
DESL: A Literate Programming Language Framework for
Interoperable Parallel Discrete Event Simulation

Simone Bauco
simone.bauco@uniroma2.it

Tor Vergata University of Rome
Rome, Italy

Romolo Marotta
r.marotta@ing.uniroma2.it

Tor Vergata University of Rome
Rome, Italy

Alessandro Pellegrini
a.pellegrini@ing.uniroma2.it

Tor Vergata University of Rome
Rome, Italy

Abstract

Simulation is indispensable for advanced scientific research, en-
abling accurate explorations of complex phenomena and supporting
evidence-based decision-making across interdisciplinary bound-
aries. Parallel Discrete Event Simulation (PDES) provides substan-
tial advantages in modelling large-scale systems by distributing
computational tasks among multiple processors, enhancing scalabil-
ity. However, exploiting it is extremely challenging due to obstacles
in model efficiency, concurrency control, reproducibility, and main-
tainability. Furthermore, the large number of available PDES run-
time environments makes it difficult to explore their (performance)
capabilities for some specific model, hindering the identification
of the best-suited technology for a certain simulation study. To ad-
dress these limitations, we introduce a unified framework grounded
in literate programming and model-driven engineering, integrating
interwoven documentation and model logic within a single source.
This design enhances intrinsic consistency between model logic
and explanatory content, while enabling the generation of model
implementations tailored to multiple runtime environments, thus
allowing simulationists to focus on model development without
being locked in to any specific technology or environment. This
facilitates model reuse and performance comparisons across diverse
execution environments. We show the viability of this approach
by providing the first-ever experimental comparison across three
different simulators, starting from the same model implementation.

CCS Concepts

• Computing methodologies → Discrete-event simulation;
Simulation theory; • Software and its engineering → Model-

driven software engineering.

Keywords

Parallel Discrete Event Simulation, Model Driven Engineering

ACM Reference Format:

Simone Bauco, Romolo Marotta, and Alessandro Pellegrini. 2025. DESL:
A Literate Programming Language Framework for Interoperable Parallel
Discrete Event Simulation. In 39th ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation (SIGSIM-PADS ’25), June 23–26, 2025, Santa

Fe, NM, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3726301.3728420

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
SIGSIM-PADS ’25, Santa Fe, NM, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1591-4/2025/06
https://doi.org/10.1145/3726301.3728420

1 Introduction

Simulation is a fundamental tool for science, facilitating a deeper
understanding of complex systems and enabling informed decision-
making in diverse domains. Parallel Discrete Event Simulation
(PDES) [14] is considered one of the most effective methodologies
for simulating large-scale systems, offering significant scalability
by distributing the simulation workload across multiple processors.
PDES leverages parallelism to reduce execution time, making it par-
ticularly suitable for domains where the complexity of the systems
under study demands competitive simulation times.

Despite its importance, the development, maintenance, and exe-
cution of (P)DES models1 often face challenges that hinder their
effectiveness. Key among these challenges is the fragmentation of

simulation workflows, where documentation and implementation
are treated as distinct entities, leading to inconsistencies and diffi-
culties in maintaining models [43]. Furthermore, the multiplicity
of PDES simulation runtime environments (REs) exacerbates the
complexity of adapting a single model for performance evaluation
across different platforms, thus limiting comparative analyses and
the selection of the best-suited capabilities available in off-the-shelf
simulators [8].

Literate programming [25] has long emphasised the importance
of integrating documentation and code to produce software that is
not only functional but also comprehensible. This paradigm pro-
motes the view of programs as works of literature, prioritising
human understanding alongside computational correctness. At
the same time, model-driven engineering (MDE) [5] techniques
have provided systematic methodologies to develop and transform
models at different levels of abstraction, ensuring consistency and
traceability throughout the development lifecycle. However, the
integration of these paradigms into the specific context of model
development and execution remains fairly underexplored, although
with few exceptions (see, e.g., [29, 49, 53]).

In this paper, we introduce the Discrete Event Simulation Lan-
guage (DESL, pronounced2 /’di:z@l/) framework, a literate pro-

gramming language framework for PDES. DESL leverages MDE
to extend the principles of literate programming to the domain of
simulation, providing both a Domain-Specific Modelling Language
1Throughout this paper, we face the need to distinguish the dual sense of the term
“model”. We use a different typographical notation for this purpose. Whenever we
refer to the conceptual (meta-)model proper of MDE techniques, we use the small caps
typeface model. When referring to a simulation model as the representation of the
system or process under study, we use the sans-serif typeface model.
2The initial concept for the DESL framework originated approximately 12 years ago.
During this period, DESL work has been initiated at least six times, using different tools
and methods, each attempt culminating in outcomes deemed insufficiently satisfactory
and ultimately discarded. The name “DESL” and its pronunciation playfully allude
to the iterative nature of its development, akin to the modest acceleration of a diesel
engine. However, once the system reaches its steady state, it delivers significantly
greater “horsepower” in the form of robust functionality and performance.

https://orcid.org/0009-0004-8604-510X
https://orcid.org/0000-0001-7589-9274
https://orcid.org/0000-0002-0179-9868
https://doi.org/10.1145/3726301.3728420
https://doi.org/10.1145/3726301.3728420
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3726301.3728420

SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Simone Bauco, Romolo Marotta, and Alessandro Pellegrini

DESL PDES
MODEL

Model 2 Model

Model 2 Text

Runtime
A

SRC

DESL
2

Runtime A

DSL
DSL

MODEL
conforms to

DSL
2

DESL

conforms to

Runtime
B

SRC

DESL
2

Runtime B

Runtime
C

SRC

DESL
2

Runtime C

Docs

DESL
2

Docs

Figure 1: The DESL Workflow.

(DSML) to implement platform-independent models and a Model-
Driven Architecture to generate platform-specific artefacts that
can be executed on different REs. It enables the creation of models
in which documentation and code are interwoven within a single
source. From this unified source, DESL facilitates the generation of
simulation code that can be executed across multiple REs, thereby
addressing two critical needs: ensuring that documentation and
code are inherently kept consistent, and providing a mechanism
for comparative performance evaluation of models across diverse
platforms. DESL is a framework in the sense that targeting a new
or different RE is trivial, requiring only to plug in a new model
transformation [32], allowing all models developed in DESL can be
executed on the new RE. DESL is also a framework because, being
based on a formal model, Domain-Specific Languages (DSLs) could
be transformed to DESL, thus benefitting from the capability to run
on different REs. Overall, with DESL, we envision the workflow
depicted in Figure 1, in compliance with the vision in [53].

DESL operates on a platform-independent model that captures
the semantics and structure of the simulation. This model enables
us to derive executable artefacts and human-readable documenta-
tion automatically, by providing the essential elements to describe
generic DES models. By employing model transformations, DESL
provides extensibility to accommodate the technical requirements
to execute the final model on different REs. The benefit is that, if
model transformations are formally verified, the resulting model
can be deemed correct, and comparative execution across different
REs can be supported with no manual intervention.

The ability to execute the same model across different runtime
environments (REs) is essential for evaluating model’s relative
performance and understanding the trade-offs inherent in each
platform. Indeed, PDES is an umbrella term: there are multiple
synchronization algorithms [37] (ranging from completely con-
servative [10] to fully optimistic [21], with many intermediate
flavours [1, 22, 40, 41]), which can be executed on shared memory
systems (see, e.g., [11, 19, 42, 45, 47, 48]), in entirely distributed set-
tings (see, e.g., [9, 31, 36]), using a mixture of checkpointing-based
protocols or reverse computation protocols (see, e.g., [9, 12, 23]),
just to mention a few attributes that characterize existing REs. The
literature has firmly shown (see, e.g., [2, 30, 37]) that there is no
silver bullet, and different workload profiles can benefit from any

combination of these solutions: selecting a RE is therefore crucial
for the performance of simulation studies.

Unfortunately, the interaction dynamics between the model and
the RE only become apparent after the model is implemented and
(preliminary) executions are performed. At this stage, changing
the technology involved may be too late: different REs typically
also support different programming languages and programming
models. The cost of switching could be too high. Hence, simulation
studies typically risk to be performance ineffective, due to a selec-
tion of a technology in a too-early stage of development, which
could become a lock-in for time and budget reasons.

The DESL framework targets this interoperability wall exactly
thanks to the MDE capabilities discussed above. A model coded in
DESL will benefit from multiple model transformations that can
deliver concrete implementations targeting different REs with no
need to touch the code written by modellists. In this way, multiple
REs, algorithms, and methodologies could be compared out of the
box, allowingmodel developers to select the best-suited technology
for their study, and RE developers to optimise their implementations
under real workloads. This scenario has long been sought by the
simulation community [18, 53] and, to the best of our knowledge,
we are the first ones practically realizing a solution relying on MDE
allowing to compare off-the-shelf REs.

Incidentally, thanks to this work, we highlight that if the source
code is considered a model rather than a textual artefact, the dis-
tinction between program generation and documentation generation

proper of the literate programming paradigm is actually subsumed
to the single notion of model transformation. This result, even
though immediate and well accepted in the software engineering
community, could benefit also the simulation community, which
is currently highlighting the need for consistent documentation of
the models also during their development (see, e.g., [17]).

Overall, this paper makes the following contributions: 1 it in-
troduces a framework that integrates literate programming and
model-driven engineering to address the need for consistent docu-
mentation aligned with the evolution of the models; 2 it demon-
strates how a single code base can serve as the basis for generating
both documentation and executable artefacts; 3 it showcases a
methodology and presents an implementation of it to allow for
the comparison of the capabilities of multiple REs starting from
the same code base, highlighting the benefits of cross-platform
simulation execution.

We release DESL as open-source software3, also in the hope
that the developers of DES runtime environments will consider
the implementation of components to plug their environments,
fostering increased interoperability among DES modelists.

The remainder of this paper is structured as follows. In Sec-
tion 2 we discuss prior work. The DESL Framework is presented
in Section 3. A preliminary experimental assessment, showing the
capability to execute on three REs taken from the simulation com-
munity, is provided in Section 4. Some threats to the validity of
these experimental evaluations are discussed in Section 5.

3The DESL living repository can be found at https://github.com/DomainProject/DESL.
The persistent version associated with this publication is available at https://doi.org/
10.5281/zenodo.15298361.

https://github.com/DomainProject/DESL
https://doi.org/10.5281/zenodo.15298361
https://doi.org/10.5281/zenodo.15298361

DESL: A Literate Programming Language Framework for Interoperable Parallel Discrete Event Simulation SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

2 Related Work

Generating code from higher-level specifications is not a new idea,
and there are several proposals that have aimed at this goal.

In [39], the authors explore natural language processing as a
way to build a model specification from a narrative that describes
the functioning of the system under study. While the proposal
effectively allows for deriving essential elements of the model,
it does not allow for automatically generating the entire model
artefact. We are able to produce workingmodels because we do not
start from ambiguous natural language descriptions: DESL grounds
on a formal model, which can be unambiguously translated into
some program, while providing a higher level of abstraction. The
capability of interweaving documentation and code permits to keep
the “narrative” part of the work in [39] within the same code base.

Generating working models (semi) automatically has been ex-
plored in [27, 33]. Particularly, the work in [33] has focused on the
generation of Spiking Neural Network (SNN) models for hetero-
geneous architectures. The idea behind the work is that, in SNN
models, a large part of the code is typically the same, while some as-
pects the neuron/synapse specification and their interconnections
are the tiny parts that change. Using the concept of templates and
relying on LLVM, the authors can generate parts of the model that
are then plugged into an optimised RE based on NEST [16]. Con-
versely, in [27], the authors rely on code generation interweaved
with optimization techniques to generate, starting from DSLs in the
realm of reaction networks, a simulator that is optimised for the
specific model. The main difference with our work, in both cases,
is that we do not target a specific domain—DESL is not a DSL—but
rather we aim at interoperability between different REs.

Comparing the performance of different REs is something that
has been repeatedly sought in the speculative DES literature. To
this end, many benchmarks have been proposed, such as PHold [15]
(and multiple variants, like EPHold [4] or Mem-PHold [44]), La-
PDES [34], and COMPADS [26]. While the first two are mainly
targeted at performance evaluation, the latter also takes into ac-
count the correctness of the implementation of the RE. All these
benchmarks have two characteristics in common: they are syn-
thetic, and they lack a standardization. In particular, in order to
use these benchmarks, RE developers have to re-implement their
own version—a notable exception is [26], where the authors of
the benchmarks have provided implementations for multiple REs.
These two characteristics can be problematic for a fair comparison:
first, different implementations may not necessarily be equivalent;
second, a synthetic workload may be non-representative of real-
world models. DESL paves the way to the possibility of having a
benchmark suite of real-world models that, if the transformations
to RE code are formally verified as equivalent, will provide out of
the box a reliable comparison.

One feature of DESL is that, despite targeting PDES, it does
not expose simulation practitioners to the details of the REs, of
the synchronization protocol enforced by the REs, or of the mem-
ory management capabilities of the RE (such as state saving or
reverse computation). This feature has already been explored in
Apostle [7], a (not so domain-specific) DSL for PDES. The main
difference with DESL is that we can generate concrete implementa-
tions of the models targeting multiple REs, enabling performance

comparisons. Additionally, Apostle has no notion of literate pro-
gramming as DESL does.

Another high-level model description is the Discrete Event Sys-
tem Specification (DEVS) [52]. The beauty of DEVS is its mathe-
matical foundation, which makes it useful for multiple purposes,
from the description of themodels to their verification. At the same
time, being a mathematical formalism, it requires some different
language or toolkit for proper implementation and execution of the
model. DESL is not based on a mathematical foundation, but rather
on a model that can be automatically transformed into concrete
implementations targeting multiple REs. In this sense, DESL and
DEVS are completely orthogonal approaches tomodel specification.

Several works have applied Model-Driven Engineering (MDE)
to automate model generation. For instance, in [29] the authors
propose an MDE model automatically transformed into versions
suitable for heterogeneous architectures. However, their approach
differs from ours, as DESL explicitly targets interoperability, en-
abling practitioners to execute identicalmodels across multiple REs.
The work in [53] advocates an MDE-based domain-specific model-
ing approach focused on trustworthy agent-based simulations by
improving traceability and reproducibility, particularly for critical
decision-making contexts. Unlike this structured modeling perspec-
tive, DESL emphasizes platform-agnostic execution and rigorous
performance benchmarking—an aspect absent in Zschaler et al. Ad-
ditionally, DESL incorporates literate programming to unify logic
and documentation, a feature lacking in both referenced works.

Another relevant work that emphasizes the importance of model
documentation across the lifetime of model development and sim-
ulation studies is [50]. The authors introduce a framework for the
automatic reuse, adaptation, and execution of simulation exper-
iments using provenance patterns, and address the challenge of
systematically conducting simulation studies by leveraging prove-
nance graphs that document the history of modelling and experi-
mentation activities. Their approach identifies reusable simulation
experiments, adapts them to new scenarios, and executes them
automatically, reducing manual intervention. At the same time,
this work does not consider the opportunity of comparing the per-
formance of real-world models on multiple REs, as we do. In this
sense, these two works can be considered orthogonal, and DESL
may benefit also the research line depicted in [50].

Interoperability between models is traditionally addressed by
the High Level Architecture (HLA) [20], a standard facilitating
coherent data exchange and synchronized time management across
simulators in distributed federations. Unlike HLA, our work pursues
a different form of interoperability, focusing on executing the same
model across multiple REs, a capability HLA lacks since it relies on
manually implemented federates tailored to each RE.

OpenABL is a domain-specific language for agent-based simula-
tions capable of generating code for multiple simulation platforms,
such as Flame GPU, Repast, andMason [13]. However, its traditional
grammar-based approach limits extensibility, complicating both
DSL syntax expansion and the integration of new simulation REs.
This rigidity motivated our shift toward a more modular Model-
Driven Engineering approach with DESL. The same considerations
hold for other grammar-based approaches such as [3].

SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Simone Bauco, Romolo Marotta, and Alessandro Pellegrini

3 The DESL Framework

The DESL Framework is based on a set of software artefacts that al-
low developers to implementmodels in a succinct way, and delegate
to transformations the burden of providing a concrete representa-
tion of their model, which can be compiled to a computer program
and linked against some specific RE. DESL embeds literate program-

ming concepts, allowing the documentation of the model to be
interweaved with the model’s logic, thus enforcing maintainable
documentation throughout the simulation lifecycle.

DESL employs Model-Driven Engineering (MDE) techniques to
automatically generate executable code compatible with multiple
runtime environments (REs). MDE is a software development para-
digm centred around formal models, which serve as core artifacts
enabling abstraction, automation, and streamlined system design.
Fundamental to this approach are model-to-model (M2M) transfor-
mations, allowing models to be systematically refined or optimized,
promoting interoperability between different abstraction layers and
languages. Complementing M2M transformations, model-to-text
(M2T) transformations translate platform-independent models di-
rectly into concrete source code, configurations, or documentation,
thus facilitating a reliable and automated transition from high-level
specifications to executable artefacts.

Literate programming generates documentation and code relying
on two processors, named tangle and weave: the former extracts the
actual program to be compiled; the latter generates a markup docu-
ment that can be then used to generate the actual documentation—
in the original work [25] it was meant to be TEX source code. From
an MDE perspective, the tangle and weave “processors” can be seen
as two different M2T transformations. Tangle generates compilable
source code, while weave produces some formatted document that
interleaves commentary with code.

An additional advantage of DESL’s MDE approach is the possi-
bility to leverage M2M transformations. Since DESL grounds on
a model, it becomes feasible to define M2M transformations that
map various models to DESL programs, implemented in the native
DESL DSML. This enables the development of multiple DSLs tai-
lored to specific modelling scenarios while seamlessly leveraging
DESL’s interoperability features. When a DSL is translated into a
DESL program via an M2M transformation, all the existing M2T
transformations provided by DESL become automatically available.
As a result, models expressed in the original DSLs can be executed
on any runtime environment supported by DESL without requiring
additional transformation efforts.

This section details the DESL model and the capabilities of the
DESL framework, first illustrating the model itself, and then pre-
senting the M2T transformations that we have implemented to
showcase the capabilities of our MDE approach.

3.1 The CoreModel

Wehave realised theDESLmodel using the JetBrainsMeta Program-
ming System (MPS) as the reference Language Workbench [35].
The DESL model is depicted in Figure 2, where the fundamental
concepts and their relations are reported.

The central concept is the DES Model. This concept encapsulates
an entire DES model implemented with DESL, which we call a
DESL program. To support flexibility in the development, a DESL

program is organised into sections, each of which can be used to
specify different parts of the model.

Typically, DES models can be seen as composed of two main
parts. The first part is the model configuration, where the initial
setup of themodel execution is carried out. This aspect of modelling
is captured by the global StartupFunction. A StartupFunction
is a procedural intializationation of themodel, that is run before the
actual simulation is started. In the StartupFunction, for example,
command line arguments can be processed, configuration files can
be loaded, and in general any activity related to the setup of a single
execution of themodel can be carried out. For generality, the global
StartupFunction is optional.

The second essential part of a DESL program is the encoding of
the logic of themodel. According to traditional DESmodels organi-
zation, this logic is delegated to a set of event handlers. Typically (and
with very few exceptions, such as [23]), event handlers are in charge
of executing a single event targeted to some part of the model—
borrowing from the traditional PDES literature [14], we refer to
such parts of the models as Logical Processes (LPs). We therefore
capture this behaviour of event handlers with the EventHandler
concept. In a DESL program, any number of EventHandlers can be
specified. The specific type of event that each handler is in charge of
execution is defined through the EventDefinition, which allows
mapping one event to a string literal (its name). Event definitions
appear in a dedicated section of a DESL program.

The logic of event handlers can be arbitrary. Each handler is
associated with exactly one Function, which allows to specify the
arbitrary logic. In DESL, these functions can be of two different
types. The principal type (described by the Function class itself)
is a function directly encoded in a DESL program. For this purpose,
we rely on the mbeddr [46] model to allow the specification of the
model logic directly in a DESL program. In this way, DESL event
handlers can rely on a C-like syntax to manage state variables,
operators, and function calls. Therefore, a Function is a sequence
of Statements extending mbeddr statements.

For model development convenience, in DESL it is also possible
to perform function calls to any external library function4. This
concept is again captured by the Function concept. Indeed, such
function calls can be linked to ExternalFunctions, which are
described by an ExternalFunctionPrototype that can appear in
a dedicated section of a DESL program.

One important abstraction that we have introduced in DESL is
the concept of ClassDefinition. This concept captures the re-
curring notion in DES model of classes of LPs. Indeed, in a model,
we can have a disparity of different elements that behave differ-
ently and respond differently to events. As an example, consider
Agent-Based model: in this domain, a single model could encom-
pass different types of agents, each having their own behaviour.
Agents belonging to different classes of agents could respond differ-
ently to the same event generated, e.g., from the environment. It is
therefore convenient to encode the logic of the different agents inde-
pendently. A ClassDefinition allows to group together different

4Clearly, if the model will be executed on an optimistic RE, such functions must either
be stateless, or they must be rollback-aware: this is some complication that DESL does
not target to solve, also because there are already some proposals in the literature that
have attempted this pathway [12, 38].

DESL: A Literate Programming Language Framework for Interoperable Parallel Discrete Event Simulation SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

DES Model

ExternalStructDefinition

header: String
struct: StructDeclaration

StructDefinition

struct: StructDeclaration

0..*

EventDefinition

eventName: String

1..*

0..*

<<interface>>
IFunction

ExternalFunction

header: String

0..*0..*

1..*

0..*

1

State

1

1..*

0..1

1

1

handles

0..*

11

1..*

1..*

1 1

1

1

Constant

<<interface>>
IStructDefinition

Function

<<abstract>>
Statement

SendEvent
EventHandler

ProcessAllocation

list: ProcessList
ClassDefinition

<<interface>>
IDocsElement

Header

PlainText

ItemList

Global Variable

TypeDefinition

GlobalStartupFunction ClassStartupFunction

0..1

<<interface>>
StartupFunction

EventPayload0..1

Figure 2: The DESL model. For simplicity, we do not show relations with mbeddr concepts, and some attributes are omitted.

EventHandlers that jointly implement the behaviour of a homoge-
neous class of LPs. Each class can have its own StartupFunction,
which we discuss later. When the model is deployed and executed,
simulationists are typically interested in having populations of dif-
ferent classes of LPs behaving uniformly. This idea is captured
by the ProcessAllocation concept, which allows for the exact
construction at model startup of such populations.

A key concept when developing DES models is the ability to
exchange events between different LPs. Typically, different REs
offer different supports to inject events into the model. We have
therefore abstracted away the event scheduling functionality by
using the SendEvent concept. SendEvent is a Statement, and can
therefore appear in any point of a Function associated with an
EventHandler.When injecting a new event through the SendEvent
concept, the modeller can specify what EventDefinition is in-
volved (using its string literal) and what LP (defined in the afore-
mentioned ProcessAllocation concept) is the recipient of such
event—when selecting a target LP, developers are also providedwith
additional advanced capabilities that are discussed in Section 3.2.2.
Additionally, the modeller can specify a timestamp (a simple real
value) at which the event should be scheduled, and the payload of
the event, i.e. any data structure that is piggybacked by the event.

Data structures are another fundamental component of DESL.
DESL is a strong-typed language, thanks to the TypeDefinition
concept. This concept leverages the capabilities of mbedder to de-
clare structured data types (resembling C-like structs), which are
mapped to the StructDefinition concept in DESL. Such datatypes
are used to define what is the payload of events injected using the
SendEvent concept.

Another use of the StructDefinition in DESL is the specifi-
cation of the simulation state of LPs. Given that we group LPs in
classes, the ClassDefinition concept is linked to the StructDef-
inition concept, allowing to specify the organisation of the sim-
ulation state for a specific homogeneous set of LPs in the model.
However, specifying the structure of the state is not enough for a

DES model: at simulation startup, LPs may need to initialise their
state to some initial values. If the StartupFunction allows to ini-
tialise the model globally, LPs could be required to initialise their
state locally. Different REs may have very different support for this,
and in the literature various approaches have been proposed. Some
REs may provide custom initialisation events that are scheduled to
every LP before the simulation starts, others may require the mod-
eller to explicitly define such events, others may lack such support
and require dedicated pre-launch code. We have decided to abstract
this complexity and variety of approaches by introducing the afore-
mentioned class StartupFunction concept. This concept allows
the modeller to concisely specify the logic required to initialise the
state of a class of LPs. The M2T transformations will then generate
the appropriate machinery to inject this logic into the best-suited
location, depending on the RE capabilities and requirements.

Modelsmay also require global variables, which can be regarded
as global configuration values that are initialised before the actual
simulation start, e.g. to support what-if analysis or exploration
of model configuration. This initialisation, which is in charge of
the StartupFunction, is supported by the GlobalVariable con-
cept that allows to declare such variables. Similarly, the Constant
concept allows to declare constant values, proper of the model’s
domain, that could be used when processing events.

Finally, literate programming is supported by the DocsElement
concept. This concept allows to insert, in any point of the DESL
program, a Header for sectioning the code, some PlainText, or
some ItemList. By using these concepts, documentation can be
introduced in any point of a DESL program. Unlike traditional
literal programming, where some comments or special markings
are required for the tangle andweave processors to behave correctly,
using our model-based approach allows a seamless interweave of
logic and documentation.

To clarify how a DESL program looks like, we report in Fig-
ure 3 the rendering of the DESL program for the traditional PHold
benchmark [15].

SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Simone Bauco, Romolo Marotta, and Alessandro Pellegrini

Figure 3: Implementation of PHold in DESL.

3.2 Additional Concepts

We have included additional concepts in the DESL model, which
can be considered syntactic sugar: they are implementable with the
base model, but we consider them relevant abstractions for DES
modellers. In the following, we detail such additional concepts.

3.2.1 Collections. In DES models, we typically find collections of
objects. Think, for example, of vehicles and pedestrians in a traf-
fic simulation, or customers and servers in a queueing system,
molecules in a chemical reaction model, or tasks and processors
in a distributed computing simulation. Models typically have to
encapsulate the dynamic entities of the system, which interact
through discrete events that govern state transitions and temporal
evolution.

Collections are therefore relevant because they are a recurring
aspect of DES models. We allow a direct representation of collec-
tions in a DESL program including the Collection concept. This

concept relates to a TypeDefintion: collections of generic data
structures can be defined and used in event payloads and LP states.

By using a Collection,model developers are able to iterate over
them using a foreach statement, to add new elements to a collec-
tion, or to remove an element from a collection by reference. Such
operations are typical of object-oriented programming languages,
but are not necessarily supported by all REs. This is especially
true if the programming language supported by some RE is not
object-oriented (e.g., in the case of the C language supported by
REs like [9, 19, 31, 36]). In this case, our M2T transformations can
take care of supporting Collections by injecting in the generated
program specific data structures that, otherwise, would require a
non-minimal amount of time to be included in the model, without
any real justification, and could be error-prone.

Therefore, supporting Collections in the DESL model can re-
duce the time required to implement a model, allowing simulation-
ists to concentrate more on the model’s logic.

3.2.2 Connectivity. Another recurring aspect observed in DES
models is the connectivity between LPs. Think for example of road
segments in traffic simulation, or communication links in a net-
work simulation, conveyor belts in a manufacturing process, or
data streams between processing nodes in a distributed computing
model. Connectivity defines the pathways along which interac-
tions and dependencies propagate, shaping the system’s dynamic
behaviour, and influencing synchronization, load distribution, and
event scheduling.

We have therefore decided to include connectivity capabilities
in DESL, restricting its existence only to encapsulation demands,
rather than for PDES-inspired reasons. In this way, modellers are
able to specify different interconnections between LPs, focusing on
the structural organization of their models rather than on perfor-
mance-driven partitioning strategies. This design choice ensures
that connectivity serves as a means of encapsulating logical rela-
tionships, such as communication channels, shared resources, or
hierarchical dependencies, without imposing constraints dictated
by parallel execution concerns. Consequently, modellers can define
interaction topologies that reflect the conceptual structure of the
system.

The DESL framework supports these connectivity capabilities
relying on a dedicated topology library. This library allows to define
multiple 2D and 3D grids, and also generic graphs with weighted
edges. Weights in the edges can also be used to represent the proba-
bility that an event is scheduled towards a connected LP. Addition-
ally, every edge can be associated with a model-defined payload, to
represent any kind of description of the connection between two
LPs. M2T transformations can inject calls to the library whenever
needed, and the library itself into the generated model.

In a DESL program, two aspects related to connectivity are
captured by the DESL model. First, at simulation startup, some
specific topology should be instantiated. This is delegated to the
InitTopology statement, which can be embedded in a StartupFunc-
tion. In InitTopology, the modeller can pick one specific grid or
graph and configure the topology based on the ProcessAllocation
specified in the DESL program.

A collection can be queried whenever a SendEvent concept is
used. In this case, the modeller can rely on two different capabilities

DESL: A Literate Programming Language Framework for Interoperable Parallel Discrete Event Simulation SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

Figure 4: Excerpt of the source code of the PCSmodel.

of our connectivity abstraction. A random receiver can be selected,
from the pool of adjacent LPs. In case of a 2D/3D grid, the adjacency
depends on the specific type of grid. In case of a graph, randomness
accounts also for the weight/probabilities associated with edges. If
randomness is not required by the model, it is possible to retrieve
a Collection of all possible neighbours of an LP, and implement
some custom scheduling logic, e.g. based onmodel-defined payload
associated with graph edges.

As mentioned, DESL is not a DSL, so we do not consider any spe-
cific domain in the connectivity abstraction. Connectivity should
support a large number of different domains. This can be benefi-
cial because, as we mentioned before, it is possible to use DESL
also as the target of a M2M transformation: if some specific do-
main requires some specific topology, it is possible to rely on the
Connectivity concept of DESL to easily generate workingmodels,
with reduced hassle for DSL designers.

3.3 Model to Text Transformations

To showcase the viability of the DESL framework, and in particular
to highlight the flexibility of its model, we have implemented some
M2T transformations that allow executing DELS programs on some
REs from the literature, and to generate the documentation of the
model. The REs that we have supported in this work are ROSS [9],
ROOT-Sim [36], and USE [19]. In this section, we discuss the M2T
transformations to generate working models for these REs.

3.3.1 TheWeave Transformation. The classic approach to theweave
processor is to transform the initial source code in some different
sources that could be compiled to generate the final documentation.
We retain this approach: our M2T weave transformation transforms

Documentation for simulation model pcs
Personal Communication Service (PCS)
The PCS model represents a wireless communication network where mobile devices move between
predefined service areas (cells) and initiate or receive calls. The network is structured as a grid of
cells, each functioning as an independent processing entity.

Events
This represents the initialization events, where the simulation state is defined for every LP.

These two events represent the initiation and termination of a mobile call.

When the user crosses the boundary of a base station and the call is still ongoing, we transfer the
call from the source toward the destination base station. These two events split the transfer of the
call between the source (LEAVE) and destination (RECV) stations.

The model performs accurate simulation of the signal quality, also considering a meteorological
model. Periodically, the signal strength and power are recomputed accounting for whether changes.
This event is used for triggering the power consumption computation.

Constants
After each cell has completed this number of calls, the simulation is considered completed.

Maximum number of wireless channels in a cell.

New calls are initiated according to a Poisson process. This is the mean value of the interarrival time
between two calls.

LP_INIT

START_CALL

END_CALL

HANDOFF_RECV

HANDOFF_LEAVE

FADING_RECHECK

#define COMPLETE_CALLS = 10000;

#define CHANNELS_PER_CELL = 1000;

Figure 5: Excerpt of the generated documentation.

a DESL program into a markdown file that could be later converted
to other formats using existing tools. The weave M2T transforma-
tion is quite simple, and is based on the following specification:
t ex t gen component for concept DocumentationM2T {
f i l e name : (node)→ s t r ing {

node .name ;
}
f i l e path : <model / qua l i f i ed /name>
extension : (node)→ s t r ing { "md " ; }

(node)→void {
append { # Documentation for ∗ } $ { node .name } { ∗ } \ n ;
append create docs component node . events ;
append create docs component node . constants ;
append create docs component node . typedefs ;
append create docs component node . s t ru c t s ;
append create docs component node . externalFunctions ;
append create docs component node . configurat ion ;
append create docs component node . s tar tup ;
append create docs component node . c l a s s e s ;
append create docs component node . processAl locat ions ;

}
}

Essentially, this M2T transformation iterates over each concept
defined in the DESL model and, for each concept defined in a DESL
program, it invokes the following transformation:
t ex t gen component for concept DocsEntry {

(node)→void {
foreach element in node . elements {

append $ { element } \ n ;
}

}
}

which emits each concept as plain text in the output file. During
this part of the generation, each concept is either included as a
code block (in the case of model logic) or as plain text or a sec-
tion, depending on the specific type of DocsElement concept that
is being processed. In this way, the distinction between documen-
tation concepts and code concepts are transformed into different
markups, ensuring thatmodel logic is properly encapsulated within
a structured representation while textual documentation retains its
readability and hierarchical organization.

To illustrate the output of the weave M2T transformation, we
present in Figure 4 an excerpt of the DESL program of the Personal
Communication System (PCS) [24], a model of mobile calls. An
excerpt of the generated documentation is shown in Figure 5. As
can be seen, the transformation process effectively differentiates

SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Simone Bauco, Romolo Marotta, and Alessandro Pellegrini

between model logic and explanatory content, ensuring that the
generated documentation maintains both structural coherence and
semantic clarity. Conceptual descriptions, section headers, and in-
line explanations are seamlessly integrated with the corresponding
code segments. This approach ensures that both domain experts and
developers can navigate, interpret, and refine the model efficiently.

3.3.2 The ROSS Tangle Transformation. To generate working code
for ROSS, there are two main aspects that we have to deal with in
the M2T transformation. First, ROSS works as a simulation library,
requiring themodel’s code to setup the library before activating the
actual simulation. This organization of themodelwell resembles the
organization of the DESL model, where the initialization logic and
the actual model’s logic are represented with different concepts—
the global StartupFunction and the EventHandlers. Therefore,
the main part of the ROSS M2T transformation (which we do not
report in the paper for space constraints) defines a main function
where all the machinery to configure and activate ROSS is included.
The StartupFunction is injected in the main before the actual
simulation is started.

LPs in ROSS are defined by relying on several callback functions.
TheM2T transformation populates such callback functions based on
their rationale. For each LP, we register a forward event handler, that
is not the materialization of an EventHandler. Indeed, this handler
works as an event dispatcher to implement the ClassDefinition
concept. In fact, according to the DESL model, an LP belongs to a
class, based on the ProcessAllocation concept. The ROSS handler,
therefore, determines the class to which the LP belongs (based on
its id), and only then determines (based on the event type) what
is the actual EventHandler to be activated. In this way, different
handlers can be activated according to the model’s configuration,
possibly determined by the global StartupFunction.

We rely on the same approach for the classes StartupFunctions.
ROSS provides initialization callbacks, that are executed before the
actual simulation starts. These callbacks are used in the exact same
way: they serve as class dispatchers, to activate the corresponding
StartupFunction.

ROSS employs a convenient and versatile way to allocate LPs to
processing elements (PEs), which are then mapped to MPI ranks. In
our M2T transformation, we generate a custom allocation function
that maps LPs to PEs in blocks. While other strategies could be
coded by the modeller, which could show different performance
profiles depending on the communication patterns, we have used
this kind of allocation mainly because it is similar to what the other
REs do in their initialization, thus allowing us to carry out a more
fair performance comparison.

A relevant capability of ROSS is its support of rollbacks by means
of reverse computation. An LP can register a reverse handler call-
back that is activated upon a rollback operation. This callback re-
ceives the event that was processed in forward execution, and can
use it to execute the reverse logic to undo its updates on the LP sim-
ulation state. Currently, we are working on M2M transformations
to automatically generate reverse event logic, but this approach is
complex and is out of the scope of this paper. For this paper, we
have actually exploited one capability of reverse computation of
ROSS to implement checkpoint-based rollbacks.

In fact, ROSS is aware that not all operations are reversible—
destructive operations such as assignments cannot be undone. For
this reason, ROSS has also minimalistic checkpointing capabilities:
an event can be modified in forward execution, storing any kind
of data in it. These data are then observable in the reverse handler,
upon a rollback. This approach was originally used in [9] to store
the old value of assignments, or to keep track of what branches in
complex control flows where traversed in forward execution. We
use this capability to store the old values of the state in forward
execution, and then reinstall them upon a rollback.

ROSS also offers support for conservative synchronization. In
this case, it is necessary to specify the lookahead of the model at
startup. This operation is demanded from the StartupFunction, in
which the modeller can do so by relying on an ExternalFunction
concept. Abstracting away the concept of lookahead would be
straightforward in DESL, but we have not yet identified a strat-
egy common to other REs—ROSS is the only considered RE with
such functionality—and will require further investigation to deter-
mine whether a generalised approach can be integrated into DESL
without introducing unnecessary complexity.

3.3.3 The ROOT-Sim Tangle Transformation. The organization of
a model in ROOT-Sim is similar to ROSS, except for the lack of
reverse computation support. Indeed, also ROOT-Sim can be used
as a simulation library, where the model’s code is in charge of
setting up the model and configuring the library before activating
the simulation. In this sense, in the M2T transformation for ROOT-
Sim, we generate a main program that is essentially the equivalent
of what we have in ROSS.

The main difference is that LPs are not defined by dedicated
callback functions. Conversely, ROOT-Sim has a single generic
callback function, named ProcessEvent, that is activated for every
LP and every event type. In this sense, this callback function should
be regarded as a generic event dispatcher, and we abide by this
organization in the M2T transformation.

For LP class initialization, there is one special event, called
LP_INIT, that is scheduled at every LP before the actual simula-
tion starts. This is the point in which we can inject the per-class
StartupFunction of a DESL program. Therefore, we inject in the
ProcessEvent dispatcher the code that, depending on the LP’s id,
determines the class of the LP (based on the ProcessAllocation
concept). After the class of an LP is determined, we either activate
the StartupFunction in case of an LP_INIT event, or the proper
EventHandler in case a different event is scheduled by the RE.

ROOT-Sim handles rollbacks transparently. The only caveat is
to rely on the internal memory allocations functions. Doing so is
trivial, as every time that an object is allocated in DESL, we simply
divert the allocation to the internal ROOT-Sim’s memory allocator.

3.3.4 The USE Tangle Transformation. USE has a different approach
than ROSS and ROOT-Sim at simulation configuration and rollback
management. In particular, USE considers the model as a form of
plugin, in the sense that the entire application startup is handled by
its internal main program. The simulation is therefore started before
the actual model’s code takes control, which makes the model’s
configuration from a DESL program more difficult.

At the same time, USE offers an LP initialization capability similar
to ROOT-Sim’s, where a dedicate initialization event is scheduled

DESL: A Literate Programming Language Framework for Interoperable Parallel Discrete Event Simulation SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

at every LP, in LP id order, before the actual simulation starts. We
have therefore decided to inject the global StartupFunction in
this event, only when the first LP of the first class is activated. In this
way,model configuration is carried out before the actual simulation
starts, and before the class StartupFunctions are executed.

The rest of the organization of USE matches that of ROOT-Sim,
so we have applied the same strategy in the M2T transformation.

Regarding optimistic synchronization support, memory man-
agement is USE is also transparent, but the model’s code is in-
strumented at compile time, redirecting memory allocation to the
internal memory allocator. We have exploited this functionality by
using standard malloc calls in the M2T transformation, letting the
USE compiling toolchain instrument the generated model code to
support memory recoverability.

4 Experimental Assessment

In this Section, we provide some preliminary performance results
collected using the code generated using the tangle transformations
discussed above. We emphasise that the actual figures obtained are

not extremely important (see Section 5): the most notable result is
actually the ability to have collected these numbers without any
manual intervention on the model code. At the same time, from
the result some of the claims of this paper become evident.

4.1 Execution Environment and Benchmarks

We have executed our experiments on a machine equipped with an
Intel(R) Xeon(R) Silver 4210R CPU, with 20 physical cores (40 hy-
perthreads) running at 2.40GHz, and 160 GB of RAM. The machine
has two NUMA nodes. We have used the already mentioned DES
models, namely PCS [24] and PHold [15].

PCS models a GSM-based mobile network through a detailed
simulation where each LP simulates the evolution of an individual
hexagonal cell, collectively covering a square region. The simula-
tion is high fidelity, managing a parameterizable number of wireless
channels per cell, incorporating explicit models for power regu-
lation and the complex phenomena of interference and fading,
according to the specification in [24]. When a call is initiated, a
dynamically allocated call-setup record is linked to the cell’s ac-
tive call list, which is later removed when the call terminates or
when a handoff to an adjacent cell occurs, triggering an analogous
setup at the destination. Power regulation during call setup involves
scanning the active records to compute the minimum transmission
power required to meet a predefined signal-to-interference ratio,
while data structures that track fading coefficients are updated in
response to a meteorologically based model of climatic conditions.

The behaviour of the model is influenced by parameters such
as the inter-arrival time of calls, the expected call duration, and
the residual time a device remains in a cell, which together deter-
mine a utilization factor affecting computational load and memory
requirements. Higher channel utilization results in more frequent
allocation (i.e., larger state memory footprint) and scanning of call
management records (i.e., larger-grain events). In our simulations,
we have considered three utilization factors, associated with 25% of
channel occupation (light load), 50% (medium load), and 75% (heavy
load). We have run simulations with 22,500 LPs, simulating a total
of 10 minutes (logical time) at steady state.

The second benchmark we have used in our experiments is
PHold [15], a traditional synthetic benchmark from the literature,
aimed at evaluating PDES REs. PHold generates a continuous stream
of simulation events across the LPs: every executed event triggers
the injection of another event, scheduled to a random LP with a
random timestamp in the future. Moreover, PHold is parameteri-
zable in event duration: a busy loop is included in the execution
of the event, allowing to control the latency of each event, in a
domain-independent fashion. In this way, PHold can be used to
measure the scalability and efficiency of PDES RE implementations.
We have run our experiments using 16,000 LPs, using three different
busy loop durations for each event: 1𝜇𝑠 , 10𝜇𝑠 , and 100𝜇𝑠 .

4.2 Results

All results presented in this study are averaged over 5 runs. In
Figure 6 we report the speedup for the PCS benchmark over an
optimized sequential execution based on a calendar queue [6]. All
the considered REs scale when the number of cores is increased,
thus showing their capability to harness parallelism from themodel.
Interestingly, ROSS and ROOT-Sim are resilient to the event du-
ration, with scalability curves that are mostly the same for the
three different loads we have considered, with ROOT-Sim having a
higher performance than ROSS. Conversely, USE shows a limited
scalability in case of fine-grained events, while for larger event
durations it is able to compete with the two other considered REs.

The reason for this result lies in the inner organization of the
REs. ROSS and ROOT-Sim have a stronger adherence to the origi-
nal conception of a Time Warp synchronization scheme [21]. Con-
versely, USE relies on heavyweight event management data struc-
tures, whose goal is to prefer the execution of safe events to events
that have a higher rollback probability [28]. Moreover, USE has a
very infrequent fossil collection execution, because safe events are
immediately discarded, à la conservative synchronization. Longer
events show different dynamics—PCS events have been observed to
have a granularity of up to 100𝜇𝑠 . In this case, even a small rollback
probability—in our experiments ROOT-Sim has an efficiency of
98% in the worst-case scenario—can have non-negligible secondary
effects on the caching hierarchy. Also, the heavier fossil collection
phase imposes additional memory management overhead by trig-
gering large-scale cache invalidations and synchronization delays
that, when combined with even a minimal rollback probability,
further degrades overall simulation throughput and scalability.

These results are confirmed by the PHold model benchmark, as
reported in Figure 7. From the results, we observe that for finer-
grain events, USE is not able to provide any significant speedup—
often, the speedup is < 1. Conversely, as soon as the event du-
ration increases, USE’s performance improves, until it is able to
outperform ROSS and ROOT-Sim, although slightly. Both ROSS
and ROOT-Sim, conversely, are able to scale mostly linearly, with
minor fluctuations observed once the second NUMA node begins to
be used. This is an expected result, as PHold has been extensively
used in the literature to benchmark these simulators.

Overall, these results confirm what has already been observed
in the literature: there is no single RE or algorithm that can benefit
all models or all models’ configurations. Our MDE-based approach
allows to switch from one RE to another seamlessly, without any

SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Simone Bauco, Romolo Marotta, and Alessandro Pellegrini

 0
 5

 10
 15
 20
 25

 0 5 10 15 20 25 30 35 40

ROOT-Sim ROSS USE

Sp
ee

du
p

Number of Cores

(a) Light load.

 0
 5

 10
 15
 20
 25

 0 5 10 15 20 25 30 35 40

ROOT-Sim ROSS USE

Sp
ee

du
p

Number of Cores

(b)Medium load.

 0
 5

 10
 15
 20
 25

 0 5 10 15 20 25 30 35 40

ROOT-Sim ROSS USE

Sp
ee

du
p

Number of Cores

(c) Heavy load.

Figure 6: Comparative Speedup for the PCS benchmark

 0

 10

 20

 30

 0 5 10 15 20 25 30 35 40

ROOT-Sim ROSS USE

Sp
ee

du
p

Number of Cores

(a) 1 𝜇𝑠 busy loop.

 0

 10

 20

 30

 0 5 10 15 20 25 30 35 40

ROOT-Sim ROSS USE

Sp
ee

du
p

Number of Cores

(b) 10 𝜇𝑠 busy loop.

 0

 10

 20

 30

 0 5 10 15 20 25 30 35 40

ROOT-Sim ROSS USE

Sp
ee

du
p

Number of Cores

(c) 100 𝜇𝑠 busy loop.

Figure 7: Comparative Speedup for the PHold benchmark

need for manual intervention. This capability has a significant
advantage in the case of extensive simulation studies, where a large
number of model’s parameters are used, and switching from one
RE to another could improve the overall performance of the study.

5 Threats to Validity

The M2T transformations employed in this work may potentially
threaten the validity of the presented experimental results. One
such threat is that the transformations may not produce the most
efficient code for a given RE. In particular, an expert familiar with a
specific RE might be able to manually write more efficient code than
that produced by the current transformations. This discrepancy
could affect the relative speedup trends presented in Section 4. To
address this, we plan to conduct a more thorough performance
optimization of the transformations, aiming to ensure that the
generated code is as efficient as possible. Additionally, we hope
that maintainers of the currently supported REs, as well as those
supported in the future, will collaborate with the project to further
enhance the performance of the generated code.

Another threat comes from the lack of validation of M2T trans-
formations. There remains a risk that some transformations may
generate incorrect code. To mitigate this, we have manually in-
spected the correctness of the generated source code and validated
the results of simulation executions, as a simulation validity argu-
ment [51]. However, a formal evaluation of the transformations is
necessary to enhance the trustworthiness of the generated code.
Such an evaluation would provide greater confidence in the relia-
bility and correctness of the system.

6 Conclusions and Future Work

In this work, we have presented DESL, an MDE-based approach to
generate from the same source code base, conforming to a model,
the source code to be executed on different PDES REs, and the

associated documentation. We have shown that it is possible to
rely on ad-hoc M2T transformations to circumvent the specific
characteristics and expectations of the REs on the specific model
construction approach and produce working code. The resulting
code also has good performance and scalability, highlighting that
MDE is a viable solution to hide away the complexity of model
development while providing competitive simulation executions.

Furthermore, the experimental assessment has highlighted, as
already stressed in recent literature, that there is not a single al-
gorithm or RE that can fit all models’ requirements. Therefore,
the interoperability capabilities of DESL and MDE in general are a
viable solution supportingmodel developers to focus on implement-
ing theirmodels, while avoiding any lock in to a specific technology
or RE. This approach can sustain higher performance simulation
studies allowing, e.g., to switch to different algorithms or REs also
based on the model’s configuration parameters.

Future work will span across various directions. We plan to sup-
port additional REs, experiment with additional real-world models,
and introduce intermediate M2M transformations that could sup-
port the formal verification of the correctness and equivalence of
the generated sources.

Acknowledgments

This paper has been partially supported by European Union—Next
Generation EU, Mission 4, Component 2, CUP E53D23008200006,
and partially by the Spoke 1 “FutureHPC & BigData” funded by
European Union—Next Generation EU, Mission 4, Component 2.

We also thank anonymous reviewer #2 for their constructive and
detailed feedback, a rarity in current peer-review practices.

References

[1] Philipp Andelfinger, Till Köster, and Adelinde M Uhrmacher. 2023. Zero looka-
head? Zero problem. The window racer algorithm. In ACM SIGSIM Conference

DESL: A Literate Programming Language Framework for Interoperable Parallel Discrete Event Simulation SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

on Principles of Advanced Discrete Simulation (PADS ’23). ACM, New York, NY,
USA, 1–11. doi:10.1145/3573900.3591115

[2] Philipp Andelfinger and Adelinde M Uhrmacher. 2023. Synchronous speculative
simulation of tightly coupled agents in continuous time on CPUs and GPUs.
International Conference on Advances in System Simulation 100 (March 2023),
5–21. doi:10.1177/00375497231158930

[3] María Julia Blas, Silvio Gonnet, Doohwan Kim, and Bernard P Zeigler. 2023. A
context-free grammar for generating full Classic DEVS models. In Proceedings

of the 2023 Winter Simulation Conference (WSC ’23). IEEE Press, Piscataway, NJ,
USA, 2579–2590. doi:10.1109/WSC60868.2023.10407991

[4] Vincent A M Bonnet. 2017. Benchmarking Parallel Discrete Event Simulations.
Ph. D. Dissertation. Utrecht University.

[5] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software

engineering in practice. Springer International Publishing, Cham. doi:10.1007/978-
3-031-02549-5

[6] Randy Brown. 1988. Calendar Queues: a Fast O(1) Priority Queue Implementation
for the Simulation Event Set Problem. Commun. ACM 31 (1988), 1220–1227.

[7] David Bruce. 1997. What makes a good domain-specific language? Apostle, and
its approach to parallel discrete event simulation. In Proceedings of the 1st ACM

SIGPLAN Workshop on Domain-Specific Languages (DSL’97). ACM, New York, NY,
USA, 19.

[8] Wentong Cai, Christopher Carothers, David M Nicol, and Adelinde M Uhrmacher.
2023. Computer Science Methods for effective and Sustainable Simulation Studies

(Dagstuhl Seminar 22401). Technical Report. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Dagstuhl, Germany. 1–60 pages. doi:10.4230/DAGREP.12.10.1

[9] Christopher Carothers, David Bauer, and Shawn Pearce. 2002. ROSS: A high-
performance, low-memory, modular Time Warp system. Journal of parallel

and distributed computing 62, 11 (Nov. 2002), 1648–1669. doi:10.1016/S0743-
7315(02)00004-7

[10] K Mani Chandy and Jayadev Misra. 1981. Asynchronous distributed simulation
via a sequence of parallel computations. Commun. ACM 24, 4 (April 1981),
198–206. doi:10.1145/358598.358613

[11] Li-Li Chen, Ya-Shuai Lu, Yi-Ping Yao, Shao-Liang Peng, and Ling-da Wu. 2011. A
Well-Balanced Time Warp System on Multi-Core Environments. In Proceedings

of the 2011 IEEE Workshop on Principles of Advanced and Distributed Simulation

(PADS). IEEE, Piscataway, NJ, USA, 1–9. doi:10.1109/PADS.2011.5936752
[12] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Transpar-

ently mixing undo logs and software reversibility for state recovery in optimistic
PDES. ACM transactions on modeling and computer simulation: a publication of the

Association for ComputingMachinery 27, 2 (April 2017), 1–26. doi:10.1145/3077583
[13] Biagio Cosenza, Nikita Popov, Ben Juurlink, Paul Richmond, Mozhgan Kabiri

Chimeh, Carmine Spagnuolo, Gennaro Cordasco, and Vittorio Scarano. 2018.
OpenABL: A domain-specific language for parallel and distributed agent-based
simulations. In Euro-Par 2018: Parallel Processing, Marco Aldinucci, Luca Padovani,
and Massimo Torquati (Eds.). Springer International Publishing, Cham, 505–518.
doi:10.1007/978-3-319-96983-1_36

[14] Richard M Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM

33, 10 (Oct. 1990), 30–53. doi:10.1145/84537.84545
[15] RichardMFujimoto. 1990. Performance of TimeWarpUnder SyntheticWorkloads.

In Distributed Simulation (PADS’90), David Nicol (Ed.). Society for Computer
Simulation International, San Diego, CA, USA, 23–28.

[16] Marc-Oliver Gewaltig and Markus Diesmann. 2007. NEST (NEural Simulation

Tool). Vol. 2. Scholarpedia, Chapter 4. doi:10.4249/scholarpedia.1430
[17] Volker Grimm, Jacqueline Augusiak, Andreas Focks, Béatrice M Frank, Faten

Gabsi, Alice S A Johnston, Chun Liu, Benjamin T Martin, Mattia Meli, Vik-
toriia Radchuk, Pernille Thorbek, and Steven F Railsback. 2014. Towards bet-
ter modelling and decision support: Documenting model development, test-
ing, and analysis using TRACE. Ecological modelling 280 (May 2014), 129–139.
doi:10.1016/j.ecolmodel.2014.01.018

[18] Jan Himmelspach and Adelinde M Uhrmacher. 2007. Plug’n Simulate. In Pro-

ceedings of the 40th Annual Simulation Symposium. IEEE, Piscataway, NJ, USA,
137–143. doi:10.1109/anss.2007.34

[19] Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini, and
Francesco Quaglia. 2018. The Ultimate Share-Everything PDES System. In Pro-

ceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete

Simulation (SIGSIM-PADS ’18). ACM, New York, NY, USA, 73–84. doi:10.1145/
3200921.3200931

[20] IEEE Standards Association. 2010. IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA) – Framework and Rules.

[21] David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming

Languages and Systems 7, 3 (July 1985), 404–425. doi:10.1145/3916.3988
[22] David R Jefferson. 1990. Virtual time II: Storage Management in Conservative

and Optimistic Systems. In Proceedings of the 9th Symposium on Principles of

Distributed Computing (PODC ’90). ACM, New York, NY, USA, 75–89. doi:10.
1145/93385.93403

[23] David R Jefferson and Peter D Barnes, Jr. 2022. Virtual time III, Part 1: Unified
Virtual Time synchronization for parallel discrete event simulation. ACM trans-

actions on modeling and computer simulation: a publication of the Association for

Computing Machinery 32, 4 (Oct. 2022), 1–29. doi:10.1145/3505248
[24] Sunil Kandukuri and Stephen Boyd. 2002. Optimal Power Control in Interference-

Limited Fading Wireless Channels with Outage-Probability Specifications. IEEE
Transactions on Wireless Communications 1 (2002), 46–55.

[25] Donald E Knuth. 1984. Literate Programming. The computer journal 27, 2 (Feb.
1984), 97–111. doi:10.1093/comjnl/27.2.97

[26] Till Köster, Adelinde M Uhrmacher, and Philipp Andelfinger. 2022. Towards
an open repository for reproducible performance comparison of parallel and
distributed discrete-event simulators. In Proceedings of the 2022 ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’22). ACM,
New York, NY, USA, 31–32. doi:10.1145/3518997.3534989

[27] Till Köster, Tom Warnke, and Adelinde M Uhrmacher. 2020. Partial evaluation
via code generation for static stochastic reaction network models. In Proceedings

of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
ACM, New York, NY, USA, 159–170. doi:10.1145/3384441.3395983

[28] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia.
2024. A conflict-resilient lock-free linearizable calendar queue. ACM transactions

on parallel computing 11, 1 (March 2024), 1–32. doi:10.1145/3635163
[29] Romolo Marotta and Alessandro Pellegrini. 2024. Model-Driven Engineering

for High-Performance Parallel Discrete Event Simulations on Heterogeneous
Architectures. In Proceedings of the 2024 Winter Simulation Conference (WSC ’24),
H Lam, E Azar, D Batur, S Gao, W Xie, S R Hunter, and M D Rossetti (Eds.). IEEE,
Piscataway, NJ, USA, 2202–2213. doi:10.1109/WSC63780.2024.10838978

[30] Romolo Marotta, Alessandro Pellegrini, and Philipp Andelfinger. 2024. Follow the
leader: Alternating CPU/GPU computations in PDES. In Proceedings of the 38th

ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-

PADS’24). ACM, New York, NY, USA, 47–51. doi:10.1145/3615979.3656056
[31] Dale E Martin, Timothy J McBrayer, and Philip A Wilsey. 1996. WARPED: a time

warp simulation kernel for analysis and application development. In Proceedings

of the 29th Hawaii International Conference on System Sciences (HICSS, Vol. 1).
IEEE Computer Society, Piscataway, NJ, USA, 383–386 vol.1. doi:10.1109/HICSS.
1996.495485

[32] Tom Mens and Pieter Van Gorp. 2006. A taxonomy of model transformation.
Electronic notes in theoretical computer science 152 (March 2006), 125–142. doi:10.
1016/j.entcs.2005.10.021

[33] Quang Anh Pham Nguyen, Philipp Andelfinger, Wentong Cai, and Alois Knoll.
2019. Transitioning Spiking Neural Network Simulators to Heterogeneous Hard-
ware. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Ad-

vanced Discrete Simulation (SIGSIM-PADS). ACM, New York, NY, USA, 115–126.
doi:10.1145/3316480.3322893

[34] Eunjung Park, Stephan Eidenbenz, Nandakishore Santhi, Guillaume Chapuis,
and Bradley Settlemyer. 2015. Parameterized benchmarking of parallel discrete
event simulation systems: Communication, computation, and memory. In 2015

Winter Simulation Conference (WSC). IEEE, Piscataway, NJ, USA, 2836–2847.
doi:10.1109/WSC.2015.7408388

[35] Václav Pech. 2021. JetBrains MPS: Whymodern language workbenches matter. In
Domain-Specific Languages in Practice. Springer International Publishing, Cham,
1–22. doi:10.1007/978-3-030-73758-0_1

[36] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2012. The ROme
OpTimistic Simulator: Core Internals and Programming Model. In Proceedings of

the 4th International ICST Conference on Simulation Tools and Techniques (SIMU-

TOOLS). ICST, Brussels, Belgium, 96–98. doi:10.4108/icst.simutools.2011.245551
[37] Andrea Piccione, Philipp Andelfinger, and Alessandro Pellegrini. 2023. Hybrid

Speculative Synchronisation for Parallel Discrete Event Simulation. In Proceedings
of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation

(SIGSIM-PADS ’23). Association for Computing Machinery, New York, NY, USA,
84–95. doi:10.1145/3573900.3591124

[38] Markus Schordan, Tomas Oppelstrup, David R Jefferson, Peter D Barnes, and
Daniel Quinlan. 2016. Automatic Generation of Reversible C++ Code and Its
Performance in a Scalable Kinetic Monte-Carlo Application. In Proceedings of

the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation

(SIGSIM-PADS ’16). ACM, New York, NY, USA, 111–122. doi:10.1145/2901378.
2901394

[39] David Shuttleworth and Jose J Padilla. 2021. Towards semi-automatic model
specification. In 2021 Winter Simulation Conference (WSC). IEEE, Piscataway, NJ,
USA, 1–12. doi:10.1109/wsc52266.2021.9715393

[40] Jeffrey S Steinman. 1991. SPEEDES: A Unified Approach to Parallel Simulation.
In Advances in Parallel and Distributed Simulation (PADS ’91), Vijay K Madisetti,
David Nicol, and Richard M Fujimoto (Eds.). Society for Computer Simulation,
San Diego, CA, USA, 1111–1115.

[41] Jeffrey S Steinman. 1993. Breathing Time Warp. Simuletter 23, 1 (July 1993),
109–118. doi:10.1145/174134.158473

[42] Brian Paul Swenson and George F Riley. 2012. A new approach to Zero-Copy
message passing with reversible memory allocation in multi-core architectures.
In Proceedings of the ACM/IEEE/SCS 26th Workshop on Principles of Advanced and

Distributed Simulation (PADS’12). IEEE Computer Society Press, Los Alamitos,
CA, USA, 44–52. doi:10.1109/PADS.2012.3

https://doi.org/10.1145/3573900.3591115
https://doi.org/10.1177/00375497231158930
https://doi.org/10.1109/WSC60868.2023.10407991
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.4230/DAGREP.12.10.1
https://doi.org/10.1016/S0743-7315(02)00004-7
https://doi.org/10.1016/S0743-7315(02)00004-7
https://doi.org/10.1145/358598.358613
https://doi.org/10.1109/PADS.2011.5936752
https://doi.org/10.1145/3077583
https://doi.org/10.1007/978-3-319-96983-1_36
https://doi.org/10.1145/84537.84545
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.ecolmodel.2014.01.018
https://doi.org/10.1109/anss.2007.34
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/93385.93403
https://doi.org/10.1145/93385.93403
https://doi.org/10.1145/3505248
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/3518997.3534989
https://doi.org/10.1145/3384441.3395983
https://doi.org/10.1145/3635163
https://doi.org/10.1109/WSC63780.2024.10838978
https://doi.org/10.1145/3615979.3656056
https://doi.org/10.1109/HICSS.1996.495485
https://doi.org/10.1109/HICSS.1996.495485
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1145/3316480.3322893
https://doi.org/10.1109/WSC.2015.7408388
https://doi.org/10.1007/978-3-030-73758-0_1
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.1145/3573900.3591124
https://doi.org/10.1145/2901378.2901394
https://doi.org/10.1145/2901378.2901394
https://doi.org/10.1109/wsc52266.2021.9715393
https://doi.org/10.1145/174134.158473
https://doi.org/10.1109/PADS.2012.3

SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Simone Bauco, Romolo Marotta, and Alessandro Pellegrini

[43] Adelinde M Uhrmacher, Peter Frazier, Reiner Hähnle, Franziska Klügl, Fabian
Lorig, Bertram Ludäscher, Laura Nenzi, Cristina Ruiz-Martin, Bernhard Rumpe,
Claudia Szabo, Gabriel Wainer, and Pia Wilsdorf. 2024. Context, composition,
automation, and communication: The C 2 AC roadmap for modeling and simula-
tion. ACM transactions on modeling and computer simulation: a publication of the

Association for Computing Machinery 34, 4 (Oct. 2024), 1–51. doi:10.1145/3673226
[44] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2009. Benchmarking

Memory Management Capabilities within ROOT-Sim. In Proceedings of the 13th

International Symposium on Distributed Simulation and Real Time Applications

(DS-RT). IEEE, Piscataway, NJ, USA, 33–40. doi:10.1109/DS-RT.2009.15
[45] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2012. Towards

symmetric multi-threaded optimistic simulation kernels. In Proceedings of the 26th
ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation

(PADS’12). IEEE, Piscataway, NJ, USA, 211–220. doi:10.1109/pads.2012.46
[46] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. 2012. mbeddr:

an extensible C-based programming language and IDE for embedded systems. In
Proceedings of the 3rd annual conference on Systems, programming, and applica-

tions: software for humanity (SPLASH ’12). ACM, New York, NY, USA, 121–140.
doi:10.1145/2384716.2384767

[47] Jingjing Wang, Nael Abu-Ghazaleh, and Dmitry Ponomarev. 2015. AIR:
Application-level interference resilience for PDES on multicore systems. ACM
transactions on modeling and computer simulation: a publication of the Association

for Computing Machinery 25, 3 (May 2015), 1–25. doi:10.1145/2701420
[48] Jingjing Wang, Deepak Jagtap, Nael B Abu-Ghazaleh, and Dmitry Ponomarev.

2014. Parallel discrete event simulation for multi-core systems: Analysis and
optimization. IEEE Transactions on Parallel and Distributed Systems 25 (2014),
1574–1584. doi:10.1109/TPDS.2013.193

[49] Pia Wilsdorf, Jakob Heller, Kai Budde, Julius Zimmermann, Tom Warnke, Chris-
tian Haubelt, Dirk Timmermann, Ursula van Rienen, and Adelinde M Uhrmacher.
2022. A model-driven approach for conducting simulation experiments. Applied
sciences (Basel, Switzerland) 12, 16 (Aug. 2022), 7977. doi:10.3390/app12167977

[50] Pia Wilsdorf, Anja Wolpers, Jason Hilton, Fiete Haack, and Adelinde M Uhrma-
cher. 2022. Automatic Reuse, Adaption, and Execution of Simulation Experiments
via Provenance Patterns. ACM Transactions on Modeling and Computer Simulation

33, 1-2 (Sept. 2022), 1–27. doi:10.1145/3564928
[51] Pia Wilsdorf, Steffen Zschaler, Fiete Haack, and Adelinde M Uhrmacher. 2024.

Potential and Challenges of Assurance Cases for Simulation Validation. In Pro-

ceedings of the 2024 Winter Simulation Conference (WSC ’24). IEEE, Piscataway,
NJ, USA, 2166–2177. doi:10.1109/wsc63780.2024.10838818

[52] Bernard P Zeigler, Tag Gon Kim, and Herbert Praehofer. 2000. Theory of Modeling

and Simulation. Academic Press, London, UK. doi:10.1016/C2016-0-03987-6
[53] Steffen Zschaler and Fiona A C Polack. 2023. Trustworthy agent-based simulation:

the case for domain-specific modelling languages. Software & Systems Modeling

22, 2 (Feb. 2023), 455–470. doi:10.1007/s10270-023-01082-9

https://doi.org/10.1145/3673226
https://doi.org/10.1109/DS-RT.2009.15
https://doi.org/10.1109/pads.2012.46
https://doi.org/10.1145/2384716.2384767
https://doi.org/10.1145/2701420
https://doi.org/10.1109/TPDS.2013.193
https://doi.org/10.3390/app12167977
https://doi.org/10.1145/3564928
https://doi.org/10.1109/wsc63780.2024.10838818
https://doi.org/10.1016/C2016-0-03987-6
https://doi.org/10.1007/s10270-023-01082-9

	Abstract
	1 Introduction
	2 Related Work
	3 The DESL Framework
	3.1 The Core Model
	3.2 Additional Concepts
	3.3 Model to Text Transformations

	4 Experimental Assessment
	4.1 Execution Environment and Benchmarks
	4.2 Results

	5 Threats to Validity
	6 Conclusions and Future Work
	Acknowledgments
	References

