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1 INTRODUCTION
Historically, the memory hierarchy has been introduced and equipped with multiple caches to hide the mem-

ory’s high latency and overcome the performance gap between processors and memory. This component is

fundamental performance-wise and has been integrated into all modern processing units. Nevertheless, attackers

have repeatedly abused it to extract information from the operating system (OS) kernel or victim processes,

circumventing the process confinement enforced by standard modern operating systems.

These kinds of attacks are commonly and generically referred to as cache-based side-channel attacks, and
many different techniques have been proposed in the literature [16, 22, 33, 36, 37, 59]. They rely on observing

non-functional properties of the cache architecture (e.g., timing the execution of cache-accessing operations)
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to infer information on a victim process or to leak data. These attacks have also been beneficial to extract data

when side effects on the cache architecture are generated by exploiting transient execution CPU vulnerabilities.

To exploit these vulnerabilities, the attacker relies on some speculative execution facility from the underlying

computer architecture to load into the cache architecture some data from the underlying OS kernel or from a

different userspace application whose access is prevented by traditional security mechanisms, such as paging

isolation.

The applications of side-channel attacks are vast. For example, they have been used to extract secret keys from

cryptographic algorithms including AES [28, 44, 51] or El-Gamal [37], to steal information from the underlying

operating system [33, 36], to bypass Kernel Address Space Layout Randomization (KASLR) [38], or to extract

cross-VM information [8, 10, 52, 58].

The idea of using a cache-based side channel to trace the execution of a program or to leak information is

not new, with the first proposals dating back to two decades ago [2, 7, 44, 62]. Despite this, the fundamental

mechanism has been preserved over time, i.e., observing traces left in the caching subsystem of the computer

architecture to extract information. In this article, we concentrate on detecting an application mounting a side

channel to indicate that an information extraction might be taking place. As we will show experimentally,

this focus allows us to detect also transient execution attacks if they rely on side channels to extract leaked

information.

To reduce the impact of attacks that exploit cache side channels, especially those based on CPU transient

execution—namely to reduce the amount of information that an attacker can leak —several mitigation strategies

have been proposed, both at the software and at the hardware level. The most notable ones are Kernel Page Table

Isolation (KPTI) [18], retpolines [1], swapgs fences, or PCID. Notably, some of these patches (e.g., KPTI) induce a

non-negligible performance drop under specific workloads, which has been estimated as high as 30% [21]. This

overhead could be deemed too high in specific scenarios—examples are virtualized environments supporting 5G

communications [8] and high-performance computing-oriented setups. In these scenarios, a good tradeoff could

be to selectively enable security patches (either the existing ones or newly devised ones) at runtime only when

software suspected to try to exploit cache side channels is detected.

To detect an application mounting a side channel with a reduced performance impact, we propose to leverage

hardware capabilities offered by off-the-shelf CPUs. Indeed, modern CPUs are equipped with hardware units

meant to profile the performance or (to some extent) the behavior of applications—they have been introduced

long ago in processor families like the Intel Pentium or the AMD Athlon. These units are generally referred to as

Performance Monitoring Units (PMUs). PMUs, at their simplest, are composed of programmable Performance

Monitor Counters (PMCs), also referred to as Hardware Performance Counters (HPCs). HPCs can be used to

keep track of the number of micro-architectural events which occur in the system, such as the number of load

operations retired by CPU cores or the number of cache misses at a particular cache level.

Given the tight connection with the measurement capabilities of PMUs and the baseline techniques used to

extract information using a cache side channel, we could assert that PMUs are the perfect candidates to build

a detection mechanism for this kind of attack. While several works in the literature have followed this path,

a recent result has argued that micro-architectural level information obtained from HPCs cannot distinguish

between benignware and malware [63]. Similarly, another work has illustrated why many of the results in the

literature cannot be considered reliable [14].

In this article, we come back to this problem and try to capture some common features which can be used to

define detection metrics based on measurements obtained through HPCs. We use these metrics to detect whether

a process running in the system is carrying out an attack—independently of whether the attack is carried out

after having exploited some transient execution CPU vulnerability.

Our detection mechanism is system-wide. In this sense, we do not make any assumption on which process is

the attacker and which is the victim. We also directly account for scenarios where multiple linked processes are
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used to mount the attack (e.g., relying on the fork() system call). We exploit the information gathered at runtime

to deem some processes as suspected. In more detail, we concentrate on detecting the usage of side channels to

extract information during an attack to indicate the possibility that the process is malicious.

We explicitly acknowledge that our detection mechanism is fallible due to the degree of uncertainty associated

with this kind of mechanism. Therefore, we do not take any destructive action with respect to the running process.

Instead, we couple our detection capabilities with mitigation actions. We propose different mitigation actions

automatically enforced by the operating system as soon as a process is suspected as malicious. They entail a

limitation in the scheduler freedom at deciding what CPU resources should be assigned to some process or the

selective (per-process) activation at runtime of security patches against transient execution vulnerabilities.

To reduce the incidence of false positives and negatives, we rely on a self-adjustable observation window

coupled with a scoring system. This approach is meant to reduce the probability that benignware with pressure

on the memory hierarchy is suspected or to increase the likelihood to suspect processes that perform many

non-malicious actions before carrying out the attack.

Our detection mechanism and the mitigations mentioned above have been implemented at kernel-level in

Linux and have been exercised on multiple processors of the x86 family. We have used our patched kernel

for a month, also in daily usage
1
—the patched kernel has also been used while typesetting this paper. No

false-negative has been observed under that daily usage workload. Of course, this is not a guarantee that our

approach could be used to enforce more intrusive policies for suspected processes like, e.g., killing suspected

processes. Instead, it is an indication of the viability of using HPCs as building blocks for articulated detection

mechanisms and for devising strategies where the setup of security-oriented patches can be put in place on a

dynamic and per-process basis—rather than paying the cost of these patches by default when any process is

active. Our reference implementation is released as open-source software
2
.

We finally compare the performance penalty introduced in the system by these different mitigation strategies

relying on standard benchmarks for operating systems [34].

Overall, our main contributions can be summarized as:

• we introduce a practical mechanism to build metrics from measurements obtained from HPCs to detect

that some cache side channel is currently being used;

• we propose an observation window and a scoring system to reduce false positives and negatives when

considering a process as suspected;

• we propose a system-wide detection approach for userspace applications, which makes no assumption on

which process is the victim and which is the attacker;

• we enable per-process or per-CPU mitigation strategies;

• we describe a reference implementation in the Linux kernel;

• we show the effects on performance of our proposal on multiple generations of Intel CPUs, using standard

benchmarks.

The remainder of this paper is structured as follows. In Section 2 we discuss the threat model that we have

considered. Section 3 discusses related work. The metrics used in our detection system are introduced in Section 4.

The system-wide implementation of our detection mechanism is presented in Section 5. We discuss our mitigation

strategies in Section 6. The experimental assessment of our proposal is provided in Section 7. Section 8 concludes

the article.

1
A video demonstration of the operations of our detection mechanism is available at https://youtu.be/XGQ4TuqtTAI.

2
The code is available at https://github.com/HPDCS/linux-detection.
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2 THREAT MODEL
We consider an attacker trying to carry out a cache-based attack and extract information from a co-located victim

on the same platform. The attacker is thus sharing some architectural components with the victim, such as the

First-Level Cache (L1) [30, 49] or the Lowest-Level Cache (LLC) [20, 27, 28, 37]. In the most general setting, the

victim can be some userspace process, a virtual machine in a multi-tenant cloud environment, or the underlying

OS kernel. We do not make assumptions on the privileges with which the attacker is running, nor on whether the

side channel is being used to extract leaked information after some transient execution attack has been carried

out. Indeed, as mentioned, we are interested in detecting the usage of a cache side channel to extract information

while the attack is in progress. This allows us to detect also popular attacks such as Meltdown [36], Spectre [33],

and Foreshadow [52, 58].

Concerning transient attacks, we assume that security mitigation patches such as KPTI are not necessarily

active (hence the attack is not prevented) but are available in the compiled operating system binary. Indeed, we

propose a mitigation mechanism that allows to selectively re-enable these patches on a per-process basis, just to

prevent the attack, if a process is suspected as malicious, as we shall describe in Section 6.

We also assume that the operating system’s kernel is not compromised in any way. In particular, we assume

that any data acquired by the kernel is not tampered with by an attacker and that the routines executed by the

kernel are similarly not altered by any attacker. Hence, in our proposal, we assume that no attack is run from

kernel space, e.g. the victim has not loaded any malicious kernel module that would mount a side-channel attack.

The operating system’s kernel internal and external security is an orthogonal security aspect to the proposal

discussed in this article.

3 RELATED WORK
We can relate our proposal to two different families of countermeasures to attacks, namely detection and prevention.
On the detection side, using HPCs is not a new idea. Many works in the literature have relied on HPCs for

this purpose, e.g., for exploit detection [50, 60, 61, 64], malware detection [15, 17, 29, 45, 48, 55], firmware

verification [56, 57], integrity checking [9, 39], or vulnerability analysis [12]. Unlike our proposal, these works

mainly cope with attacks not explicitly oriented to cache side channels, like ROP (or more generally control flow

tampering) or similarity-based malware detection.

We share the goals with a set of works that rely on HPCs to detect side-channel attacks [6, 11, 26, 40, 43, 46].

In general, these approaches rely on machine learning mechanisms, concentrate on specific attacks, do not

support system-wide detection, require to know beforehand what the attacking process is, or do not consider the

possibility of relying on selectively activated software patches. These are all major differences from our proposal.

On the prevention side, an important mitigation for the Meltdown attack is KPTI [18]. When running in user

mode, this mitigation strategy drops the historical sharing of the kernel-level virtual-to-physical translation

metadata (namely, the kernel-level page tables). In user mode, a process only observes a minimal amount of data

and code belonging to the kernel, i.e., the data and code, to allow a safe transition to kernel mode upon interrupts

and system calls. This minimal set of code, when activated, performs a page-table switch, which allows accessing

the whole virtual address space of the operating system kernel. Before returning to user space, the user-land

trimmed page table is put back in place. All major operating systems have adopted this scheme.

The main problem with this approach is that, for it to work correctly, a page table change must be accompanied

by a flush of all virtual-to-physical translation entries in the caches—some of these are done automatically when

updating the page-table pointer, e.g. CR3 on x86 CPUs. This incurs additional runtime costs, which have been

quantified to be up to 30% of the execution time observed when this mitigation is not in place [21].

Concerning Spectre attacks, CPU vendors have introduced hardware mitigations for Speculative Store Bypass

(SSB) [3, 24]. Examples are the Indirect Branch Restricted Speculation (IBRS)mitigation, which restricts speculation
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of indirect branches, the Single Thread Indirect Branch Predictors (STIBP) mitigation, which prevents indirect

branch predictions from being controlled by the sibling hyperthread, and the Indirect Branch Predictor Barrier

(IBPB) mitigation, which ensures that earlier code’s behavior does not influence later indirect branch predictions.

The software community has been cold towards these mitigations, as they have been reported to slow down

typical workloads up to 50% [13].

On the other hand, one software mitigation to Spectre-like attacks, which introduces a minimal overhead,

is the retpoline [1]. It is a software construct that ensures that if the CPU is mispeculating due to some attack

being carried out against some branch prediction unit, then the pipeline will be filled with an infinite loop. This

prevents arbitrary code execution, which could also induce data leaks.

Our work grounds on these and other mitigation patches and strategies. However, our goal is to enable these

patches at a very fine grain, i.e., whenever a process is suspected as malicious. This finer grain should reduce the

performance impact in the general lifetime of the system while ensuring a higher security level with respect to

an utterly unpatched system.

4 DETECTING SIDE-CHANNEL ATTACKS
The overall architecture and methodology that we use to enable prompt detection of side-channel attacks are

depicted in Figure 1. We rely on a combination of measures taken from HPCs in real-time, which allows us to

discriminate processes that are more likely to perform operations on the cache hierarchy, indicating that they are

mounting a side-channel attack. At the kernel level, we have four major components involved in the system-wide

monitoring of the attacks to detect the activity of malicious processes. The Monitor module directly interacts

with hardware performance counters, programming them to acquire the measures to build our detection metrics.

Data coming from HPCs are stored directly in a process’ task_struct. The Detector module relies on these data

to compute detection metrics and deem a running process as suspected or not—again, this information is stored

in the task struct. If a process is suspected, the Mitigator module will detect it and apply proper mitigations. The

Scheduler module interacts with the operating system’s scheduler. It is one of the fundamental components to

enable system-wide detection and per-process mitigations: every time that a different task_struct is scheduled,

both the Mitigator and the Monitor modules are notified to enable/disable mitigations and reprogram HPCs,

respectively, to account for the newly scheduled process.

4.1 Architectural Details and Preliminary Work Hypotheses
Since we are interested in the malicious usage of caches to extract information, it is beneficial to discuss how the

CPU interacts with the caching subsystem briefly. Its organization is depicted in Figure 1 for the Intel architecture,

which we use as our reference, where there are three levels of CPU caches. The caches closer to the CPU are

smaller and faster, and the caches further away are larger and slower. At the first level, there are two caches, L1i

and L1d, which keep code and data, respectively. The L2 cache unifies code and data and, in almost every x86

CPU, represents the last cache level private to the core, while, as the final level, there is the Last Level Cache

(LLC), a shared memory level among all cores of the same die. Two important cache properties to be considered

are inclusiveness and associativity. The former defines the way a cache level behaves with respect to the higher

ones, which can be:

(1) inclusive: this level always contains data stored in the higher levels;

(2) exclusive: precisely the opposite of the previous one;

(3) non-inclusive: it does not guarantee that higher levels state is a subset of the current one.

This work considers inclusive caching systems since they represent themost diffused chipset for Intel processors.

On the other hand, associativity is a strategy that divides a single cache level into multiple sets, where part of the

physical address is used to index into the corresponding cache set. It is helpful to reduce chip complexity while
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Fig. 1. Overall detection architecture and components involved in memory access—hit paths are not shown.

providing a more efficient cache implementation. Also, the page table walk firmware relies on the CPU caches to

further improve the performance of a TLB miss [53]. In particular, the PTEs for the different page table levels are

not stored only in the CPU caches, but modern processors also store them in page table caches or translation

caches [5]. Independently of the associativity strategy, we work at the granularity of the single cache line.

HPC operations are based on the concept of hardware events. Examples of hardware events are a write operation

in memory, a cache miss, or the fact that a conditional branch in the execution flow of the program has been

taken. The events that a processor is aware of (and can be measured) are highly coupled with the actual processor

architectural family. This is because the generation of a hardware event is physically triggered by data paths or

control signals implemented in the actual control unit of the CPU, which is often subject to partial or complete
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re-implementation across different families of processing units. In the literature on hardware profiling, this

extremely low-level information is often referred to as micro-architectural events.
Each HPC can be configured to track one micro-architectural event at a time. The software interface to control

an HPC is implemented by relying on a couple of model-specific registers (MSRs): (1) a selector (or control) register
which is used to specify the HPC operating mode and the micro-architectural event to be observed; (2) a counter
register, which is incremented every time the associated micro-architectural event is triggered—of course, the

counter can overflow.

The control register can be used to activate two different operating modes. When the HPC is configured to

work in counting mode, the counter register simply accumulates the number of target micro-architectural events

observed while any program is running on the CPU. On the other hand, when the HPC is working in sampling
mode, the system generates a Performance Monitoring Interrupt (PMI) as soon as the counter register overflows.
We have configured our reference implementation to rely on sampling mode, as we shall discuss.

4.2 Detection Metrics
In this Section, we describe the metrics we have devised to determine whether some malicious side-channel

activity is going on. In an initial set of metrics, we relied on the idea that the exploitation of a side channel is

based on bringing the caching system into a known initial state. Successively, the attacker attempts to determine

whether some change has occurred in the cache state. However, considering inclusive caching systems, which

represent our target, we know that bringing the cache into a given state (e.g., a cache line is flushed or a cache

set is primed) means performing an operation that is necessarily reflected into the state of caches at all the levels,

from L1 to LLC.

Based on this observation, we decided to relate to each other volumes of micro-architectural events that are

generated at different levels within the caching system. At the same time, we wanted to focus on events that are

not easily manipulable (in terms of their volume generation at a specific cache level) by an attacker
3
. Therefore,

we decided to avoid considering cache hits and to focus exclusively on cache miss events.

Independently of whether the initial state of the cache when the attack is started is based on cache-line flushes

or cache-set primes, a side channel is anyhow based on re-accessing the same cache line to discover changes

into the state. Clearly, the "interface" for the observation is the L1 cache, but the actual cache access needs to

pass through lower levels if a miss is observed. On the other hand, if a miss has been experienced at the L1, the

likelihood of observing misses at the lower levels is expected to be high. In fact, by the nature of a cache side

channel, the victim either brought some cache line into the caching system, up to L1, or gave rise to cache line

replacement involving all the cache levels because of inclusiveness.

Considering that in inclusive caching systems the volume of cache misses at upper levels is greater than or

equal to the ones at the lower levels, our first two detection metrics are based on the ratio between the number of

cache misses at L1 denoted as 𝐿1𝑚𝑖𝑠𝑠 , and the corresponding values at lower levels denoted as 𝐿2𝑚𝑖𝑠𝑠 and 𝐿𝐿𝐶𝑚𝑖𝑠𝑠 .

We have therefore two predicates P1 and P2 for building our side channel suspicion, which are based on relating

the aforementioned ratios to thresholds, namely:

P1 : 𝐿2𝑚𝑖𝑠𝑠/𝐿1𝑚𝑖𝑠𝑠 > 𝜙1 (1)

P2 : 𝐿𝐿𝐶𝑚𝑖𝑠𝑠/𝐿1𝑚𝑖𝑠𝑠 > 𝜙2 (2)

with the values of 𝜙1 and 𝜙2 both included in the interval [0,1]. Clearly, the value zero for these thresholds leads

to a highly conservative setting where the predicates always hold, leading to suspicion independently of the

3
As an example, an attacker might easily give rise to volumes of cache hits at the L1 in an uncorrelated manner to the cache hits observable

at the LLC.
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actual execution pattern. Values closer to one are more representative in terms of the ability to discriminate

between malware and benignware.

Another interesting point about caching is that the caching hierarchy typically supports data prefetch in order

to implement anticipated reads useful to serve access locality by the applications. For example, this is the case

of the L2 cache in Intel processors. However, a cache side channel is typically based on activities that target a

specific cache line. Hence, we may expect that prefetched data may result useless. On the other hand, the scarce

exploitation of prefetched data is challenging to be discovered by relying on miss events. For this reason, we

devised an additional metric based on the relation between the number of write-back operations for cached lines

at the L2 cache, which we denote a 𝐿2𝑤𝑟𝑖𝑡𝑒−𝑏𝑎𝑐𝑘 and the number of lines fetched (including the prefetched ones)

still at the L2, which we denote as 𝐿2𝑙𝑖𝑛𝑒𝑠−𝑖𝑛 . Accordingly, we derive a third predicate P3, based on an additional

threshold 𝜙3, still having a value in the interval [0,1], in order to determine the side channel suspicion, according

to the following expression:

P3 : 𝐿2𝑤𝑟𝑖𝑡𝑒−𝑏𝑎𝑐𝑘/𝐿2𝑙𝑖𝑛𝑒𝑠−𝑖𝑛 < 𝜙3 (3)

Essentially, predicate P3 is intended to capture all the scenarios where data update activities do not comply

with locality expectations (especially for very low values of 𝜙3), which can be an indication of some unexpected

non-local behavior.

The above-described metrics and predicates are tailored at direct cache side-channel attacks, namely those

attacks that are based on managing cache lines/sets explicitly with data in the address space of the attacker.

Another way of attacking the cache to mount a side channel is to have indirect attacks based on the fact that

memory management metadata, in particular, page table entries, are still cached (see Figure 1). This may lead to

evict cache sets with these metadata, thus enabling the determination of the metadata re-access time to discover

whether some victims had conflicting accesses to the same cache line used to keep the page table entries. To cope

with these kinds of attacks, we devised an additional metric, based on the number of TLB misses at the second

level of the page walk, denoted as 𝑇𝐿𝐵𝑚𝑖𝑠𝑠−𝑙𝑒𝑣𝑒𝑙−2 and the number of L1 cache misses. In particular, a high value

of the ratio between TLB misses and L1 misses is representative of a behavior not conforming with classical

locality (namely, a behavior not conforming with good exploitation of already carried out virtual-to-physical

address translations). This may therefore be a behavior where a cache miss is generated just because of the will

to fill the TLB (upon a TLB miss) with data leading to a cache line replacement. In order to determine the side

channel suspicion in such indirect attack scenarios, we have therefore the following additional predicate:

P4 : 𝑇𝐿𝐵𝑚𝑖𝑠𝑠−𝑙𝑒𝑣𝑒𝑙−2/𝐿1𝑚𝑖𝑠𝑠 > 𝜙4 (4)

where 𝜙4 is this time not constrained in the interval [0,1].

At this point, we can combine the above-defined predicates to determine whether to suspect that a side channel

exploitation is taking place, or not. Before doing this, for direct side-channel attacks, we exploit again the ratio

𝑇𝐿𝐵𝑚𝑖𝑠𝑠−𝑙𝑒𝑣𝑒𝑙−2/𝐿1𝑚𝑖𝑠𝑠 to define the following additional predicate:

P5 : 𝑇𝐿𝐵𝑚𝑖𝑠𝑠−𝑙𝑒𝑣𝑒𝑙−2/𝐿1𝑚𝑖𝑠𝑠 < 𝜙5 (5)

with 𝜙5 < 𝜙4. Actually, P5 expresses the fact that there is no bias generated by a direct side-channel attack in terms

of the increase in the volume of TLB misses, with respect to the volume of L1 misses related to actually-accessed

data. In fact, direct attacks only exploit data in the address space (not memory address translation metadata).

Overall, for direct attacks we define a combined predicate 𝑆1 to determine whether to raise a suspect as the

following combination of P1, P2, P3, and P5:

S1 = P1 ∧ P2 ∧ P3 ∧ P5 (6)
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For indirect attacks, we just have P4. Finally, a side channel suspicion is raised based on the following combination

of S1 and P4:

S : S1 ∨ P4 (7)

4.3 Setting up the thresholds
Basing the detection on measures from HPCs compared against thresholds has already been identified in the

literature as a possible pitfall [14]. However, a significant identified issue is related to how these thresholds

are set and how they are employed. In particular, while it is clear that thresholds could be circumvented (e.g.,

by inducing page faults to affect the accuracy of the measured events [14]), we emphasize that we play on the

safe side. Indeed, we use thresholds to discriminate between relations among events, which are in any case

representative of the ultimate utilization of the side channel to extract information. Furthermore, our approach to

side channel detection is based on combining metrics (via the combination of predicates involving these metrics),

which should favor robustness.

Nevertheless, relying on hardcoded thresholds would make the approach difficult to maintain over time,

requiring significant manual intervention. Changes in the hardware, or peculiarities of specific CPUs, are some

of the aspects which could require to re-tune the thresholds.

The behaviors which we discriminate with our metrics depend mainly on the architecture of the cache of the

machine in which the thresholds are used to discriminate a process as malicious or not. To this end, our system

explicitly allows defining the values for the different thresholds 𝜙𝑖 for the actual machine on which we perform

the detection at configuration time. In our reference implementation—see Section 7 for additional details—this is

done by running:

• A set of side-channel attacks in a controlled environment.

• A set of benchmark applications from different fields.

By relying on these attacks and on the behavior of the benchmarks (which represent the benignware part),

we can estimate proper values for the thresholds, which are used in our detection mechanism. In particular, we

define a threshold value as the average of the two (already averaged values) for the cases of the run attacks and

benchmarks. We note that including benignware execution in the setup of the thresholds gives rise to a somehow

conservative estimation of the threshold values that is, anyhow, not unfavorable to non-malicious software.

We note that to avoid bias in the experiments, the synthetic attacks which we carry out at system startup

are different from the ones which have been used to test our approach. This is an approach similar in spirit

to techniques that perform preliminary probing of the hardware architecture in order to carry out an attack

effectively [54].

5 SYSTEM-WIDE DETECTION AND REFERENCE IMPLEMENTATION
As mentioned, our goal is to carry out a system-wide detection of possible attacks relying on side channels to

extract information. This detection is carried out at the kernel level—our reference implementation is based

on a set of patches applied to Linux 5.4.145. In our implementation, we have targeted the Intel architecture,

considering its widespread nature [47] and the fact that it has been repeatedly subject to multiple attacks in the

last years. Nevertheless, as we discuss, our reference implementation can be easily ported to other architectures,

such as AMD.

5.1 Selected Monitoring Events and Strategy to Acquire HPC Data
We must first give additional details on how we have configured HPCs. Sampling has been set to follow the

number of clock cycles—CPU_CLK_UNHALTED on Intel CPUs, PMCx076 (CPU Clocks not Halted) on AMD. With

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: February 2022.



1:10 • Stefano Carnà, Serena Ferracci, FrancescoQuaglia, and Alessandro Pellegrini

respect to the measures, we have tried to select stable measurements to instantiate the proposed metrics. In

particular, the following events have been selected [4, 23]:

• 𝐿1𝑚𝑖𝑠𝑠 is mapped to the L2_RQSTS.ALL_DEMAND_DATA_RD event. On AMD, a suitably corresponding event

is PMCx041 (Data Cache Misses);
• 𝐿2𝑚𝑖𝑠𝑠 is mapped to the L2_RQSTS.DEMAND_DATA_RD_MISS event. On AMD, a suitably corresponding event

is PMCx07E (L2 Cache Misses);
• 𝐿𝐿𝐶𝑚𝑖𝑠𝑠 is mapped to the OFFCORE_REQUESTS.L3_MISS_DEMAND_DATA_RD event. On AMD, a suitably cor-

responding event is PMCx0E0 (DRAM Accesses);
• 𝐿2𝑤𝑟𝑖𝑡𝑒−𝑏𝑎𝑐𝑘 is mapped to the L2_TRANS.L2_WB event. On AMD, a suitably corresponding event is PMCx07F
(PMCx07F L2 Fill/Writeback (L2Writebacks bit set));

• 𝐿2𝑙𝑖𝑛𝑒𝑠−𝑖𝑛 is mapped to the L2_LINES_IN.ALL event. On AMD, a suitably corresponding event is PMCx07F
(PMCx07F L2 Fill/Writeback (L2Fills bit set));

• 𝑇𝐿𝐵𝑚𝑖𝑠𝑠_𝑙𝑒𝑣𝑒𝑙2 is mapped to the DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK event. On AMD, a suitably

corresponding event is PMCx045 (PMCx046 Unified TLB Miss).

We have configured our implementation for scenarios where Simultaneous Multi-Threading (SMT) is disabled.

This choice is motivated by the fact that, with SMT disabled, Intel CPUs of various generations offer at least eight

programmable HPCs, which are enough to sample all the parameters involved in our metrics. With SMT enabled,

this number would be reduced to four on many CPUs. Furthermore, by disabling SMT, we remove the noise in

the experimental assessment related to the need to time-share the HPC units to gather data related to different

measures, thus focusing better on the validity of our approach. Using our approach with SMT enabled is possible,

but it requires techniques to share HPCs to read multiple measures, which are out of the scope of this article.

In our reference implementation, we have tackled the cost of running the PMI handler by installing a custom

interrupt handler lined up on a free vector in the Linux Interrupt Descriptor Table (IDT). This custom interrupt

handler, which is reserved for PMIs, bypasses the traditional activation scheme for interrupt management in

Linux. Indeed, Linux typically manages a hard interrupt by activating multiple nested functions, in particular

related to the identification of the proper Interrupt Service Routine in charge of managing the IRQ. This is a cost

that cannot be paid to just record a number of occurred events from an HPC.

Our custom stub accounts for the bare minimum amount of actions required to serve the interrupt request

(namely: possibly execute swapgs, change the page table if KPTI is active, set the per-CPU flags used to determine

the execution in kernel mode, take a CPU snapshot). After the actual mode change, we filter out possible spurious

interrupts, and we collect samples from HPCs. We then compute our detection metrics
4
, determine whether to

consider the current process as suspected or not, and finally return from interrupt. The obtained data are saved

on a per-process basis in the task_struct of the thread currently running on the core, which is serving the

interrupt request.

Another important aspect is related to the fact that HPCs are shared among processes scheduled on it. As shown

in [14], underestimating this property leads to an inconsistent behavior of the system-wide detection mechanism.

To cope with this aspect, upon context switch (prepare_task_switch()), if the observed data is enough, we

early evaluate the metrics for the about-to-be-descheduled process. On the other hand, before returning control

to the newly-scheduled process (namely, in finish_task_switch()), we logically reset the HPCs and start the

measurement of the about-to-be-scheduled process. In this way, we do not mix HPC data coming from the

execution of different processes if a thread is scheduled/descheduled in the middle of an observation window,

which could lead to an erroneous detection.

4
We have implemented metrics evaluation in integer arithmetic, both to reduce the execution time and not to poison the FPU—we are not

explicitly saving the FPU state.
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As a last note, we have configured HPCs to explicitly filter out activities when running in kernel mode—the

USR configuration bit in the HPC control register. In this way, every time that we run in kernel mode (also to

extract the values of some HPCs upon a PMI), we do not overcount the measures taken from HPCs—this solves

another source of unreliability observed in [14]
5
.

5.2 Observation Windows
As discussed, an effective system-wide detection requires filtering out all the activities not directly related to the

instruction sequence of the attack to avoid pollution in the observed data. Given that HPCs cannot leave the

micro-architectural domain, it is impossible to identify program phases just by counting low-level events. This

aspect could allow an attacker to blend the malicious code into any program, concentrating the attack phase to a

limited execution time window.

To cope with this problem, we divide the entire observation period into time slots, which are handled as

observation windows of HPC values that are inspected one by one. This allows discriminating among different

execution phases. Such a discretization is applied to the number of elapsed clock cycles (which defines a constant

unit among all running processes) rather than events such as retired instructions—they may warp the time slot

depending on the executed instruction
6
. This window is preserved across context switches and is not shared

among processes/threads, thus guaranteeing a coherent inspection of the execution flow. In other words, if

a process/thread is descheduled in the middle of an observation window, once it is rescheduled, we resume

collecting HPC data from the same exact “point” in the observation window at which it was descheduled. We

also note that this approach allows overcoming the problem affecting other works (see, e.g., [41]), in which data

collection is associated with the entire program execution.

The related HPC’s overflow defines the beginning and end of a time window. It is essential to determine the

time slot size so that the observable data is enough to discriminate meaningful program phases. A too-small

size may cause each slot to provide noisy and poor information, while a too-large one will eventually fall into

the same pitfall as in [41], i.e., too much-aggregated data. Furthermore, the size of the time window is directly

related to the overhead that the detection architecture introduces in the system because smaller slots imply more

interrupts to be processed.

Similarly to what we have discussed in Section 4.3, we determine the minimum and maximum thresholds

for the observation window at system startup, guaranteeing stable measurements. This is done via an adaptive

approach: if we observe a large fluctuation in the data observed across two consecutive windows, we reduce the

size of the window (up to a compile-time defined minimum threshold, which accounts for the overhead in the

measurement). Conversely, if variations are minimal, we increase its size (up to another compile-time defined

maximum).

5.3 Suspecting Malicious Processes
After calculating the metrics in the PMI, they are compared to the respective thresholds, thus determining if the

predicates driving suspicion hold—see expression (7). Based on the inequalities results, we deem a process as

malicious or not. Obviously, the classification of a process cannot be made based on a single observation because

we would have an excessive number of false positives considering that, during its execution, a process can assume

5
Unfortunately, Intel confirmed [25] that using CPL through the PMC’s OS-USR bits may lead to an incorrect result, such that the sum

of OS-data and USR-data is not equal to the result obtained by counting without filters. This phenomenon is probably due to the high

out-of-order execution degree, which makes it hard to associate the 𝜇op execution with the correct execution ring near a mode transition.

Nevertheless, for our specific context, we have performed some tests in order to quantify this error and observed very minimal error values

(less than 0.1%).

6
Every instruction requires a certain number of clock cycles to be carried out, which varies according to several factors (e.g., the memory

state).
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different behaviors. For this reason, we have introduced a scoring system. The process’s score will vary during

execution as follows:

• the score is increased by 𝛼 if the results of the comparison between metrics and thresholds show a behavior

similar to a side-channel attack;

• the score is decremented by 𝛽 if the metrics do not detect any abnormal situation.

If the score reaches the value of a threshold 𝛾 , then the process becomes suspected. 𝛼, 𝛽 , and 𝛾 are tunable

hyperparameters of our model. These parameters are related to each other in the following way. 𝛼 indicates

how fast a process becomes suspected: the higher the value, the smaller is the number of positive evaluations of

the metrics required to flag it as malicious. Conversely, 𝛽 determines how fast a process that was (incorrectly)

considered suspicious starts again to be deemed benign.𝛼 and 𝛽 can be therefore used to control the responsiveness

of our scoring system towards punctual activities (i.e., possibly malicious or not) exhibited within an observation

window. In the general case, we assume 𝛼 ≥ 𝛽 to allow for a prompt-enough detection of a malicious process.

Conversely, 𝛾 directly controls when a process becomes flagged as malicious. To some extent, it indicates the

amount of data that the system tolerates to leak before deeming a process as suspected. In Section 7, we provide

an empirical assessment of the behavior of our approach with respect to these parameters.

Once a process is suspected, this information is stored into current->mm->flags—we exploit bit 27, which is

currently unused. We have explicitly decided to rely on the flags field in the mm data structure because, upon a

fork(), this data structure is automatically copied by the kernel, to make it inherited by the child process. In

this way, also if the attacker tries to jeopardize our detection system by relying on a multi-process attack, the

behavioral information associated with children and the parent processes is shared.

6 MITIGATION STRATEGIES
Our kernel-based detection subsystem can flag a process as suspected. A suspected process is one for which

we can implement mitigations. We note that this is not a destructive operation: even if we have incurred a

classification error (i.e., a false positive), the fact that we enable mitigations will not cause runtime errors (e.g.,

abnormal termination) in the wrongly-suspected process. Indeed, we could only cause a performance slowdown.

Nevertheless, considering the overall system, this slowdown will not be comparable to that observed if the

mitigations we discuss here were activated by default for all processes—see Section 7 for the overhead assessment.

We have foreseen two families of mitigations: one related to side-channel attacks in general and one pertaining

to transient execution vulnerabilities. The mitigations we put in place have value independently of whether

our approach is used to detect the attacks or other support would be used to determine (potentially) malicious

processes.

6.1 Side-channel Attack Mitigations
Multiple mitigations belong to this family. The first one entails that, in finish_task_switch(), before returning
control to a thread of a suspected process, we flush the last-level CPU cache. This ensures that no data from

other processes is available in the cache to be leaked. Of course, this is an intrusive operation performance-wise.

However, it mainly affects the execution of the suspected process, for which the cache must be again warmed up

upon its reschedule
7
.

A second mitigation we devised tries to mitigate the fact that an attacker is likely running on a CPU core that

is "close" to the cache used by the victim. Therefore, an additional strategy is to change the affinity of the attacker

to move it to a different core which is not sharing the same level of cache with the victim. We note that this

7
We think that the performance penalty paid by the OS kernel when managing interrupts that do not find cached data after the reschedule of

the suspected process can have a limited impact, with respect to the fact that upon the reschedule the CPU-core is anyhow devoted to the

specific activities related to the execution flow of the suspected process.
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mitigation could also be performance-intrusive, particularly for applications that have explicitly set their affinity,

e.g., to control their memory-access latency on NUMA machines. However, the system administrator always can

change the affinity for any thread. Hence our approach mimics such a kind of housekeeping job, in this case

carried out for security purposes.

6.2 Transient Execution Mitigations
Another mitigation that we explicitly put in place is per-process enabling of KPTI. The baseline implementation

of KPTI in Linux has been slightly changed to support this mitigation.

In particular, while we maintain the order-1 allocation (8 KB) for the first-level page table (pointed to by

the CR3 register), which allows having two different views of the address spaces for each process (one for

user mode, one for kernel mode), by default all processes rely on only one order-0 page table, which maps the

whole kernel address space. This configuration resembles the traditional organization of the memory map in

Linux before the introduction of KPTI. The two first-level page tables are kept synchronized following a scheme

that resembles the one currently adopted to synchronize them whenever a userspace application allocates new

physical memory. In particular, every time that a new set of physical pages is allocated, the kernel with KPTI

enabled invokes __pti_set_user_pgtbl() which materializes in the user-level page table the newly-allocated

virtual-to-physical translation metadata (the page table chain), also explicitly setting the NX bit, if available on the

current architecture. This same scheme is adopted upon a fork(). We retain this scheme, although we explicitly

differentiate between the user- and the kernel-level page table—this distinction is somewhat implicit in the

current standard implementation of KPTI and relies on some hardcoded macros.

Upon a mode switch, the switch_to_kernel_CR3 macro is used by the kernel to open access to the whole

address space of the kernel. Upon return to userspace, the switch_to_user_CR3 macro returns to the user-level

page table. This scheme is done every time the machine transitions from user to kernel mode and vice-versa. Our

goal is to selectively activate this scheme in a per-process way, reducing at most the cost for this operation.

To this end, we recall that a process becomes suspected while running in kernel mode, namely while a PMI is

being processed. In that case, we set a flag in current->mm->flags. When returning to user mode, we explicitly

check this flag. If it is set, we invoke switch_to_user_CR3. This is enough to start applying the patches for a

suspected process. Conversely, we cannot check this flag when transitioning from user to kernel mode. This is

because we do not have access to current, which is stored in per-CPU variables, which are not accessible if the

user-mode page table is set.

To check if we have to invoke switch_to_kernel_CR3, we exploit the fact that the two first-level page tables

belong to an order-1 allocation and are therefore contiguous (both in the virtual and in the physical address

space). We have inverted the user and the kernel page table with respect to the current implementation of KPTI.

This means that the user page table follows the kernel page table. Given the contiguousness of the pages, it

is sufficient to check if bit 13 of the address contained in CR3 is set to 1. If this is the case, the thread enters

kernel mode with the user-mode page table. This means that the thread belongs to a suspected process, and we,

therefore, have to invoke switch_to_kernel_CR3. On the other hand, if the bit is cleared, the process is not

suspected, and the whole kernel virtual address space is already visible.

Of course, we want to account for suspected multi-threaded applications explicitly. In this scenario, two threads

could be concurrently running on multiple CPUs. We want to minimize the time window when a thread is

running with patches enabled, and another is not. As mentioned, to activate the patch, a thread belonging to

a suspected process must perform a mode switch from kernel mode. To this end, after flagging a process as

suspected, we explicitly send an Inter Processor Interrupt (IPI) to all other cores. This operation will require all

CPU cores to transition to kernel mode. In this way, if a thread of the suspected process was running, the mode

change will result in patch enabling.
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Table 1. An overview of considered cache side-channel attacks and references to the used implementations.

Name Sa
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Evict + Time [35] (taken from
8
) ✓ ✓ ✗ time

Prime + Probe [27, 37] (taken from
9
) ✓ ✓ ✗ time

Prime + Abort [16] (taken from
9
) ✗ ✓ ✗ TSX

Flush + Reload [59] (taken from
9
) ✓ ✓ ✓ time

Flush + Flush [19] (taken from
9
) ✓ ✓ ✓ time

Xlate + Time [53] (taken from
9
) ✓ ✓ ✓ time

Xlate + Probe [53] (taken from
9
) ✓ ✓ ✓ time

Xlate + Abort [53] (taken from
9
) ✓ ✓ ✓ TSX

Meltdown (taken from
10
)

Spectre (taken from
11
)

Foreshadow [52, 58] (taken from [8])

A similar mechanism has been put in place to enable/disable several other mitigation techniques, namely:

i) Microarchitectural Data Sampling (MDS); ii) Spectre v1, v2, L1TF mitigations; iii) SSB mitigations; iv) KVM

Non-Executable Huge Pages; v) TSX Asynchronous Abort. This is supported by quickly checking the flag in

current->mm->flags to determine whether one specific mitigation should be activated, which might, in turn,

require modifying the content of some MSR value (as in the case of SSB mitigations).

7 EXPERIMENTAL ASSESSMENT

7.1 Experimental Setup
We have carried out an experimental assessment relying on multiple generations of Intel CPUs, namely using the

following processors:

• i7-6700HQ 4x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 6MB 12-way;

• i7-7600U 2x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 4MB 16-way (with TSX);

• i5-8250U 4x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 6MB 12-way;

• i7-9750H 6x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 16MB 16-way;

• i7-10750H 6x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 12MB 16-way.

To set up the thresholds and observation windows used by our detection system, we have run versions of the

attacks listed in Table 1, as well as the following set of benignware applications: (1) Firefox, with both textual

page, multimedia content access, and browser benchmarks such as JetStream2; (2) VLC, with both large and short

videos and random skip of video portions, as well as repositioning; (3) Evince Reader, with both small and large

size pdf files, and random skip of pages; (4) gedit for editing textual files of different sizes and random positioning

onto the file portion to be edited; (5) all the kernel-level threads operating within the Linux kernel.

8
https://github.com/vusec/revanc.

9
https://github.com/vusec/xlate.

10
https://github.com/paboldin/meltdown-exploit.

11
https://github.com/Eugnis/spectre-attack.
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Table 2. Comparison between HPCs and Software Instrumentation on all the architectures. Err represents the distance (%)
between HPCs and SW while HPCvar shows the HPCs variation coefficient.

i7-6700HQ i7-7600U i5-8250U
HPCs SW Err HPCvar HPCs SW Err HPCvar HPCs SW Err HPCvar

loads 4494K 4744K 5.2% ∼0% 4494K 4744K 5.2% ∼0% 4494K 4744K 5.2% ∼0%
L1 miss 400K 308K 29% 2.0% 515K 308K 66% 2.9% 521K 308K 69% 1.6%

L3 miss 8557 - - 6.4% 7798 - - 3.9% 6539 - - 3.6%

L2 lines 185K - - 7.9% 221K - - 3.1% 224K - - 4.7%

TLB miss 9168 - - ∼0% 9382 - - 5.7% 8981 - - 1.9%

i7-9750H i7-10750H
HPCs SW Err HPCvar HPCs SW Err HPCvar

loads 4494K 4744K 5.2% ∼0% 4495K 4744K 5.5% ∼0%
L1 miss 513K 312K 64% 2.2% 517K 308K 67% 1.8%

L3 miss 8064 - - 4.0% 3725 - - 7.7%

L2 lines 227K - - 2.9% 226K - - 5.5%

TLB miss 9321 - - 2.4% 9301 - - 3.0%

7.2 Stability of HPC Events
We evaluated HPCs stability in terms of both over-counting and determinism by comparing the data collected from

HPCs with data obtained from software instrumentation—results are reported in Table 2. For this experiment, we

relied on a basic (single thread) benchmark
12
which computes the first 𝑥 prime numbers, where 𝑥 is a user-defined

parameter. As a baseline, we used cachegrind [42], which automatically detects the underlying cache structure

and builds an equivalent cache model while executing the program. With cachegrind, we can compare the

results related to memory accesses and cache misses—in this case, we are also able to assess, to some extent,

the accuracy of HPCs. Nevertheless, L3 cache misses, L2 filled lines (it counts opportunistic events at cache

line grain and includes prefetcher activity), and TLB miss (we use a specific event that requires the emulation

of a second-level TLB) are not available. For these events, we compared the HPCs values of several runs to

compute the determinism degree of this source. The results in Table 2 experimentally confirm that, although

HPCs could be subject to reliability errors, we have selected events that are more stable and portable across

different architectures. Although the L1 miss Err value may be a wake-up call to the reader, it is consistent among

the tested architectures and the HPCs variation coefficient. This result stems from cachegrind’s inability to model

all the hardware counterpart’s internal details that vendors do not disclose.

7.3 Accuracy of the System-Wide Detection Approach
To assess the capabilities of our detection system, we have performed a system-wide experimental evaluation

by building sets of benignware and malware applications. The former relies on the Phoronix Test Suite [34],

from which we selected 156 benchmarks (configured with different inputs) showing various behaviors and load

profiles. Conversely, to build the set of malicious applications to exercise our solution’s capability to detect

side-channel attacks, we have not found access to real-world malware of this kind. Consequently, we have

crafted such malicious applications starting from the stress-ng suite [32]. We injected side-channel attacks

(based on the implementations reported in Table 1) into various benchmarks of the suite, generating a set of 100

malicious applications. The side-channel routine is placed within the benchmark stress function
13
. The attack is

anyhow enabled only after a random delay and, after its activation, the side-channel procedure executes with a

12sysbench –test=cpu –cpu-max-prime=20000.
13
The stress function of each benchmark is called several times into a stress-ng main loop according to input parameters.
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specific probability—we set this probability to 10%. By introducing these sources of uncertainty, we increased the

non-determinism degree that attacks may exploit in realistic scenarios.

As described in Section 5, the behavior of our detection system depends on the 𝛼, 𝛽 , and 𝛾 hyperparameters.

We set 𝛼 and 𝛽 to 1 for the entire experimental phase while varying 𝛾 to evaluate the detection according to

different threshold levels. As discussed, 𝛼 and 𝛽 represent the rates that regulate the score progression of each

process in the system. By setting 𝛼 = 𝛽 = 1, we are identifying a critical scenario for our detection system, as

we slow down the detection of malicious applications while reducing the possibility for a benign application to

"recover" from spurious actions being detected as malicious. At the same time, by varying 𝛾 , we somewhat change

the responsiveness to an undergoing attack. As stated in Section 4.2, we recall that S1 and P4 predicates identify,

respectively, side channels directly exploiting the cache levels (L1, L2, LLC) and external caching structures (i.e.,

TLBs) to manipulate the processor caches indirectly. In our tests, indirect attacks refer to XLATE implementations.

Figure 2 shows the results of the detection accuracy as confusion matrices. The standard benchmarks (i.e., with

no side-channel attack injected) are labeled as OK, while S1 and P4 indicate the direct and the indirect attacks,

respectively. Confusion matrices with 𝛾 = 1 illustrate the behavior of our detection system as if the scoring system

were not available. In this configuration, any application becomes suspected after a single violation of any metric.

As we can observe, the number of false positives is non-minimal, and on the i7-6700HQ, it is even higher than

real negatives. Overall, the benchmarks which have been wrongly suspected are the ones that either: i) involve

a large number of forks and therefore propagate the information associated with the measures across a large

number of processes; ii) implement data processing or machine learning algorithms iii) are memory-intensive

scientific applications or explicitly test the memory hierarchy.

Nonetheless, the number of false positives quickly decreases as the value of 𝛾 increases. Indeed, this is related

to the fact that subsequent observations can filter out any potential spike in applications’ activity without

prematurely marking the process as suspected. This trend matches exactly our expectations, also validating the

viability of the scoring system. Our experiments did not report any false-negative detection.

The approach we have proposed well fits scenarios in which a higher level of security is desired. However, the

system is still prone to performance optimization under very low-security risks. Moreover, by design, the tuning

mechanism aims to reduce the likelihood of experiencing false negatives at the cost of slightly increasing the

number of false positives. Nevertheless, if 𝛾 is set to a suitably high value, this number becomes negligible.

By definition, a detection system is not a predictor, but it reacts to some events and makes decisions according

to its model. Indeed, such a characteristic is crucial. Before classifying a malicious process as suspected, we

expect part of its attack to have been executed—at least, the portion required to generate an identifiable pattern

by our detection system. Typical side-channel attacks rely on a preliminary preparation phase (e.g., probing the
cache) during which no data is actually read. If our detection system can detect a side-channel attack during this

preparation phase, the attacker will not be able to read any data. Conversely, if the detection system identifies

the attack during its extraction phase, then some amount of information might be read by the attacker.

Overall, the amount of data that an attacker can read even if our detection system is active is an important metric

to assess the accuracy of our system-wide detection approach. Therefore, we have carried out an experiment to

quantify the amount of data that a malicious process can read before its detection. In this experiment, the attacker

shares a chunk of read-only memory with the victim and tries to leak information by mounting a side-channel

attack on a byte-by-byte basis. Concurrently, the victim reads the shared buffer one byte at a time with some

delay among subsequent accesses, generating all the conditions to perpetrate the cache-based attack. In this

experiment, we have set the secret’s size to 256 bytes—a non-minimal buffer corresponding to the size of a large

Advanced Encryption Standard (AES) key—and studied the attack’s effectiveness to extract data before being

detected. Figure 3 shows the results of this experiment with detection capabilities turned on with different values
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Fig. 2. Detection accuracy evaluation for different values of 𝛾 (𝛼, 𝛽 = 1). S1 and P4 indicate the direct and the indirect
attacks, respectively, while OK indicates normal processes.
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of 𝛾 and different victim’s read rates
14
. With 𝛾 = 100, our approach can detect the attack before it extracts a

significant fraction of the data extracted when no detection was active, but only when the victim reads with small

delays. By decreasing 𝛾 , the percentage of correctly extracted data is reduced.

Although the reader may think that by increasing the victim’s read rate, the detection may fail to identify the

attack promptly, our results show that the percentage of extracted bytes decreases for very high-frequency reads

on all examined architectures. This phenomenon is due to side-channel attacks being more sensitive to the noise

generated when the activity in the system increases.

7.4 Performance Assessment
We have studied the performance improvement we can obtain with our monitoring proposal. To quantify

the performance benefit of our approach, we have again relied on the Phoronix Test Suite, selecting a set of

benchmarks that interact with the system in different ways, according to the following classes of behavior:

(A) intensive disk I/O operations (compilebench);
(B) pressure on the scheduler and context switch operation, also considering multithreaded applications

(hackbench, ctx_clock);
(C) a large number of system call invocations, such as fork, exec, and those related to memory management

(OSBench);
(D) high usage of the network socket API (sockperf);
(E) high usage of the GNU C Library APIs (glibc-bench);
(F) complex workloads, related to browsers and databases (selenium, sqlite-speedtest, Apache).

We also note that selecting these benchmarks allows profiling different classes of applications, namely CPU-

bound ones (in userspace) or applications that repeatedly interact with the kernel, forcing the application to

make a substantial number of mode switches. Given the implementation of our software patches, we should have

an influence on the performance of the considered applications. No side-channel attack has been mounted in this

experiment.

These benchmarks were run in the four following scenarios to evaluate the performance impact of the system-

wide detection scheme, also accounting for the effect of the observation window’s length:

(A) Mainline kernel 5.4.145 with KPTI, retpolines, SSB mitigations, and all the patches discussed in Section 6

enabled by default for all processes—referred to as Generic in the plots.

(B) Kernel 5.4.145, with our support for dynamic patching, but with system-wide monitoring disabled—referred

to as Monitor OFF in the plots.

(C) Kernel 5.4.145, with our system-wide detection scheme activated, with an observation window set to 2
20

clock cycles, which was the minimum observation window value considered by the adaptive approach—

referred to as Monitor (short window) in the plots.

(D) Kernel 5.4.145, with our system-wide detection scheme activated, with an observation window set to 2
24

clock cycles, which was the maximum observation window value considered by the adaptive approach—

referred to as Monitor (long window) in the plots.

The results for the benchmarks in these configurations are reported in Figure 4, where we show the overhead

with respect to the mainline kernel 5.4.145 with no active patch, which is therefore vulnerable to all the discussed

attacks—values are averaged over three different runs. By the results, we can observe that the Monitor OFF
approach offers a performance slowdown with respect to the Generic configuration, which is up to 4 orders

of magnitude lower while showing an overhead over the unpatched mainline kernel lower than 4% on all

14
In this experiment, we have used an observation window of 2

20
. A relation between the delay between two victim’s reads (in 𝜇sec) and the

observation window’s size (in clock cycles) can be devised by considering that at a frequency of 1 GHz (∼ 2
30
), we have, given the sampling

period of 2
20
, 2

10
samples in one second. 1024 samples in one second correspond, roughly, to 1 sample/ms.
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Fig. 3. Percentage of a 256-byte secret that an attack can correctly extract before its detection for different values of 𝛾
(𝛼, 𝛽 = 1) and victim’s read rates.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: February 2022.



1:20 • Stefano Carnà, Serena Ferracci, FrancescoQuaglia, and Alessandro Pellegrini

100 101 102

ctx-clock

apache

selenium

sqlite
speedtest

osbench
file

osbench
threads

osbench
memory

hackbench

sockperf

glibc-bench

compileb.
init

compileb.
read

506%

28.6%

41.1%

17.9%

26.9%

28.5%

12.1%

52.7%

33.4%

19.5%

14.6%

19.6%

Generic
Monitor OFF

Monitor (short window)
Monitor (long window)

Overhead evaluation on i7-6700HQ

10 2 10 1 100 101 102

ctx-clock

apache

selenium

sqlite
speedtest

osbench
file

osbench
threads

osbench
memory

hackbench

sockperf

glibc-bench

compileb.
init

compileb.
read

425%

19.8%

29.9%

27.2%

21.9%

29.7%

9.0%

23.7%

34.8%

22.4%

18.2%

22.1%

Generic
Monitor OFF

Monitor (short window)
Monitor (long window)

Overhead evaluation on i7-7600U

10 1 100 101 102

ctx-clock

apache

selenium

sqlite
speedtest

osbench
file

osbench
threads

osbench
memory

hackbench

sockperf

glibc-bench

compileb.
init

compileb.
read

634%

22.3%

33.0%

19.1%

23.2%

21.8%

3.8%

40.5%

30.4%

20.5%

15.3%

22.1%

Generic
Monitor OFF

Monitor (short window)
Monitor (long window)

Overhead evaluation on i5-8250U

100 101 102

ctx-clock

apache

selenium

sqlite
speedtest

osbench
file

osbench
threads

osbench
memory

hackbench

sockperf

glibc-bench

compileb.
init

compileb.
read

352%

18.2%

32.9%

18.9%

23.0%

24.0%

6.8%

10.9%

22.6%

19.2%

13.4%

14.1%

Generic
Monitor OFF

Monitor (short window)
Monitor (long window)

Overhead evaluation on i7-9750H

10 2 10 1 100 101 102

ctx-clock

apache

selenium

sqlite
speedtest

osbench
file

osbench
threads

osbench
memory

hackbench

sockperf

glibc-bench

compileb.
init

compileb.
read

0.0%

7.1%

1.2%

2.0%

3.9%

24.8%

0.0%

0.0%

4.5%

1.7%

0.6%

2.4%

Generic
Monitor OFF

Monitor (short window)
Monitor (long window)

Overhead evaluation on i7-10750H

Fig. 4. Performance Effects of the HPC-based Monitoring System on different Architectures (logscale on the 𝑥 axis).

architectures and for all application classes. This means that the support we have introduced in the kernel to

enable/disable at runtime the various security patches is lightweight and non-intrusive.

Conversely, the overhead of the Monitor configuration over the Monitor OFF configuration is negligible.

It is interesting to note that the impact of the window length is minimal: considering that they are related to

the maximum/minimum values supported by our system, this experiment shows that the expected overhead, also

accounting for the adaptive optimization of the window, is reduced. Of course, this reduced overhead is coupled

with our proposal’s increased security level. Overall, this is additional evidence of the viability of our proposal.

A similar trend can be observed for all tested architectures (except i7-10750H) and all classes of applications,

although with different relative ratios. This indicates the stability of our approach with respect to the performance

of applications. The results on the i7-10750H processor do not match the other models’ behavior. This is because

Intel, starting from the 10
𝑡ℎ

generation of its processors, introduced design changes to patch some hardware

vulnerabilities. Consequently, the Linux kernel does not require enabling all the software patches (such as KPTI)

on these processors with a mitigation of the performance slowdown. Nevertheless, our approach can still detect

side-channel attacks on more modern architecture for which a hardware patch has not been proposed, with

reduced overhead.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: February 2022.



Fight Hardware with Hardware: System-wide Detection and Mitigation of Side-Channel Attacks using Performance Counters • 1:21

25% 50% 75% 100%
0

2

4

6

8

10
10.1

7.5

6.9

8.6

1.78
1.39

0.28

1.54

2.3

1.6

0.4

2.1

Mitigations always active
Dynamic TE mitigations
Dynamic T+SCE mitigations

Fig. 5. Performance Penalties by Mitigations on the i5-8250U.

The last experiment we present—the data are reported in Figure 5—relates to an assessment of the overhead

due to transient execution mitigations and side-channel mitigations, also when there is significant interference

with benignware on the same CPU cores. For this experiment, we only report data taken on the i5-8250U machine

for the sake of space. In any case, the results on the other architectures show trends that are perfectly comparable

with the data reported on this CPU.

We have launched a number of benchmarks taken from the Phoronix Test Suite equal to the number of available

cores on the considered processor. Each benchmark has been statically pinned to one CPU core. We then varied the

number of malicious applications, pinned to specific CPU cores, and ran them concurrently with the benignware

benchmarks. This setup stress-tests also the per-process detection/mitigation capabilities of our system. We

report data associated with the system run with all transient execution mitigations always active (Mitigations
always active in the plot), with transient execution mitigations activated only for suspected processes (Dynamic
TE mitigations in the plot), and with transient execution/side-channel mitigation countermeasures activated

only for suspected processed (Dynamic TE+SC mitigations in the plot). The applications have been selected

to avoid any false positive/negative. As in the previous experiment, we report the overhead as the percentage

increase over an execution in which no mitigation at all (neither static nor dynamic) is present in the system.

By the result, we observe again that enforcing dynamic mitigations provides a significant overhead reduction,

as high as 95%. As expected, the overhead incurred when also SC mitigations are active is higher. Of course,

depending on the system’s configuration, the user can determine what set of mitigations should be enforced

upon the detection of a malware application.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a kernel-level system-wide detection system of cache side-channel attacks based

on measures taken from HPCs and relies on decision metrics to deem a (multi-threaded) process as suspected.

Our solution has been integrated into the Linux kernel, but it is in principle applicable to other OS kernels. We

have coupled our detection system with mitigation actions, both for side-channel attacks and transient execution-

based attacks relying on cache side channels to leak data. These mitigations are activated on a fine-grain basis

at runtime, as opposed to scenarios where security-oriented tasks are carried out by default independently
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of the trustworthiness level of the running applications. This allows for better resource usage and improved

performance.

The metrics we have devised have allowed us to detect attacks with a negligible percentage of false positives and

no false negatives. The data have been collected on different flavors of x86 Intel CPUs and with a comprehensive

set of benchmark applications (either benignware or malware).

Based on the comprehensive architecture we have presented in this paper, we plan to expand the set of detection

metrics as future work to also account for other kinds of memory-based attacks, such as Rowhammer [31].

Furthermore, we plan to port our solution to processors from vendors other than Intel, e.g. AMD. Concerning the

effects of our mitigation strategies, we also plan to carry out an experimental assessment to show the impact on

our approach’s power consumption.
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