximum number of expected concurrent instances to the number
of active CPUs (line 5) because this is the maximum number of context switches that can occur simultaneously.
The entry_handler and the handler members are the callbacks that are installed at the beginning and return points of

the finish_task_switch, respectively. The initial callback’s goal is to intercept the parameter of finish_task_switch and
make it visible to the handler function, which could not access that information otherwise. The return callback will use that
value to accomplish several tasks, such as managing the PMUs’ state and updating the existing process collected data.
There is an additional aspect that is relevant to discuss concerning per-thread profiling. As mentioned earlier, we might be

interested in monitoring a group of threads. At any execution time, they might spawn new processes/threads, and the monitoring
agent should be able to discriminate whether the new threads belong to the monitored group or not. Nevertheless, if the agent is
configured to include newly spawned threads into the monitoring pool, it must be able to detect the actual creation of the new
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Listing 3 Context Switch Callback based on Kprobes
1 struct kretprobe krp_post = {
2 .handler = finish_task_switch_handler,
3 .entry_handler = finish_task_switch_entry_handler,
4 .data_size = sizeof(struct task_struct *),
5 .maxactive = NR_CPUS
6 };
7
8 int finish_task_switch_entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
9 {
10 unsigned long *prev_address = (unsigned long *)ri->data;
11 /* Take the reference to previous task */
12 *prev_address = regs->di;
13 return 0;
14 }
15
16 int finish_task_switch_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
17 {
18 /* Get the reference to the leaving process */
19 struct task_struct *prev = (struct task_struct *)*((unsigned long *)ri->data);
20
21 if (this_cpu_read(pcpu_pmcs_active) && !is_profiled(current))
22 // ... update prev profiling data
23 disable_pmc_on_this_cpu();
24 else if (!this_cpu_read(pcpu_pmcs_active) && is_profiled(current))
25 enable_pmc_on_this_cpu();
26
27 return 0;
28 }
29
30 int install_kprobe(void)
31 {
32 int err = 0;
33
34 /* Hook function */
35 krp_post.kp.symbol_name = "finish_task_switch";
36
37 err = register_kretprobe(&krp_post);
38 if (err)
39 pr_warn("Cannot hook post function - ERR_CODE: %d\n", err);
40
41 return err;
42 }

threads. A similar consideration deals with the termination of threads, particularly to enable the monitoring agent to perform
cleanup tasks. For instance, if the monitored threads are kept in a hash map, their termination requires removing them from the
data structure and freeing all related metadata.
We rely on an approach similar to what we have done to intercept context switches. In particular, it is possible to use both

tracepoints and kprobes to intercept the creation/termination of threads. For this specific goal, the static tracepoints can be
retrieved by looking for sched_process_fork and sched_process_exit, respectively. Analogously, kprobe instances can
be attached to the do_fork and do_exit system functions. Listing 4 shows the reference implementation of the callbacks when
relying on both techniques.

4.2.2 Software-based CPL Filtering
One desired feature demanded from a monitoring agent is being able to discriminate whether some monitored events are related
to a thread’s execution in either user mode or kernel mode. More formally, we can define the function P (x, y, z, t) that returns
the occurrences counted by the HPC x for an event y under the execution mode z during a time period t. We can consider the
monitoring precise if we can assert that:

P (0, �, user, �t0) + P (1, �, kernel, �t0) = P (2, �, user + kernel, �t0) (1)
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Listing 4 Intercepting Thread Creation/Termination Events.
1 // Static Tracepoints
2 void fork_hook_func(void *data, struct task_struct *parent, struct task_struct *child)
3 {
4 if (is_profiled(parent))
5 pid_register(child);
6 }
7
8 void exit_hook_func(void *data, struct task_struct *p)
9 {
10 pid_unregister(p->pid);
11 }
12
13 // Dynamic Kprobes
14 int exit_pre_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
15 {
16 pid_unregister(current->pid);
17 return 0;
18 }
19
20 int fork_ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
21 {
22 unsigned long retval = 0;
23
24 if (is_profiled(current)) {
25 retval = regs_return_value(regs);
26 if (is_syscall_success(regs))
27 /* Fork return value is the child's pid */
28 pid_register(retval);
29 }
30 return 0;
31 }

In other words, we have precise monitoring if, relying on three different HPCs—one tracking user-mode events, one tracking
kernel-mode events, and one tracking both—no event is lost, and we can create some distinction (as accurate as possible) between
the events occurred in user and kernel mode.
Intel’s implementation of HPCs allows a CPL filtering bit-mask to define the execution mode in which events should be

observed (user mode, kernel mode, or both). As discussed, this capability is unreliable due to a functional problem in the
firmware56 in many architecture generations—performance counters may completely miss some events when CPL filtering is
enabled. It means that, in the scenario mentioned above, the following relation holds:

P (0, �, user, �t0) + P (1, �, kernel, �t0) ≤ P (2, �, user + kernel, �t0) (2)
We discuss in this section a strategy to implement software-based filtering that allows implementing the correct behaviour

described by Equation (1) also on architectures that cannot provide this feature at the hardware level. Our approach is based
on letting PMUs run without any hardware filtering, i.e. making them collect profiling information related to both kernel and
user mode execution. We extend per-thread data as discussed in Section 4.2.1 by introducing two extra members to hold PMU
snapshots in order to separate values while running either in user or kernel mode. Then, the fundamental aspect is to identify
thread transitions from user mode to kernel mode and vice versa. Suppose we can detect these events on a per-CPU basis. In
that case, we can update the extra members with the data collected by the PMUs in a specific time window associated with
either execution mode, as shown in Figure 3. We note that the approach discussed in Section 4.2.1 is perfectly compatible
with software-based CPL filtering because intercepting a context switch is an additional point in which it is possible to update
per-thread/per-mode PMU data.
As mentioned, we are interested in intercepting any transition to kernel mode. In particular, the events that we have to detect

are the execution of an interrupt trampoline, of the system call handler, or an exception routine. Every time a mode switch is
detected, we store an HPC snapshot in a dedicated per-CPU variable. Once returning to userspace, we use the current HPC
value to compute the difference from the previous snapshot. This mechanism allows determining the number of events executed
in kernel mode. Since PMUs are configured to track events both in user and kernel mode, and we compute the total number of
events generated in kernel mode through subsequent snapshots, the number of events executed in user mode can be computed
by simple subtraction.
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FIGURE 3 Software-based HPC’s CPL Filtering Schema.

It is noteworthy that callback events generated to track mode switches might have an actual (minimal) delay compared to
the precise moment the switch occurs because some kernel-mode instructions might be executed before reaching the tracepoint
or triggering the kprobe. Therefore, our approach could associate with user-mode execution a minimal number of events that
actually belong to kernel mode. Nevertheless, we emphasise that our approach ensures that Equation (1) holds in any case,
therefore providing a result more reliable for many applications (see, e.g., Weaver et al.14) than the hardware-based one.

4.3 Data Buffering
An additional problem that a monitoring agent has to face to support online PMU data exploitation strategies is how to manage
the collected data. Several crucial aspects in this context are related to memory retention policies, concurrency in data structures
access, cache pollution, and overhead in general. These are well-known problems, exacerbated by the possibly huge amount of
data collected at runtime from PMUs.
In this context, memory management is essential to consider. Indeed, data generated while running PMI code must be retained

in some buffer in memory. Consequently, it is required that there is always some free buffer available to avoid sample losses.
Dealing with memory allocation while running in an interrupt context is tricky because of constraints that the memory allo-

cator should consider. In particular, if the PMI handler has to allocate the buffers to keep performance samples, the allocation
can only be done via kmalloc, setting the GFP_ATOMIC flag—other kernel-level allocators, such as vmalloc, cannot be used in
interrupt context, because they may make the invoking thread sleep. Conversely, a kmalloc call may fail under high memory
pressure, leading to a possible sample loss.
Since proposing an allocation scheme that allows solving the above-mentioned issues is beyond the scope of this article, we

focused on optimizing the re-usage of a given pre-allocatedmemory buffer. This allows us to reduce the likelihood of interactions
with any memory allocator. Additionally, we also cope with the edge case in which no additional memory can be acquired, a
situation that can by overwriting older samples.
In particular, we propose a mostly non-blocking Single-Enqueuer/Multiple-Dequeuer circular queue that allows minimizing

the latency required to store a sample and to favour memory reusage without complex synchronization mechanisms (e.g., locking
and garbage collectors).
Such a data structure, discussed in Section 4.3.1, can be rearranged to support system-wide, per-core and per-thread collection

of samples, discussed respectively in Sections 4.3.2, 4.3.3, and 4.3.4.

4.3.1 Single Enqueuer Multiple Dequeuer Circular Queue
We propose a candidate data structure that can be used to reduce synchronisation costs and to favour memory reusage, namely
a mostly non-blocking57 Single-Writer/Multiple-Readers circular queue. In this data structure, writes have higher priority over
reads, this is because we account for the scenario in which data generation takes place within the PMI, whose duration should be
kept as short as possible. Rather than relying on locks, we depend on Read-Modify-Write (RMW) atomic instructions to enable
a fine-grain synchronisation of read/write operations. In particular, the proposed algorithms to manipulate the data structure
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FIGURE 4 General Organisation of the Non-Blocking Circular Queue.

rely on atomic fetch_and_add (FAA) and compare_and_swap (CAS) instructions, which are available on most off-the-shelf
architectures. FAA takes a memory address and a value. It first reads the content at the given address, and then adds the passed
value to the content of the memory location, updating the memory content while returning the old value. All these operations
are executed atomically. Conversely, CAS accepts a memory location and two values: an expected old one and a new one. It
updates the memory location with the new value only if the expected old value is currently stored at the given memory address.
Again, all these operations are carried out atomically.
Figure 4 depicts the organisation of our circular queue. The actual buffer keeping performance data is a contiguous array,

while the current state of the queue is maintained by relying on two indices to identify the HEAD and TAIL entries in the array.
The former indicates the position where someone can start reading, while the latter is the index where a new element can be
stored. The tail and head indices are stored in the same 64-bit variable (named IDX) that can be manipulated atomically using
RMW instructions on 64-bit x64 architectures. This choice allows us to reduce the number of memory accesses when performing
operations on the queue. The least-significant 32 bits of IDX keep the tail index, while the other half holds the head. The buffer
follows a First-In-First-Out (FIFO) behaviour and can be manipulated with two methods: INSERT() and REMOVE(), for queue
elements enqueue and dequeue, respectively. The queue can be in one of the following states, as depicted in Figure 5:

• EMPTY: head and tail are equal. Only INSERT() can be performed.
• FULL: head and tail are logically equal, but the tail is one cycle8 forward. Both INSERT() and REMOVE() can be performed,

but the former will overwrite the oldest element.
• NORMAL: head and tail are different9, and both operations can be called.
We report in Algorithm 1 the pseudocode for the INSERT() operation. As mentioned, it is used within a PMI, so it has been

designed to offer a wait-free progress guarantee10, which is achieved by relying on a replacement strategy of the samples in
case the buffer is full. This strategy makes readers wait for write completion (for this reason, the circular queue is mostly non-
blocking from a theoretical perspective). This means that to rely on this data structure correctly, either the profiling application
can tolerate some sample loss, or the frequency at which samples are generated must be fine-tuned to avoid incurring overwrites.
An INSERT() reads IDX to check if the queue is in the FULL state (line 2). If so, it tries to perform a CAS to grow the tail

index (line 3). The CAS is necessary to guarantee atomicity between the read and the increment. Two cases are possible:
• Success: the tail is atomically incremented so that any reader is potentially blocked (see the remove() algorithm in

Algorithm 2). Then the new element is written on top of the oldest element (line 4). Finally, the head index is incremented
so that reads can be executed (line 5).

• Failure: a reader concurrently dequeued an element. Therefore, the queue is back in the NORMAL state. The result of the
initial check is no longer valid.

8The circular logic implies that an index logically ranges from 0 to length - 1, but its real value may only increment. A cycle represents one walk through the entire
buffer. For the tail, one cycle forward means that REAL(TAIL) = REAL(HEAD) + length.

9The logical value of head can be greater or smaller than the tail, depending on the respective cycles.
10A wait-free method is guaranteed to terminate in a finite number of steps.
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FIGURE 5 Possible Queue States.

Algorithm 1 Enqueue Operation (Single Writer)
1: procedure INSERT( )
2: midx ← IDX
3: if HEAD(midx) + SIZE = TAIL(midx) then
4: if CAS(IDX, midx, TAIL(midx) + 1) then
5: WRITE(elem, TAIL(midx))
6: IDX ← HEAD(IDX) + 1
7: return
8: end if
9: end if
10: WRITE(elem, TAIL(midx))
11: FAA(IDX, midx, TAIL(midx) + 1)
12: end procedure

If the initial check did not succeed, we are in either the NORMAL or EMPTY state. Thus, the writer can store the new element
(line 9) and then advance the tail to notify all readers that a sample is available (line 10). This increment must be done via an
FAA operation because the head and tail are both stored in IDX, and readers’ and the writer’s concurrent accesses may occur.
Algorithm 2 shows the pseudocode for the dequeue operation. This operation is not expected to be executed in an interrupt

context, so it can rely on retry loops in case of failures. A reader must wait if the queue is FULL and the tail is a step forward (lines
4–6) because the writer is performing a concurrent overwrite of the element at the head index—under reasonable scenarios, this
condition should occur infrequently. Then, the reader checks whether the queue is EMPTY, in which case the operation returns
an empty value (lines 7–9). If the queue is in the NORMAL or FULL state, the operation shall return the first available element
(line 10). An additional CAS is used to mark the element as consumed by updating the head index (lines 11–13). Similarly to the
discussion on Algorithm 1, relying on a CAS operation on IDX ensures that if a writer has changed the queue state concurrently
to the read, the reader is forced to observe again the updated state thanks to the CAS failure. As mentioned, this implementation
gives higher precedence to write operations.

4.3.2 System-wide Buffering
The simplest scenario is when the monitoring agent has to collect system-wide performance data. This scenario can be helpful
when, for example, the data gathered by the agent are used to optimise some global action, such as the scheduling of routine
housekeeping operations, which do not depend on the behaviour of specific threads or applications.
A straightforward buffering strategy is to define a single global buffer to store all the generated information during system

monitoring. Nevertheless, since PMU data are generated at a per-core level, this shared global buffer must be synchronised.
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Algorithm 2 Dequeue Operation (Multiple Readers)
1: procedure REMOVE( )
2: loop
3: midx ← IDX
4: while HEAD(midx) + SIZE < TAIL(midx) do
5: midx← IDX
6: end while
7: if HEAD(midx) = TAIL(midx) then
8: return empty
9: end if

10: elem ← READ(HEAD(midx)) ⊳Make a local copy of the element.
11: if CAS(IDX, midx,HEAD(midx) + 1) then
12: return elem
13: end if
14: end loop
15: end procedure

Moreover, accesses from the monitoring agent to deliver performance data to userspace must be synchronised to avoid incorrect
reads while write operations occur. Synchronisation likely becomes the performance bottleneck given the high concurrency we
expect to generate PMU data.

4.3.3 Per-core Buffering
Another buffering strategy deals with storing performance data on a per-core basis. This is probably the most straightforward
way to deal with PMU data because each core is intrinsically responsible for its dedicated PMUs, which provide data related to
the events happening on that core 11. This buffering strategy can be leveraged in scenarios where the effective usage of hardware
resources can drive thread placement on a per-core basis58.
Given the per-core private nature of PMUs, installing a dedicated buffer for each CPU core requires synchronising only read/

write accesses to the buffer. This can be achieved by relying on the circular queue described above or on more classical lock-
based synchronisation strategies, possibly employing read/write locks. In both cases, a per-CPU variable can be used to maintain
a reference to the sample buffer.
Per-core buffering can provide several advantages also at the micro-architectural level. For example, this strategy can improve

cache exploitation because the same buffer is used across context switches, thus allowing the cache prefetcher to optimise
memory accesses.
Finally, it is noteworthy that per-core buffering cannot be effectively used to support profiling strategies different from per-

core ones. Indeed, one might think that this lower-overhead solution might also be used to perform, e.g., per-thread profiling
by post-processing the buffers to extract per-thread data. Unfortunately, in this case, the incurred overhead can be higher than
relying on some of the aforementioned buffering solutions. Indeed, the data in the buffer should be demultiplexed depending on
the associated thread, which could be costly. Moreover, a thread may be migrated to a different core upon a context switch, thus
scattering all the data of interest across all per-core buffers. Considering our online PMU data exploitation goal, the overhead
of this strategy can be too high.

4.3.4 Per-thread Buffering
A different buffering strategy is related to keeping all performance data separated per thread. As discussed in Section 4.2.1, it
is possible to let the monitoring agent associate PMU data to a specific thread. Keeping the obtained data separated can support
many online optimisation strategies, e.g. in scenarios where thread placement on the CPU cores tailors a reduced contention
effect on the caching subsystem59 or to improve memory access latency in NUMA systems60.

11There are some exceptions when Simultaneous Multi-Threading is enabled. Logical threads share the PMUs of the physical core. The resources are then equally
divided, but many events may refer to the overall physical core activity rather than the logical processor (the hyper-thread.
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Keeping per-thread data can be done by relying on multiple strategies. Clearly, the circular queue presented in Section 4.3.2
can be immediately repurposed. Indeed, it is sufficient to instantiate multiple queues, one for each thread, and use it to store the
data. Associating the thread with the relevant queue is also a straightforward task. As discussed in Section 4.2.1, it is already
necessary to rely on some data structure (e.g., a hash map) to identify whether a thread is being profiled or not—in this case,
we have to keep sampled data in the dedicated queue. Any data structure used for this purpose can be augmented with a pointer
to locate the per-thread queue in memory. We note that this strategy is also compliant with thread registration/deregistration
because the queues can be efficiently allocated/deallocated.
A second strategy is again bound to the perf_events subsystem introduced in Section 4.2.1. As mentioned, its integration in

the kernel is such that some data structures already keep members used to support its execution. Referring again to Listing 1,
we have shown an example of how to register, deregister and query a perf event. Once the perf event is instantiated, custom
information is attached to event->pmu_private, allowing us to store custom data inside the event.

4.4 Accessing Profiling Data from User Space
While a kernel-level facility is fundamental to implementing a profiling agent based on PMU data, a modular organisation would
benefit from separating the PMU data collection part from its usage logic. In particular, it may be desirable to run the latter in
user space, especially for maintainability.
In this scenario, it is fundamental to allow userspace applications to read PMU samples. While it is theoretically possible

to rely on the rdpmc instruction to read values from HPCs, relying on this instruction can be of little help. Indeed, as we have
discussed, reading raw data from HPCs cannot allow for, e.g., discriminating between threads or execution modes. This aspect
has been coped with by employing multiple layers of abstraction at the kernel level, which eventually populate data structures
that should be read from userspace. Therefore, it is fundamental to bridge the approaches discussed so far with data accesses
from user space, which is a more complex task than executing the simple rdpmc instruction.
A first strategy is to directly share the buffers by relying on a dedicated mapping. This configuration is easily achievable by

employing the mmap system call. On the one hand, providing user-level applications with unmediated access makes them faster
than those exploiting the conventional system call interface. Moreover, creating a new mapping in the process’ virtual address
space for a fixed memory area minimises, after some accesses, the cost of performing the mapping itself12.
At the same time, this approach shows several drawbacks. First, the userspace application must be aware of the data buffer

format—for example, if the aforementioned non-blocking queue is used, its access must be consistent with the proposed algo-
rithms. Moreover, userspace applications must synchronise their accesses with kernel-level code to enforce consistency. Overall,
this approach requires a coupling logic between the user program and the underlying kernel code, which can be undesirable due
to higher complexity. Moreover, when dealing with high-frequency data generation as we do, the user application may not be fast
enough to consume them before the circular buffer becomes full and the data start being overwritten. In this kernel/user interac-
tion, the problem is exacerbated because scheduling policies might arbitrarily delay the activation of the userspace application.
In this sense, finding an optimal data generation frequency and buffer size may be impossible.
A second strategy is to leverage standard virtual file system (VFS) capabilities to build an interface to access the buffers in a

mediated way. In particular, it is possible to install in the system a set of pseudo-files that allow, via standard open, read, write,
seek and close system calls, to configure the kernel-level activity and retrieve copies of the data from the buffers. This solution
decouples the internal management of PMUs from the “presentation layer”, allowing for a more flexible implementation of the
profiling agent. Nevertheless, requiring userspace applications to explicitly interact with a linear file can be more complex than
needed. In fact, a typical approach to consuming performance data is to read them only once, to perform some computation.
Therefore, while we suggest anyhow to rely on the proc file system, we highlight a different strategy, showcased in Listing 5.

First, we install a set of pseudo-files to read all possible combinations of data buffers described above. Second, we exploit the
read-once nature of performance samples to provide a simple API that can deliver a requested number of performance samples
to userspace in an iterator-like fashion. A seq_operations data structure contains the reference to the seq_file operations:
start, next, show, and stop. Those functions implement the core of the seq_file iterator-like navigation proper of the Linux
kernel. As we will show experimentally in Section 5.3, this approach is slightly more costly than the mmap-based solution due
to the various layers that compose the VFS.

12Completing the memory mapping requires adjusting the page-table entries for the calling process. Consequently, exploiting this approach to read memory-mapped
locations just once is not optimal and may introduce an extra overhead compared to read or write system calls.
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Listing 5 Allowing User Space Applications to Obtain Profiling Data.
1 static struct proc_dir_entry *proc_entry;
2
3 static void *__breader_seq_next(loff_t *pos)
4 {
5 if (*pos >= DATA_BUFFER_LEN)
6 return NULL;
7 return &data_buffer[*pos];
8 }
9
10 static void *breader_seq_start(struct seq_file *m, loff_t *pos)
11 {
12 return __breader_seq_next(pos);
13 }
14
15 static void *breader_seq_next(struct seq_file *m, void *v, loff_t *pos)
16 {
17 (*pos)++;
18 return __breader_seq_next(pos);
19 }
20
21 static int breader_seq_show(struct seq_file *m, void *v)
22 {
23 uint pmc;
24 u64 *pmcs_data = v;
25
26 for_each_pmc(pmc, 8)
27 seq_printf(m, ",%llx", pmcs_data[pmc]);
28 return 0;
29 }
30
31 static void breader_seq_stop(struct seq_file *m, void *v)
32 {
33 seq_puts(m, "\n"); /* Nothing to free */
34 }
35
36 static struct seq_operations breader_seq_ops = {
37 .start = breader_seq_start,
38 .next = breader_seq_next,
39 .stop = breader_seq_stop,
40 .show = breader_seq_show
41 };
42
43 static int breader_open(struct inode *inode, struct file *filp)
44 {
45 return seq_open(filp, &breader_seq_ops);
46 }
47
48 static const struct file_operations breader_fops = {
49 .open = breader_open,
50 .read = seq_read,
51 .llseek = seq_lseek,
52 .release = seq_release
53 };
54
55 int init_seq_file(void)
56 {
57 proc_entry = proc_create("breader_seq", 0444, NULL, &breader_fops);
58
59 if (!proc_entry)
60 return -ENODEV;
61 return 0;
62 }
63
64 void fini_seq_file(void)
65 {
66 proc_remove(proc_entry);
67 }
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5 EXPERIMENTAL ASSESSMENT

This section presents an experimental assessment of the performance implications of the different techniques discussed in this
article. All tests have been executed on Ubuntu 20.04 LTS with Linux Kernel 5.4.127 running on a machine equipped with an
i7-10750H 6x (SMT) and 16Gb of RAM.
We have used the stress-ng benchmark suite61, which comprises a massive set of stress tests known as stressors. Each of them

is designed to target a specific component or subsystem, both at the hardware and software levels. The set of stressors that we
have selected is representative of different kinds of workloads. This selection allows us to study the impact on the performance
of our proposed strategies in various contexts, i.e. when considering CPU-bound, IO-bound, or syscall-intensive applications.
The selected stressors are:

• cpu: a CPU-bound application that starts n different workers that iteratively run heavy-computation functions;
• cache: a memory-intensive application that starts n workers performing widespread random memory reads and writes to

thrash the CPU cache;
• memcpy: n workers that copy 2 MB of data from a shared region to a buffer using memcpy and then move the data in the

buffer with memmove with different alignments;
• atomic: n workers that exercise various __atomic_*() built-in operations on 8, 16, 32 and 64-bit integers shared among

the workers;
• matrix-3d: a CPU-intensive benchmark where n workers perform matrix operations on floating-point values;
• bsearch: performs a binary search on a 32-bit integer sorted array, using n workers;
• fork: a syscall-intensive benchmark where nworkers continuously fork children that execute stress-ng and then exit almost

immediately;
• switch: a benchmark using n workers that send messages via a pipe to a child to force context switching;
• clone: n workers that create clones via the clone system call.
The reference implementation that we have used for our experimental assessment is based on an LKM which implements all

the components discussed in Section 4. It is based on a set of weak-symbol functions implementing the different subsystems of the
monitoring agents (e.g., context switch hooking or buffer management) that are overridden each time a specific implementation
is under test. By relying on this organisation, the overall code path is kept relatively stable across the different tests, thus enabling
us to compare the performance results reliably.
Conversely, some configuration variables are exposed as module parameters to simplify the configuration. Some are the

sampling period (defined in the elapsed clock cycles domain) and the PMI vector line. Beyond the capabilities discussed in
Section 4.4, we have introduced proc files to access and query tool parameters such as the number of collected samples. All the
results are averaged over 5 different runs.

5.1 Efficient Collection of PMU Data
This experiment compares the overhead of generating and processing PMIs when relying on the fast IRQ mechanism or NMI
lines. To assess the accuracy of the different strategies, we also compare the amount of data collected by varying the sampling
period. In this experiment we do not keep collected data buffered, since our focus is to exclude the cost of managing memory
buffering and to only focus on the overhead of the two compared interrupt-based schemes.
Figure 6 reports the overhead increment of both solutions compared to an execution where no sampling method is enabled.

As seen in Figure 6a, a larger sampling period does not make any of the two solutions outperform the other entirely. It is an
expected result, as this low-frequency generation of samples is unlikely to impact the overall system activities. Conversely, it is
clear that the fast-IRQ mechanism outperforms the NMI-based solution for higher-generation rates.
We also monitored the number of generated samples for both configurations, reported in Figure 7. For lower frequencies,

both techniques collected a comparable amount of samples. However, at higher rates (see Figure 7c), the NMI-based solution
reports a higher number of samples—around 20% more than the IRQ-based counterpart. This higher count is due to Linux’s
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FIGURE 6Workload overhead comparison between IRQ- and NMI-based PMIs.
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FIGURE 7 Samples generation comparison between IRQ- and NMI-based PMIs.
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FIGURE 8 Efficiency between IRQ- and NMI-based PMIs.

NMI handling, which cannot prevent PMUs from starting their monitoring before leaving the PMI routine13. Therefore, the
higher count is mostly related to the PMI routine monitoring itself, which is a clear form of Heisenmonitoring29.
Figure 8 provides an additional perspective on this result. In particular, we show an efficiency score value, which captures

how many samples are generated per overhead unit. These results confirm that the fast IRQ-based solution is the most effective
at medium-to-high sample generation frequencies. Overall, this experiment clearly indicates that the traditional NMI-based
approach used in the literature cannot be effectively used if online profiling activities are the goal of PMU exploitation unless
the monitoring agent is interested in a coarse-grain profile of the application. In this latter case, it can employ both strategies.

13This issue has also been recognized by hardware vendors. In the latest x86 processor models, a dedicated MSR allows freezing PMU operations during PMI handling
to avoid data pollution. Unfortunately, the Linux NMI handler is implemented in such a way that the interrupt context configures the system to execute the required handler,
then performs an iret instruction to process the handler of the interrupt context, thus defreezing the HPCs.
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FIGURE 10 Comparison among different approaches to provide per-process private data.

5.2 Discriminating the Profiling Domain
In this experiment, we evaluate the performance implications of the techniques proposed in Section 4.2 to discriminate the pro-
filing domain. We first focus on the overhead associated with tracepoints and kprobes, excluding data acquisition and buffering.
For this purpose, we have selected from the stress-ng suite the switch, fork, and clone stressors, that exercise high pressure on
thread creation and context switches. The system activity is kept as high as possible by instantiating two processes on each
CPU core and executing them simultaneously. Figure 9 shows the overhead when relying on the two strategies. The results are
expected. The more complex architecture of kprobes shows a higher overhead, mainly whenmany context switches are observed.
We then consider the different techniques which combine the ability to mark a process for profiling activity and create room to

store per-process data. Such dedicated memory may store profiling metadata (e.g., PMUs state upon context switch) or collected
information (e.g., collected data samples). We set up the environment to execute a single instance of each stressor first (SINGLE
in the plots), and a concurrent version spawning two processes on each available CPU core (PARALLEL in the plots). In this
experiment, the sampling period has been set to 214, while the PMI management is based on NMIs and context-switch detection
is based on tracepoints. Figure 10 reports the overhead for both configurations. From the results, the hash table strategy incurs
a higher performance penalty. This result is expected as the global instance is concurrently accessed by all the CPU cores and
enforces consistency thanks to coarse-grain locking primitives. The high-frequency PMI firing rate amplifies the pressure on
the synchronisation mechanism that, in the PARALLEL configuration, shows an even higher overhead.
We then focused on the different buffering strategies. In this experiment, whose results are reported in Figure 11, we assessed

the overhead of each discussed method. The results show that the non-blocking queue incurs the highest overhead in most
configurations due to the high degree of contention generated by the multiple readers. The per-CPU solution introduces the most
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FIGURE 11 Comparison among different buffering policies to collect process profiling data.

negligible overhead, just followed by the per-thread implementation. The difference between the two is due to the improved
data locality of the former, which continuously accesses the same local buffer instance.
Conversely, switching the buffer reference upon a context switch negatively affects cache performance. Such an effect is more

noticeable in the right plot, where the number of participating processes demands an intense scheduling activity. Analogously,
the drawbacks of the global buffer instance can be observed when the writers increase and a synchronisation mechanism comes
into place, which needs to be used to permit a single writer at any time (we refer this configuration to as SYSTEM in the plot, it
represents a system-wide usage of the buffer with multiple possible CPUs attempting write operations). We recall that test sets
the sampling period to 212 generating a high number of writing requests. Finally, we assessed the non-blocking circular queue
implementation by using the per-CPU policy. As we can observe, this solution significantly impacts the workload runtimes. The
most affected stressors are cache andmemcpy, which, as part of their goal, concentrate their activity on the cache subsystem. This
clearly affects highly synchronized and cache-unfriendly accesses such as the ones provided by SYSTEM and NBLIST arrange-
ment. Conversely, our mostly non-blocking queue guarantees enhanced progress for PMI management and cache-friendliness,
delivering lower overheads in both per-CPU and per-thread configuration.
We have also carried out a comparison with the built-in perf tool, whose results are reported in Figure 12. This experiment

exploits the traditional userspace interface that directly bridges the user commands and the kernel-level subsystem. Perf driver
leverages two buffers at the kernel level. First, a direct ring buffer is used for caching results as soon as they are ready, and then
the second buffer is filled when appropriate. The userspace tool lingers in a waiting state and does not consume system resources
until the buffer is nearly full. In that case, to avoid sample loss, it wakes up and drains all the collected data. To move as close as
possible to the setup of our approaches, we manually defined the hardware events to be monitored and enabled the PMI on the
built-in cycles event, which maps to the clock cycles hardware event. We recall that the standard PMI routine (operated by perf) is
mapped to the NMI vector line. Moreover, perf contains an anti-trashing detector that reduces the profiling frequency rate if the
interrupt routine experiences a delay over a defined threshold. However, this mechanism introduces a degree of indeterminism
that cannot be easily quantified, and that depending on the objective for which PMU data are used may be unacceptable—like
for the case of security based on the hardware footprint left by the running software4.
Similarly to the IRQ/NMI test, we evaluated the overhead (Figure 12c) and the number of generated samples (Figure 12a).

We can observe that the perf solution introduces a lower cost at the highest frequency rate. However, the number of generated
samples is way smaller at the fastest frequency due to the auto-tuning frequency policy. Figure 12b shows the efficiency of the
perf solution computed as the amount of generated data over the overhead execution percentage.

5.3 Accessing Profiling Data from User Space
In this last experiment, we evaluate the overhead associated with the different techniques explored in Section 4.4 to retrieve
performance data from kernel space. We evaluated their performance by reading a large buffer allocated within a kernel module
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FIGURE 12 Perf tool evaluation at different sampling periods and 8 hardware events monitored
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FIGURE 13 Time to fully read kernel level data via mmap- and VFS-based solutions.

and accessing it through the different implemented interfaces. Moreover, each test has been run by varying the read identified
as stride, namely the amount of data accessed within every single request.
As shown in Figure 13, the VFS solution based on the seq_file (SEQ) mechanism is the least efficient in acquiring a large

amount of data, despite it being the easiest to be used by typical applications. The raw VFS read, denoted as RAW, (i.e., when
pseudo-files give direct access to performance buffers) mitigates the overhead but still suffers from the intrinsic cost of perform-
ing a system call for each request. Indeed, the larger the stride, the smaller the number of required system calls. Conversely, as
expected, the mmap-based interface (MMAP) offers the best performance, despite slightly reducing its effectiveness for larger
stride sizes due to the higher probability of experiencing a page fault. Of course, in real scenarios, mmap-based solutions require
offloading to userspace as a part of the synchronisation logic, making the overall implementation more complex and coupled
between kernel space and userspace.

5.4 Data Related to a Case Study
To complete our analysis, we focus on an application area that has recently taken advantage from the exploitation of HPCs. This
application is archetypal of domains that may exhibit advanced capabilities in terms, e.g., of functional operations supported
via hardware rather than software. As we mentioned before, HPCs can have for these applications positive impact on both
performance and power usage.
In particular, we report data related to HPC-based incremental checkpointing in a speculative parallel computing system for

discrete event simulation, called ROOT-Sim62. In this study, we exploited the per-thread buffering approach, and report data
showing minimal intrusiveness of the HPC-based support, where the identification of the parts of a memory object (a simulation
object) that have been dirtied by the execution of software does not require any software instrumentation. At the same time,
any HPC sample that does not relate to the actual access to the segment where the software object is allocated in memory is
discarded when the checkpointing agent exploits data. We recall that these samples might appear just because of aspects related
to the kernel-level interference problem we discussed in Section 4.2.2.
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We have relied on a configuration of the well-known PHold benchmark63, explicitly embedding parameterizable memory
operations patterns. The execution of a simulation event includes read/write mode access to a memory contiguous buffer—
implementing the state of the simulation object in the benchmark—of a given size S. In this benchmark, large values of S would
mimic applications with large memory requirements. On the other hand, the spanning of read/write operations across the state
buffer determines the specific locality inside the object state, associated with the simulation event execution. We have configured
the model to use 16 simulation objects, and we have run the model on 4 concurrent worker threads. Each simulation object has
been associated with a state of 16 KB, and we have varied in the range [3KB, 15KB] the average amount of memory touched in
write mode during the execution of each simulation event at each simulation object. Due to the scattered nature of the buffers, a
higher amount of total memory accessed in write mode increases the number of memory writes to be intercepted. However, we
have adopted an approach where the update operations are based on memory-block writing machine instructions, such as STOS.
We report data comparing the performance of the HPC-based solution for the detection of the updated memory areas, and of

an implementation based on software instrumentation of the memory write instructions. As shown in Figure 14, tracing write
memory accesses via HPCs through our architecture enables a definitive reduction of the actual latency for processing simulation
events.

6 CONCLUSIONS

In this article, we have presented several techniques that allow leveraging the PMU facilities offered by modern off-the-shelf
CPUs to gather hardware-footprint data at runtime. Unlike traditional approaches that exploit such data in a post-mortem analysis,
we have discussed the performance impact of the various strategies for moving to online data collection. Our experimental
assessment has shown the effects of the strategies and implementations we explored on the application’s performance in different
workload scenarios. The outcomes show that, if carefully exploited, our techniques could allow for the selection of a practical
tradeoff between accuracy, performance, and ease of use, enabling the exploitation of PMUs for, e.g., self-adaptive autonomic
optimisation.

ACKNOWLEDGMENTS

This work has been supported by the Spoke 1 “FutureHPC&BigData” of the Italian Research Center onHigh Performance Com-
puting, Big Data and Quantum Computing (ICSC) funded by MURMissione 4 Componente 2 Investimento 1.4: Potenziamento
strutture di ricerca e creazione di “campioni nazionali” di R&S (M4C2-19) - Next Generation EU (NGEU).

References

1. Yasin Ahmad. A Top-Down method for performance analysis and counters architecture. In: Proceedings of the 2014 IEEE
International Symposium on Performance Analysis of Systems and Software. ISPASS. Piscataway, NJ, USA: IEEE 2014
(pp. 35–44).



26 Stefano Carnà ET AL.

2. O’Brien Kenneth, Pietri Ilia, Reddy Ravi, Lastovetsky Alexey L., Sakellariou Rizos. A Survey of Power and Energy
Predictive Models in HPC Systems and Applications. ACM Comput. Surv.. 2017;50(3):37:1–37:38.

3. Bircher William Lloyd, John Lizy K.. Complete System Power Estimation Using Processor Performance Events. IEEE
Transactions on Computers. 2012;61(4):563-577.

4. Carnà Stefano, Ferracci Serena, Quaglia Francesco, Pellegrini Alessandro. Fight Hardware with Hardware: System-wide
Detection and Mitigation of Side-Channel Attacks using Performance Counters. Digital Threats: Research and Practice.
2022.

5. Carnà Stefano, Ferracci Serena, De Santis Emanuele, Pellegrini Alessandro, Quaglia Francesco. Hardware-Assisted
Incremental Checkpointing in Speculative Parallel Discrete Event Simulation. In: Mustafee Navonil, Bae Ki-Hwan G,
Lazarova-Molnar Sanja, Rabe Markus, Szabo Claudia, eds. Proceedings of the 2019 Winter Simulation Conference. WSC.
Piscataway, NJ, USA: IEEE 2019 (pp. 2759–2770).

6. Akiyama Soramichi, Hirofuchi Takahiro. Quantitative Evaluation of Intel PEBS Overhead for Online System-Noise Anal-
ysis. In: Proceedings of the 7th International Workshop on Runtime and Operating Systems for Supercomputers. ROSS.
New York, NY, USA: ACM 2017 (pp. 1–8).

7. Kephart Jeffrey O, Chess David M. The Vision of Autonomic Computing. Computer. 2003;36(1):41–50.
8. Hassan Shenin, Al-JumeilyDhiya, HussainAbir Jaafar. Autonomic Computing Paradigm to Support System’sDevelopment.

In: Proceedings of the 2nd International Conference on Developments in eSystems Engineering. DESE. Piscataway, NJ,
USA: IEEE 2009 (pp. 273–278).

9. Ammons Glenn, Ball Thomas, Larus James R. Exploiting Hardware Performance Counters with Flow and Context Sensitive
Profiling. ACM SIGPLAN Notices. 1997;32(5):85–96.

10. Basu Kanad, Hussain Suha Sabi, Gupta Ujjwal, Karri Ramesh. COPPTCHA: COPPA Tracking by Checking Hardware-
Level Activity. Transactions on Information Forensics and Security. 2020;15:3213–3226.

11. Ozcelik Burcu, Yilmaz Cemal. Seer: A Lightweight Online Failure Prediction Approach. IEEE Transactions on Software
Engineering. 2016;42:26–46.

12. Suciu Alin, Banescu Sebastian, Marton Kinga. Unpredictable RandomNumber Generator Based on Hardware Performance
Counters. In: Digital Information Processing and Communications. Springer Berlin Heidelberg 2011 (pp. 123–137).

13. Das Sanjeev, James Kedrian, Werner Jan, Antonakakis Manos, Polychronakis Michalis, Monrose Fabian. A Flexible Frame-
work for Expediting Bug Finding by Leveraging Past (Mis-)Behavior to Discover New Bugs. In: Annual Computer Security
Applications Conference. ACSAC ’20. New York, NY, USA: Association for Computing Machinery 2020 (pp. 345–359).

14. WeaverVincentM, TerpstraDan,Moore Shirley. Non-determinism and overcount onmodern hardware performance counter
implementations. In: Proceedings of the 2013 IEEE International Symposium on Performance Analysis of Systems and
Software. ISPASS. Piscataway, NJ, USA: IEEE 2013 (pp. 215–224).

15. Intel Corporation . Intel® 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation2021.
16. AMD64 Technology . AMD64 Architecture Programmer’s Manual: Volumes 1-5. Advanced Micro Devices, Inc2021.
17. Dean J, Hicks J E, Waldspurger C A, Weihl W E, Chrysos G. ProfileMe: Hardware Support for Instruction-level Profil-

ing on Out-of-order Processors. In: Proceedings of 30th Annual International Symposium on Microarchitecture. MICRO.
Piscataway, NJ, USA: IEEE 1997 (pp. 292–302).

18. Bitzes Georgios, Nowak Andrzej. The overhead of profiling using PMU hardware counters. Report 2014: CERN openlab;
2014.

19. Mytkowicz Todd, Diwan Amer, Hauswirth Matthias, Sweeney Peter F. Understanding Measurement Perturbation in Trace-
based Data. In: Proceedings of the 2007 IEEE International Parallel and Distributed Processing Symposium. IPDPS.
Piscataway, NJ, USA: IEEE 2007 (pp. 1–6).



Stefano Carnà ET AL. 27

20. Levon John, Elie Philippe. Oprofile: A system profiler for Linux. 2020.
21. Pettersson Mikael. Perfctr: Linux performance monitoring counters kernel extension. 2010.
22. Eranian Stéphane. Perfmon2: a flexible performance monitoring interface for Linux. In: Proceedings of the 2006 Ottawa

Linux Symposium. Ottawa Linux Symposium 2006.
23. Mucci Philip J, Browne Shirley, Deane Christine, HoGeorge.PAPI: A portable interface to hardware performance counters.

: University of Tennessee; 1999.
24. Drongowski Paul J. An introduction to analysis and optimization with AMD CodeAnalyst™ Performance Analyze. :

Advanced Micro Devices, Inc.; 2008.
25. Intel Corporation . Intel® VTune™ Profiler User Guide. Intel Corporation2009.
26. Adhianto L, Banerjee S, Fagan M, et al. HPCTOOLKIT: tools for performance analysis of optimized parallel programs.

Concurrency and computation: practice & experience. 2009;22(6):685–701.
27. Treibig Jan, Hager Georg, Wellein Gerhard. LIKWID: A Lightweight Performance-Oriented Tool Suite for x86 Multicore

Environments. In:Proceedings of the 39th International Conference on Parallel ProcessingWorkshops. ICPPW. Piscataway,
NJ, USA: IEEE 2010 (pp. 207–216).

28. Weaver Vincent M. Linux perf_event features and overhead Second International Workshop on Performance Analysis of
Workload Optimized Systems2013.

29. Neville-Neil George V. The Observer Effect. Communications of the ACM. 2017;60(8):29–30.
30. Merkel Andreas, Stoess Jan, Bellosa Frank. Resource-conscious scheduling for energy efficiency on multicore processors.

In: Proceedings of the 5th European conference on Computer systems. EuroSys. New York, NY, USA: Association for
Computing Machinery 2010 (pp. 153–166).

31. Singh Karan, Bhadauria Major, McKee Sally A. Real time power estimation and thread scheduling via performance
counters. SIGARCH Computer Architecture News. 2009;37(2):46–55.

32. Wang Zheng, O’Boyle Michael F P. Mapping Parallelism to Multi-cores: a Machine Learning Based Approach. In: Pro-
ceedings of the 14th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming. PPoPP. New York,
NY, USA: Association for Computing Machinery 2009 (pp. 75–84).

33. Shahid Arsalan, Fahad Muhammad, Manumachu Ravi Reddy, Lastovetsky Alexey L.. Energy Predictive Models of Com-
puting: Theory, Practical Implications and Experimental Analysis on Multicore Processors. IEEE Access. 2021;9:63149–
63172.

34. Shahid Arsalan, Fahad Muhammad, Reddy Ravi, Lastovetsky Alexey. Additivity: A Selection Criterion for Performance
Events for Reliable Energy Predictive Modeling. Supercomputing Frontiers and Innovations. 2017;4(4):50–65.

35. Shahid Arsalan, FahadMuhammad,Manumachu Ravi Reddy, Lastovetsky Alexey L.. Improving the accuracy of energy pre-
dictive models for multicore CPUs by combining utilization and performance events model variables. J. Parallel Distributed
Comput.. 2021;151:38–51.

36. Zellweger Gerd, Lin Denny, Roscoe Timothy. So many performance events, so little time. In: Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems. APSys ’16. New York, NY, USA: ACM 2016.

37. Lv Yirong, Sun Bin, Luo Qingyi, Wang Jing, Yu Zhibin, Qian Xuehai. CounterMiner: Mining big performance data from
hardware counters. In: 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). MICRO
’18. Piscataway, NJ, USA: IEEE 2018.

38. Neill Richard, Drebes Andi, Pop Antoniu. Fuse. ACM transactions on architecture and code optimization. 2017;14(4):1–26.



28 Stefano Carnà ET AL.

39. Banerjee Subho S, Jha Saurabh, Kalbarczyk Zbigniew, Iyer Ravishankar K. BayesPerf: minimizing performance monitoring
errors using Bayesian statistics. In: Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. New York, NY, USA: ACM 2021 (pp. 832–844).

40. Bhatia Sapan, Kumar Abhishek, Fiuczynski Marc E, Peterson Larry. Lightweight, High-resolution Monitoring for Trou-
bleshooting Production Systems. In: Proceedings of the 8th USENIX conference on Operating Systems Design and
Implementation. OSDI. Cambridge, MA, USA: Usenix Association 2008.

41. Bare Keith A, Kavulya Soila, Narasimhan Priya. Hardware Performance Counter-based ProblemDiagnosis for e-commerces
Systems. In: Proceedings of the 2010 IEEE Network Operations and Management Symposium. NOMS. Piscataway, NJ,
USA: IEEE 2010 (pp. 551–558).

42. Lachaize Renaud, Lepers Baptiste, Quéma Vivien. MemProf: A Memory Profiler for NUMA Multicore Systems. In: Pro-
ceedings of the 2012 USENIX Annual Technical Conference. USENIX ATC. Cambridge, MA, USA: Usenix Association
2012 (pp. 53–64).

43. Marathe Jaydeep, Mueller Frank. Hardware Profile-guided Automatic Page Placement for ccNUMA Systems. In: Proceed-
ings of the 11th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming. PPoPP. New York, NY,
USA: Association for Computing Machinery 2006 (pp. 90–99).

44. Dashti Mohammad, Fedorova Alexandra, Funston Justin, et al. TrafficManagement: a Holistic Approach to Memory Place-
ment on NUMA Systems. In: Proceedings of the 18th International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS. New York, NY, USA: ACM Press 2013 (pp. 381–394).

45. Molka Daniel, Schöne Robert, Hackenberg Daniel, Nagel Wolfgang E. Detecting Memory-Boundedness with Hardware
Performance Counters. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering.
ICPE. New York, NY, USA: ACM 2017 (pp. 27–38).

46. Das Sanjeev, Werner Jan, Antonakakis Manos, Polychronakis Michalis, Monrose Fabian. SoK: The Challenges, Pitfalls,
and Perils of Using Hardware Performance Counters for Security. In: Proceedings of the 2019 IEEE Symposium on Security
and Privacy. SP. Piscataway, NJ, USA: IEEE 2019 (pp. 20–38).

47. Herath Nishad, Fogh Anders. These are Not your Grand Daddys CPU Performance Counters: CPU Hardware Performance
Counters for Security Black Hat USA 20152015.

48. Zhou Hongwei, Wu Xin, Shi Wenchang, Yuan Jinhui, Liang Bin. HDROP: Detecting ROP Attacks Using Performance
Monitoring Counters. In: Huang Xinyi, Zhou Jianying, eds. Information Security Practice and Experience. Lecture Notes
in Computer Science, vol. 8434: Cham, Germany: Springer International Publishing 2014 (pp. 172–186).

49. Nomani Junaid, Szefer Jakub. Predicting Program Phases and Defending Against Side-channel Attacks using Hardware
Performance Counters. In: Proceedings of the 4th Workshop on Hardware and Architectural Support for Security and
Privacy. HASP. New York, NY, USA: ACM 2015 (pp. 1–4).

50. Gruss Daniel, Maurice Clémentine, Wagner Klaus, Mangard Stefan. Flush+Flush: A Fast and Stealthy Cache Attack.
In: Caballero Juan, Zurutuza Urko, Rodríguez Ricardo J, eds. Detection of Intrusions and Malware, and Vulnerability
Assessment. Lecture Notes in Computer Science, vol. 9721: Cham, Germany: Springer International Publishing 2016 (pp.
279–299).

51. Canella Claudio, Van Bulck Jo, Schwarz Michael, et al. A Systematic Evaluation of Transient Execution Attacks and
Defenses. In: Proceedings of the 28th USENIX Security Symposium. USENIX Security. Cambridge, MA, USA: USENIX
Association 2019 (pp. 249–266).

52. Pierce Cody. Detecting Spectre And Meltdown Using Hardware Performance Counters https://www.elastic.co/blog/
detecting-spectre-and-meltdown-using-hardware-performance-countersAccessed: 2022-4-15; 2018.

53. Li Congmiao, Gaudiot Jean-Luc. Detecting Spectre Attacks Using Hardware Performance Counters. IEEE Transactions on
Computers. 2021:1–1.

https://www.elastic.co/blog/detecting-spectre-and-meltdown-using-hardware-performance-counters
https://www.elastic.co/blog/detecting-spectre-and-meltdown-using-hardware-performance-counters


Stefano Carnà ET AL. 29

54. Lipp Moritz, Schwarz Michael, Gruss Daniel, et al. Meltdown: Reading Kernel Memory from User Space. In: Proceedings
of the 27th USENIX Security Symposium. Berkeley, CA, USA: USENIX Association 2018 (pp. 973–990).

55. Gruss Daniel, Lipp Moritz, Schwarz Michael, Fellner Richard, Maurice Clémentine, Mangard Stefan. KASLR is Dead:
Long Live KASLR. In: Engineering Secure Software and Systems. Springer International Publishing 2017 (pp. 161–176).

56. Intel Corporation . 8th and 9th Generation Intel Core Processor Family Intel® Core™ Processor Families and Intel® Xeon®
E Processor Families. Intel Corporation2020.

57. Herlihy Maurice, Shavit Nir. On the Nature of Progress. In: Fernàndez Anta Antonio, Lipari Giuseppe, Roy Matthieu, eds.
Principles of Distributed Systems. Lecture Notes in Computer Science, vol. 7109: Berlin Heidelberg, Germany: Springer
International Publishing 2011 (pp. 313–328).

58. Diener Matthias, Madruga Felipe, Rodrigues Eduardo, et al. Evaluating Thread Placement Based on Memory Access Pat-
terns for Multi-core Processors. In: Proceedings of the 12th International Conference on High Performance Computing and
Communications. HPCC. Piscataway, NJ, USA: IEEE 2010 (pp. 491–496).

59. Calandrino John M, Anderson James H. On the Design and Implementation of a Cache-Aware Multicore Real-Time Sched-
uler. In: Proceedings of the 21st Euromicro Conference on Real-Time Systems. ECRTS. Piscataway, NJ, USA: IEEE 2009
(pp. 194–204).

60. Di Gennaro Ilaria, Pellegrini Alessandro, Quaglia Francesco. OS-Based NUMA Optimization: Tackling the Case of Truly
Multi-thread Applications with Non-partitioned Virtual Page Accesses. In: 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE 2016 (pp. 291–300).

61. King Colin Ian. Stress-ng: A stress-testing Swiss army knife. 2019.
62. Pellegrini Alessandro, Vitali Roberto, Quaglia Francesco. The ROme OpTimistic Simulator: Core Internals and Program-

mingModel. In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques. SIMUTOOLS.
Brussels, Belgium: ICST 2012 (pp. 96–98).

63. Fujimoto Richard M. Performance of Time Warp Under Synthetic Workloads. In: Nicol David, ed. Distributed Simulation.
PADS ’90. San Diego, CA, USA: Society for Computer Simulation International 1990 (pp. 23–28).

How to cite this article: Stefano Carnà, Romolo Marotta, Francesco Quaglia, and Alessandro Pellegrini (2023), Strategies and
Software Support for the Management of Hardware Performance Counters, Software: Practice and Experience, 2023;00:1–29.
https://doi.org/10.1002/spe.3236


	Strategies and Software Support for the Management of Hardware Performance Counters
	Abstract
	Introduction
	Background
	Intel's Precise Event-Based Sampling (PEBS)
	AMD's Instruction-Based Sampling (IBS)

	Related Work
	Efficient Online Gathering of HPC Data
	Efficient Collection of PMU Data
	Discriminating the Profiling Domain
	Per-thread Profiling
	Software-based CPL Filtering

	Data Buffering
	Single Enqueuer Multiple Dequeuer Circular Queue
	System-wide Buffering
	Per-core Buffering
	Per-thread Buffering

	Accessing Profiling Data from User Space

	Experimental Assessment
	Efficient Collection of PMU Data
	Discriminating the Profiling Domain
	Accessing Profiling Data from User Space
	Data Related to a Case Study

	Conclusions
	Acknowledgments
	References


