
Consistent and Efficient Output-Streams Management
in Optimistic Simulation Platforms

Francesco Antonacci Alessandro Pellegrini Francesco Quaglia
DIAG – Sapienza, University of Rome

ABSTRACT
Optimistic synchronization is considered an effective means
for supporting Parallel Discrete Event Simulations. It relies
on a speculative approach, where concurrent processes ex-
ecute simulation events regardless of their safety, and con-
sistency is ensured via proper rollback mechanisms, upon
the a-posteriori detection of causal inconsistencies along the
events’ execution path. Interactions with the outside world
(e.g. generation of output streams) are a well-known prob-
lem for rollback-based systems, since the outside world may
have no notion of rollback. In this context, approaches for al-
lowing the simulation modeler to generate consistent output
rely on either the usage of ad-hoc APIs (which must be pro-
vided by the underlying simulation kernel) or temporary sus-
pension of processing activities in order to wait for the final
outcome (commit/rollback) associated with a speculatively-
produced output. In this paper we present design indica-
tions and a reference implementation for an output streams’
management subsystem which allows the simulation-model
writer to rely on standard output-generation libraries (e.g.
stdio) within code blocks associated with event processing.
Further, the subsystem ensures that the produced output is
consistent, namely associated with events that are eventu-
ally committed, and system-wide ordered along the simula-
tion time axis. The above features jointly provide the illu-
sion of a classical (simple to deal with) sequential program-
ming model, which spares the developer from being aware
that the simulation program is run concurrently and specu-
latively. We also show, via an experimental study, how the
design/development optimizations we present lead to lim-
ited overhead, giving rise to the situation where the simu-
lation run would have been carried out with near-to-zero or
reduced output management cost. At the same time, the de-
lay for materializing the output stream (making it available
for any type of audit activity) is shown to be fairly limited
and constant, especially for good mixtures of I/O-bound vs
CPU-bound behaviors at the application level. Further, the
whole output streams’ management subsystem has been de-
signed in order to provide scalability for I/O management
on clusters.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSIM-PADS’13, May 19–22, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-1920-1/13/05 ...$15.00.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete Event, Parallel ; B.4.3 [Input/Output and Data
Communications]: Interconnections (Subsystems)—Par-
allel I/O ; D.2.8 [Software Engineering]: Metrics—Per-
formance Measures

General Terms
Theory, Design, Experimentation, Performance

Keywords
PDES, Output Commit, Transparency, Consistency, Roll-
back, ROOT-Sim

1. INTRODUCTION
Parallel Discrete Event Simulation [7] is based on the par-

titioning of the simulation model into several (distinct) sim-
ulation objects, whose execution is undertaken by Logical
Processes (LP), which are hosted (and scheduled) by one or
more simulation kernel instances. Given that LPs are al-
lowed to run concurrently, the PDES approach is natively
prone to exploit the computing power offered by multi-core
and/or clustered architectures in order to speedup the sim-
ulation run. The actual speed is determined by the synchro-
nization scheme that is adopted in order to ensure causally
consisted (e.g. timestamp ordered) execution of the events
at each LP.

The optimistic synchronization protocol, as described in
[9], has established itself as a successful support to the ex-
ecution of efficient simulation runs. In particular, it en-
tails speculative event processing schemes, coupled with roll-
back/recover mechanisms for squashing causally-inconsistent
event processing, which are prone to maximal exploitation
of the parallelism intrinsic to the simulation model. On the
other hand, the optimistic protocol is well known to be dif-
ficult to deal with in terms of transparency to the modeler,
given that its complexity (e.g. in terms of state restore op-
erations and annihilation of inconsistent events’ spreading
across the LPs) may require the application layer to en-
tail synchronization oriented code blocks, to be employed in
synergy with the facilities offered by the underlying simu-
lation kernel. On the other hand, masking synchronization
at all to the modeler, while not sacrificing performance due
to the avoidance of application vs kernel layer synergic pro-
gramming schemes, would require very advanced methodolo-
gies/algorithms, and related implementations, which nowa-
days represent a major challenge for the diffusion of the op-
timistic PDES paradigm in the large. Some solutions along

this direction, which have been oriented to full (or partial)
transparency for what concerns state recovery of the LPs
and/or mutual consistency of LPs’ states and shared data
can be found in [3, 16, 20, 23]. They represent a step ahead
along the path of bringing the power of the optimistic PDES
paradigm into the hands of ordinary modelers (namely pro-
grammers).

In this paper, we cope with the aforementioned trans-
parency vs performance issue for what concerns the produc-
tion of output streams in optimistic simulation runs. Par-
ticularly, we focus on how to efficiently and transparently
tackle the output commitment problem [5] in optimistic sim-
ulation, which is related to the possibility for a simulation
model (executed optimistically) to interact with the outside
world, e.g. by producing output on a screen, on a network
device, on a printer, or on any other device which might
be unable to undo the output materialization in case a roll-
back operation is triggered because of a-posteriori causality
inconsistency detection (see Figure 1). This timely and con-
sistent interaction can be significant for all those simulation
scenarios where the evaluation of (possibly unstable) predi-
cates should be done on a global scale, via audit on individ-
ual LPs’ state trajectories. With our approach, we explicitly
free the simulation-model developer from facing the notion
of event commitment, and allow her to rely on output calls
(to be invoked within the modeler-defined event handlers),
which are properly managed by the simulation kernel. More
precisely, the application-level developer can rely on stan-
dard libraries calls (e.g., on the printf() family functions)
to produce output on some streams, and the burden of mate-
rializing the actual output is placed on a specifically-targeted
runtime subsystem which, at the same time, provides:

(i) consistency, by finalizing the actual output operation
only if it is associated with an event which gets com-
mitted, and by system-wide ordering the output mes-
sages along the simulation time axis (as if they were
produced by a sequential run of the same model);

(ii) efficiency, by inducing only a small (negligible) over-
head at the side of the engine running the simulation
model; and

(iii) timeliness, by placing only a reduced delay from the
generation to the materialization of the output on the
specified stream, unless for applications constantly ex-
hibiting I/O-bound profile along the whole run.

Traditionally, PDES simulation frameworks (see, e.g., [8,
14, 19]) have relied on ad-hoc APIs for delivering consis-
tent output related to the (progressively advancing) state
trajectory while executing the simulation model, in order to
(incrementally) provide, e.g., model statistics. This forces
the model writer to look more deeply into the internal de-
tails of simulation supports, making the development of the
application more cumbersome and more constrained to the
specific programming model supported by the framework.
On the other hand, in case the modeler would rely on non-
consistent output production via the exploration of stan-
dard I/O libraries, the output streams would need to be
post-processed for cleaning them from messages produced
by events that got eventually rolled-back, and for providing
a unique globally timestamp-ordered trace, if needed.

Our proposal is based on the concept of an ad-hoc dae-
mon, i.e. a separate user-space process with respect to the
actual simulation framework. Once equipped with our I/O-
management-stub, the simulation kernel instances within

the framework can communicate with the daemon process
via in-memory, fast-access, shared data structures. They
are used to support an additional level of temporary buffer-
ing which is biased to reduce the cost for managing output
streams (and their consistency) at the side of the frame-
work (as opposed to the typical buffering rules/schemes used
by standard I/O libraries). Particularly, via this additional
buffering subsystem we achieve: (i) reduced interaction time,
by developing a non-blocking algorithm for accessing shared
memory segments by the simulation kernel instances and
the output daemon (hence materializing the scenario where
a near-to-zero-cost (transparently consistent) logical output
device is accessible by the simulation framework), and (ii)
enhanced scalability (even at a geographical scale), allow-
ing to process the commitment of the output on a multi-
level basis; particularly, the daemon exploits Global-Virtual-
Time (GVT) computation already natively performed by the
framework in order to finalize the production of the output
streams, which avoids the need for I/O specific consensus
protocols to be run. As an additional advantage, the output
daemon can run as a stream forwarder, allowing the user
to retrieve output on a separate (dedicated) machine with
respect to the cluster of machines used for model execution.

The efficiency of our proposal is daemonstrated via an ex-
tensive experimental study carried out in the context of a
wireless communication system model, hosted on top of the
ROOT-Sim open source PDES optimistic simulation frame-
work [8].

The remainder of this paper is structured as follows. In
Section 2, related work is discussed. Section 3 deals with the-
oretical aspects of output management in optimistic simula-
tion, presenting involved issues, proposing a general design
approach, and depicting our architecture/implementation,
also showing how it could be simply interconnected with any
existing simulation engine. Experimental data, for assessing
the effectiveness of our proposal, are reported in Section 4.

2. RELATED WORK
The issue of output commitment in rollback recovery sys-

tems has been thoroughly studied in literature. An excel-
lent survey on the proposed approaches can be found in [5].
These solutions have been oriented to fault tolerance, where
rollback occurrence is due to failures, potentially causing
the loss of volatile state information causally related to the
output message (which might lead to un-recognize the re-
lation between the delivered output and the actual system
state, after rollback). Overall, these schemes are aimed at
supporting reproducibility of state trajectories (and related
outputs) in order to keep the system state aligned with what
is actually observed by the external world. Instead, in op-
timistic PDES systems we experience the problem of mask-
ing the outcome of specific state trajectories (those that are
rolled back) towards the external world. Further, the ap-
proaches surveyed in [5] deal with the Lamport’s causality
model [13], where no predetermination of events’ ordering
is imposed by pre-computed event timestamps, as instead
it occurs in PDES systems. On the basis of the above con-
siderations, our work can be considered orthogonal to these
solutions.

Still in the context of fault tolerance, the work in [11]
presents an innovative protocol for supporting output com-
mitment specifically aimed at promptly delivering output
data, which is one of the target of our work. It places spe-
cial attention on state-information copies on stable storage,
to overcome the failure of processes and minimizing the time

for restarting the execution of the system in case of failure.
Despite the goal differences (already discussed above), this
work is based on a communication protocol which tries to
minimize the time from the output generation and its mate-
rialization. Differently from this proposal, we do not explic-
itly rely on a special communication protocol for committing
the output, rather we exploit the GVT computation proto-
col (endemically required by optimistic PDES systems) to
get information about which portion of the generated out-
put can be considered committed, avoiding any additional
communication cost.

The work in [22] addresses the problem of external-world
interactions in the context of Transactional Memories (TM).
In particular, the work focuses on what a TM system (either
software or hardware) should support to allow the execution
of irrevocable actions, such as I/O and system calls, when
the side effects cannot be rolled back. The proposed solu-
tion allows the programmer to mark a specific transaction
as irrevocable, i.e. the interactions with the external world
are immediately finalized, and the correctness is guaranteed
by avoiding to abort such transactions. Whenever a trans-
action is marked as irrevocable, the runtime support checks
whether another irrevocable transaction is currently being
run. In the positive case, the new transaction’s execution is
delayed until the other irrevocable transaction commits. In
the negative case, the transaction is immediately executed,
and in case some conflict on accessed data is detected, the
contention manager only aborts other transactions which
are not marked as irrevocable. Differently from this pro-
posal, we offer complete transparency with respect to the
application-level programmer (i.e. non-rollbackable opera-
tions are not required to be marked), and furthermore we
allow multiple interactions with the external world to run
concurrently, providing ad-hoc facilities to correctly order
the outcome of these operations, and to support rollback of
no-longer-consistent operations by an efficient and optimized
multi-level buffering architecture.

In the context of Operating Systems supports, the work
in [24] proposes an architecture for enabling applications to
define program-specific custom policies to carry on specu-
lative execution, e.g. for I/O operations. Despite the clear
lack of transparency (in fact, the programmer is required
to manually specify policies to determine which specula-
tive branch is correct, which ones should be rolled back,
and to manually mark portions of code which can be exe-
cuted speculatively, like in the TM case), this work mostly
relies on system calls to communicate between the appli-
cation and the Operating System, requiring a large num-
ber of mode/context changes which can significantly affect
the overall performance, while we work completely in user
space, thus avoiding costly mode/context changes. Addi-
tionally, speculation is implemented via an ad-hoc version
of the fork() system call, in order to create a new spec-
ulative copy of the process, while in optimistic simulation
speculation is already intrinsic in the execution model.

As hinted in the Introduction section, in the context of
optimistic PDES engines, one approach to deal with I/O
is based on ad-hoc API. One example along this direction
is the work in [17], where the optimistic engine is able to
provide the user-level software with past, committed (and
globally consistent) state images. This is done by passing
control (and the snapshot) to the applications via a proper
callback. Once taken control, the callback can invoke output
operations providing data related to the committed portion
of the simulation. Compared to this approach, the present
proposal does not require specific callbacks within the API.

Also, in that solution the frequency of I/O production is
bounded by the time period for the identification of the
committed part of the computation (typically the GVT pe-
riod). Hence not all the states passed through while execut-
ing the model can be observed (in terms of output stream
production). Instead, with the present proposal we allow
the modeler to produce output any time the event handler
takes control, hence ideally at each state transition within
the simulation. Further, the output is system-wide ordered,
while in the approach in [17] it is ordered on a per-LP ba-
sis (hence post processing is required in order to provide a
unique ordered trace along the simulation time axis).

Recently, the issue of transparency in optimistic synchro-
nization in the context of HLA based simulations has been
tackled [18], where the problem of direct external interac-
tions (e.g. with the underlying Operating System) is also
addressed. However, the provided solution is based on tem-
porary suspension of processing activities at the federates
until the interaction is conservatively (namely safely) de-
tected to be committable, while our approach is based on
post-filtering and post-manipulation of the output streams
with no suspension of the actual run. Overall, we sustain
pure optimism as opposed to the throttling scheme provided
in [18].

A similar approach, but less transparent, has been adopted
in the PDES framework in [4], where an ad-hoc API is pro-
vided to the application programmer in order to signal the
kernel that a non-revocable I/O operation needs to take
place. The effect on run-time is that a blocking period is
experienced until the I/O is detected to be safe.

The approach provided in [10] has some resemblances with
our proposal in that a special object (resembling our dae-
mon) is used for I/O management. Any output message is
routed towards this object in the form of an event, which gets
processed only after GVT advancement (namely when the
event is detected to be committed). However, this approach
is based on ad-hoc APIs used to trigger the interaction with
the special object, while we cope with the API provided by
standard libraries. Also, the approach in [10] performs the
I/O-event management within the simulation engine (hence
leading to some I/O management latency along the execu-
tion path of the simulation kernel), while we rely on the
orthogonal approach of removing most of the work for ma-
terializing the output from the simulation engine execution
path.

Finally, a work related to the present proposal can be
found in [6], where a scheme for optimizing checkpointing is
provided in order to allow an interactive end-user to inject
events prior to the commit horizon, and explore alterna-
tive paths (by resuming the computation from proper snap-
shots), as compared to those already established as commit-
ted. Orthogonality with our proposal lies in that we target
the management of output streams, thus intrinsically coping
with the typical scenarios where the input to the simulation
run, e.g., in terms of simulation parameters, is provided at
simulation startup and what-if analysis via simulation re-
lies on batch processing schemes. Instead, that work targets
the management of input streams, which is typical of, e.g.,
interactive what-if analysis approaches.

3. OUTPUT MANAGEMENT

3.1 Involved Issues
Consistent output management in optimistic simulations

is a non-trivial task, due to the existence of the rollback

Outside World

Simulation Framework

LP1

LP2

e1

output via printf()

m2 T2

e2: T2 < T1

rollback operation
not possible

T1

Figure 1: Interaction with the Outside World

operation, which is not handled by common libraries for
managing output streams. Let us consider a simulation sce-
nario where two LPs are present, namely LP1 and LP2. LP1

is scheduled for the execution of event e1, associated with
timestamp T1. During the execution of e1, some output is
produced via a call to the standard library’s printf() func-
tion. After e1’s execution is completed, LP2 generates a
new event e2 destined to LP1, and associated with times-
tamp T2 < T1. According to the optimistic synchronization
scheme presented in [9], e1 is undone and the execution is
restarted from e2. However, the printf() invocation is al-
ready completed, the output has been already materialized
on the standard output stream, and it is therefore incon-
sistent, as it is associated with an undone event. This is
depicted in Figure 1.

The task of generating consistent output is even more
complicated if we consider two different points of view on
the same issue. On the one hand, the application-level pro-
grammer is interested in the ease of use, i.e. she does not
want to rely on complex APIs which force her to be aware
of the notion of rollback, and to look at the internal or-
ganization of the simulation engine. On the other hand,
consistently managing output streams must not make the
simulation engine pay a relevant performance penalty, in
order to minimize the overhead on the actual simulation ex-
ecution. This tradeoff between application transparency and
simulation performance must be well balanced, in order to
effectively and efficiently support the management of output
streams.

In order to address transparency, the architecture which
we hereby propose is based on compile/linking time facilities
that, before creating the final simulation-model executable,
redirect every output call in the application-level code from
the standard printf() family functions to an ad-hoc simula-
tion kernel’s module, which represents the I/O-management-
stub within the architecture. These facilities are present in
most compiling tool-chains, and can be triggered via ad-hoc
directives/scripts.

On the other hand, in order to enforce a high perfor-
mance of the simulation execution, all the operations as-
sociated with the management of the output must exhibit
an overhead—both direct and indirect—as small as possi-
ble. As for direct overhead, we have explicitly designed our
proposal in order to minimize the use of system calls during
the execution of the simulation for buffering the produced
output until the generation-associated event is committed.
In particular, at simulation startup, we pre-allocate a set of
shared memory segments which are used by simulation ker-
nel instances to store any output on any stream produced
by the application-level code. These buffers are read, during
the simulation run, by a separate user-space process, which
we refer to as output daemon. This daemon is in charge of
collecting all the output produced by the LPs, sort it, and—
in case of a rollback operation—remove the involved strings.

Whenever a set of events gets committed, the output dae-
mon is able to use this information in order to actually ma-
terialize the relevant (committed) output on the associated
streams.

As it will be thoroughly discussed later, this explicit de-
sign choice gives us several benefits: (i) output buffering
is handled completely in user space—by relying on shared
memory—avoiding costly mode/context changes during the
execution of the simulation; (ii) simulation efficiency is pre-
served, as the operations for producing the output (indepen-
dently of its eventual commitment) does not involve costly
procedures, giving most of the available CPU time to actual
(relevant) computation; (iii) considering that each simula-
tion kernel is assigned a private shared memory segment,
and considering that kernel instances only write on it, and
the output daemon only reads from it, a completely non-
blocking algorithm for the interaction between kernel in-
stances and the daemon can be implemented, providing ad-
ditional benefits due to the avoidance of contention on logical
data (i.e. no locking primitives must be exploited to allow
kernels–daemon communication).

On the indirect-overhead side, two main issues have been
addressed, namely data locality and CPU sharing. In the
simulation-kernel instances, the output is produced on a
contiguous buffer (i.e the private shared-memory segment),
avoiding costly cache-invalidation secondary effects during
the generation of output on whichever stream. The segment
is used in a cache-aligned fashion, avoiding at the same time
false cache sharing effects. The daemon, on the other hand,
handles the output materialization relying on an efficient
modified version of a calendar queue [2], which is in turn
able to minimize the computing time required for sorting
the output strings, and it is additionally featured with an
autonomic agent which is able to determine the best activa-
tion interval for reducing CPU-sharing effects on the actual
simulation, and to reduce the delay from the generation of
the output to its actual materialization.

3.2 Design Approaches and Reference Imple-
mentation

Without any loss of generality, we can say that a simu-
lation framework comprises K simulation-kernel instances,
scattered across M machines, and each machine m hosts a
set of Km simulation kernel instances. Of course, Km can be
different for each m, i.e. simulation kernel instances must
not be necessarily evenly distributed across the machines,
depending on, e.g., the actual computing power offered by
each of them. Upon simulation startup, on each machine
m a separate output-daemon instance is started, and Km

shared-memory segments are created (and shared with each
kernel instance). These can be seen as per-kernel private log-
ical devices, on which the simulation-kernel instances write
their LPs’ output messages, rather than on the requested
stream. In this scenario, considering the whole system, DK

M

logical devices will be installed, and each kernel k hosted on
machine m will have is own device Dk

m. In particular, as
mentioned before, upon the invocation of some function of
the printf() family (which is redirected to the kernel in-
stance’s I/O-management-stub at compile time), the output
subsystem stores output-related information in a variable-
sized data structure for keeping the information until the
associated event gets committed (or rolled back). The struc-
ture used for this intermediate buffering is as follows:

struct output_msg_t {
size_t size;
int fd;
unsigned int era;
unsigned int LP;
double timestamp;
char buffer[];

};

where size keeps the total size of the entry, LP associates
the output generation with a specific LP in the simula-
tion, timestamp keeps information about the Local Virtual
Time (LVT) at which the LP has generated the output,
fd is the file descriptor associated with the output stream,
and buffer is the actual output payload1. This entry is
then written—before returning control to the application-
level software—into the per-kernel logical device Dk

m. We
note that timestamp is not required to be explicitly pro-
vided by the application layer within the output message
(namely as a parameter of the printf() call). Rather, we
assume the corresponding LVT value (as well as the LP-
identifier) must be provided by the simulation engine to the
I/O-management-stub right before passing control to the
LP for actual event processing. In this way, the applica-
tion modeler is not forced to tag all (or part) of the out-
put messages with timestamping information. She will be
anyhow transparently provided with an output-stream con-
tent matching (system-wide) the advancement of simulation
time.

The logical device can be implemented as a circular buffer,
where kernels’ output subsystems write new output mes-
sages (which are later processed by the daemon in a FIFO
order) with an ad-hoc header for describing the content of
the buffer. The organization of this device is described via
the following structure:

struct logical_device_t {
size_t size;
unsigned int wrote;
unsigned int read;
unsigned char buffer[];

};

where size identifies the (current) size of the circular buffer,
wrote is an offset pointing to the last byte in the device writ-
ten by the kernel output subsystem, and read is an offset
identifying the last byte read by the output daemon. Since
these fields are updated in isolation (i.e. the field written
by the kernel instance is only read by the daemon, and
vice versa), a non-blocking algorithm has been developed
for managing the logical device. In particular, by checking
if wrote and read store the same value (either in modular
or non-modular arithmetic), the daemon and the kernel are
able to determine whether the buffer is full or empty, and
can immediately access via displacement the correct posi-
tion on which to perform a read/write operation, without
the need for any synchronization primitive. If the buffer is
full, then the simulation kernel must wait before finalizing
the output generation procedure, unless some resize proce-
dure, like the non-blocking one described in Section 3.3, is
adopted.

On a periodic basis, the output daemon wakes up and
checks whether some output message has been produced by
some locally-hosted simulation-kernel instance on its private

1We note that, if output generation entails processing a for-
mat string, this can be easily done by relying on the POSIX
sprintf() library function.

logical device (again, this can be done by comparing the val-
ues of read and wrote). In case a new output message is
present, the output daemon creates a local copy of it (i.e. in
its own address space), updates the read value, and inserts
it in a specifically-modified version of a calendar queue [2],
which guarantees the correct ordering of the output mes-
sages by all the output kernels. We also note that, in case
the two counters match, but the actual content of a new
message has already been inserted within the device (which
does not impose atomicity with the update of the wrote
counter), the demon will simply experience a false-negative
on the presence of new messages, which will be resolved at
subsequent iteration steps.

Overall, with the above approach, no spin-locks or other
types of atomic operations (which are known to exhibit non-
minimal direct and indirect costs, possibly impacting the
execution speed at the side of the simulation engine) are
used at all. This is done by trading-off with the actual delay
for the delivery of the message at the demon.

In order for the output daemon to correctly support the
execution of rollback operations, the traditional implemen-
tation of the calendar queue has been augmented with one
additional operation, namely delete, which allows to re-
move elements falling in a given [from, to] timestamp range.
For efficiency reasons, upon the invocation of this operation,
the buckets associated with from and to are computed, and
then a linear search for removing elements is performed,
resembling the original direct search described in [2]. Of
course, the delete operation removes only the elements which
are associated with a particular LP, as specified in the out-
put_msg_t structure. At the same time, we note that, de-
pending on the actual simulation execution, scanning all the
buckets in the [from, to] range can be a relatively costly op-
eration, if we consider that we do not want to affect the sim-
ulation’s performance. To this end, the output_msg_t struc-
ture keeps track of the era field, namely a monotonic counter
which is updated by every simulation kernel upon the exe-
cution of a rollback operation, on a per-LP basis. This can
be regarded as a compressed information identifying every
output message related to a given era comprised in between
two rollback operations. The calendar queue bucket array is
therefore augmented, keeping for every bucket a bloom fil-
ter [1] which is used to know whether output messages from
a given era are present in the bucket. In this way, before
starting to scan the list associated with any bucket in the
[from, to] interval, a check on the bloom filter is performed,
to determine whether that particular bucket can be skipped.

To enable the execution of a rollback operation, and to
enforce a timely materialization of output messages on the
related streams, two control messages are placed by kernel k
(namely by the corresponding I/O-management-stub) on de-
vice Dk

m, namely ROLLBACK and COMMIT. The former is a con-
trol message with a payload structured as 〈from, to, LP, era〉,
which directly triggers the aforementioned delete operation
on the calendar queue. The latter, notifies the output dae-
mon on which portion of the per-kernel-generated output
can be considered as committed2. Whenever a COMMIT con-
trol message is found on a device, the associated commit-
ment timestamp is stored into a separate array, which keeps
track of the last commitment time for each locally-hosted
simulation kernel instance k. Periodically, the output dae-
mon finds the minimum commitment time TCmin among the
ones notified by the kernel instances, and invokes a flush

2In fact, the COMMIT control message is generated immedi-
ately after the completion of the GVT reduction operation.

operation on the calendar queue, which iteratively dequeues
elements from it until an element associated with a times-
tamp T > TCmin is found. Every output message dequeued
during this flush operation is materialized on the associated
stream, described by the fd field.

We note that these operations can be non-negligible in
terms of CPU usage by the output daemon. In order to
produce a minimal impact on the simulation’s overall per-
formance, the daemon does not process all the available mes-
sages (either output or control) from Dk

m∀k before returning
to sleep. On the other hand, after having processed any mes-
sage, it checks whether its execution has lasted more than a
specific threshold value and, in the positive case, it returns
to sleep. Of course, the overall performance can be affected
by the sleep and working time. As it will be discussed later
in Section 3.3, an ad-hoc solution can be adopted to au-
tonomically self-tune these parameters for maximizing the
simulation’s performance, while ensuring a timely material-
ization of committed output messages.

As an additional note, since the proposed output message
data structure identifies a particular stream using its file de-
scriptor, the kernel instance’s output subsystem intercepts
calls to functions which actually open/close streams (e.g.,
fopen()-family calls) and produces on the logical device ad-
ditional control messages (namely, OPEN and CLOSE) which
tell the output daemon to process these operations. In this
way, the daemon is the only user-space process controlling
the actual output streams, for materializing committed out-
put messages on them.

In case the simulation is executed on a distributed archi-
tecture (either a cluster, a desktop grid, or on the cloud),
the daemon-based approach is able to communicate only
with the kernel instances which are locally hosted on the
same machine. In order to collect output messages from all
the nodes in the system, the output daemon can be config-
ured to act as a forwarder, i.e. whenever a set of output
messages is detected to be committed, the messages are for-
warded on the network to an additional (remote) instance
of the daemon which acts as a collector. This additional in-
stance, which can be even geographically far from the actual
simulation architecture, receives all the committed messages
from every daemon running in the simulation framework,
and inserts them into an additional calendar queue. When-
ever COMMIT messages are forwarded, the collector daemon
relies on the same aforementioned logic for materializing the
output messages on the associated streams. We note that
this approach is effective in two ways: (i) over the network
we transfer only committed output, thus we early process
rollback operations, and avoid to pay costly network delays
for exchanging output messages which might not be com-
mitted, enabling for a considerable scalability even at a ge-
ographical scale, and (ii) we can finalize the materialization
of the output messages on a remote (possibly not dedicated
to simulation) machine, allowing both an enhanced simula-
tion performance (in fact, materializing output on a stream
can be a non-minimal-cost operation) and the possibility to
easily monitor the execution of the simulation by the user on
a separate machine, without suffering a considerable delay.

As a final note, we mention that the output daemon can be
flagged to work in autocommit mode. Using this facility, the
daemon (running in the aforementioned forwarding mode)
can be connected to a conservative distributed simulation
framework, where the rollback issue is not present, but nev-
ertheless for producing consistent output a timestamp-based
ordering must be performed on the output messages pro-
duced by the various nodes in the system. Therefore, in this

scenario, the facilities provided by our proposal would never
trigger a delete operation, but upon receiving a message,
its timestamp is considered as the last committed timestamp
for the specific LP. By simply performing a local reduction
across the current LVT of the LPs (which, as said is com-
municated by the simulation engine to the I/O-management-
stub while the simulation proceeds), the set of (timestamp-
ordered) output messages to be flushed is identified as the
set of those messages with timestamp less than the reduc-
tion value, which are therefore immediately flushed (i.e. for-
warded) for output materialization.

To give the final picture, we list the core set of APIs that
are provided by the I/O-management-stub, which can be
used for integration with differentiated simulation kernel lay-
ers:

commit_time(GVT): This function is exposed by the output
subsystem in order to allow the GVT reduction subsys-
tem to notify the output daemon of a newly-computed
GVT value. This information is used by the subsys-
tem to generate a COMMIT control message to notify the
output daemon.

set_LVT(LP, timestamp): Using this function, the simula-
tion kernel’s scheduler can notify the output subsystem
about the identity of the dispatched LP, and the times-
tamp of the dispatched event (hence the logical time
to be associated with any output message produced as
a result of processing this event).

rollback(from, to, LP): Using this function, the simula-
tion kernel’s scheduler can notify the output subsystem
about the reception of a straggler message or an anti-
message. Using this information, the output subsys-
tem can generate a ROLLBACK message for the output
daemon, and instantiate a new era.

out_msg(LP, stamp, msg, stream): This API is used by
the simulation kernel to transfer a particular output
message destined to a specified stream to the output
subsystem, which will in turn write it on the kernel’s
logical device Dk

m.

autocommit(flag): If flag is true, every output message
received is considered as non-rollbackable, in order to
support the integration with a conservative simulation
engine. If flag is true, the daemon does not wait for
COMMIT messages before committing output messages.
The commitment is triggered by the aforementioned
internal logic.

We recall that, in order to provide the application-level de-
veloper with complete transparency, calls to output gener-
ation library functions must be properly wrapped, in order
to correctly redirect them to out_msg(). This can be easily
done, as already described, by relying on compile-time facili-
ties provided by most linkers, and by applying small changes
on the application-program build rules. The interconnection
with the simulation kernel, particularly the ROOT-Sim ker-
nel we are exploiting in this study, is depicted in Figure 2.

3.3 Optimizations
In case of an output-intensive simulation model (either

because a large number of events involve the generation of
some output destined to some stream, or because the output
messages are considerably large) the logical device might
become the bottleneck of the system. In particular, since
we want to ensure exactly-once materialization of the output

DyMeLoR

CCGS ManagerGVT Manager

Input/Output Queues Manager

Remote Messaging Manager

Scheduler
Intermediate Buffers

Call/Callback Interfaces

ProcessEvent

ScheduleNewEvent

OnGVT

Application Level Software

function calls

to libraries

MPI, Standard Libraries and Third Party Libraries

hook
malloc/free

Output Manager

O
u
tp

u
t
L
o
g
ic

a
l
D

e
v
ic

e
s
 (

S
h

a
re

d
 M

e
m

o
ry

)

ROOT-Sim Output Daemon

Global Output

Order Manager

Output Collector

and Manager

Output Writer

Third Party Library Wrappers

Figure 2: ROOT-Sim vs Output Daemon Architecture

messages, if the circular buffer which is used to implement
the logical device gets filled, the kernel’s output subsystem
trying to write on it must wait for the output daemon to
free some space for buffering the output.

Since this would be a non-affordable cost, we have aug-
mented the logical_device_t data structure with an ad-
ditional flag, namely subst_id, which is used by the out-
put subsystem whenever the current circular buffer is full.
In this case, the output subsystem allocates a new shared
memory segment (of doubled size with respect to the old,
full one), stores its id in this field, detaches from the old
segment, and starts buffering output messages on this new
device. Whenever the output daemon finds a logical device
to be empty, it checks whether the subst_id field is set to
a valid value. In the positive case, it attaches to the new
logical device, releases the old one, and starts processing
messages from the new one.

If on the one hand this approach can reduce the time
spent during the execution of a simulation event inside the
kernel’s management subsystems, on the other it can affect
memory usage if the simulation model’s activity is highly
output-bound. Although this can be regarded as a sec-
ondary problem, considering the large amount of memory
available on modern architectures, optimizing the actual
tradeoff between CPU usage by the output daemon and
memory consumption by the logical device can provide ben-
efits in terms of output materialization delay and problem
feasibility.

We therefore propose an additional optimization, which
addresses the amount of time the output daemon spends
processing messages from the devices and sleeping, and al-
lows the output manager to autonomically self tune its ac-
tivation phase. In particular, as for output materialization
delay, given that output messages are flushed on the asso-
ciated streams after the GVT computation (which is, tradi-
tionally, a periodic operation), the best scenario arises when
the kernels’ output subsystems try to write the COMMIT mes-
sage on their devices and find them empty. This situation
happens whenever the total execution time of the output
daemon is such that every message placed in the device in
between two COMMIT messages has been processed. We there-
fore measure the execution time of each message (namely,
output message’s to, a COMMIT message’s tc, and a ROLLBACK
message’s tr) and continuously update their mean values t̄o,
t̄c, and t̄r according to an exponential mean. Additionally,
we rely on three counters, namely c̄o c̄c, and c̄m which de-

scribe the (exponential) average number of messages placed
by simulation kernel instances in a GVT phase. By rely-
ing on these values, upon the reception of a COMMIT control
message, the output daemon computes the expected total

execution time E(T) =
∑

x∈{o,c,r}

t̄x · c̄x which is needed for

emptying the logical devices during the next phase. If this
value is lower than a compile-time specified threshold, it
is then fragmented into several slots (resembling Operating
Systems’ time slices) and the sleep time is set accordingly
in order to identify an execution phase which is equal to
the GVT phase. The compile-time threshold ensures that,
in case an application is extremely output-bound (at least
in some phase of its execution), then the output daemon
will not significantly affect the overall simulation perfor-
mance, while trying to minimize the output materialization
delay. We note that, by relying on this approach, the out-
put daemon is able to capture variations in the actual output
generation dynamics by the application-level software, thus
adapting to execution phases which exhibit a higher/lower
output generation rate.

The last optimization concerns timely processing of output-
messages rollback, which can prevent the output daemon
to process wrong data before noticing that it must be un-
done. In particular, upon initialization of the per-kernel
logical device, each simulation-kernel instance installs a sec-
ond channels for the delivery of high-priority control mes-
sages (namely the ROLLBACK ones) which are used to early
inform the daemon that some information that it is about
to process might be already uncommittable. Whenever the
daemon notices that a ROLLBACK message is present in the
high-priority channel, it starts scanning the associated log-
ical device and marks as don’t care every output message
which should be rolled back. The circular buffer is scanned
(without updating the read flag) until the ROLLBACK control
message corresponding to the one found in the high-priority
channel is found. When this operation is completed, the
normal behavior is restored, with the exception that when-
ever a don’t-care output message is found in the circular
buffer, it gets simply discarded. We note that this rollback
optimization avoids enqueueing and dequeueing the output
messages which can be early detected as uncommittable, re-
ducing the cost of the operations on the calendar queue3. If
some events involved in the rollback operation were already

3This situation might result in a calendar queue’s resize,
which is a very costly operation.

in the calendar queue, when the processing of the logical de-
vice (which, we recall, stores messages emitted by the associ-
ated simulation kernel in FIFO order) reaches the ROLLBACK
control message, the delete operation described in Section
3.2 is executed, which removes the already inserted output
messages.

4. EXPERIMENTAL DATA
As hinted, we have integrated the proposed output-streams

management architecture within ROOT-Sim, an open source
C/MPI-based simulation package targeted at POSIX sys-
tems [8, 15], which implements a general-purpose paral-
lel/distributed simulation environment relying on the op-
timistic synchronization paradigm. ROOT-Sim offers a very
simple programming model based on the classical notion of
simulation-event handlers, to be implemented according to
the ANSI-C standard, and transparently supports all the
services required to parallelize the execution. It also of-
fers a set of optimized protocols aimed at minimizing the
run-time overhead by the platform, thus allowing for high
performance and scalability.

The output management subsystem has been integrated
respecting the API described in Section 3.2, while the output
daemon has been realized as a separate process written in
ANSI-C. Upon the ROOT-Sim startup, if requested, the out-
put daemon is launched and the output subsystem installs
the logical devices (one for every simulation-kernel instance)
.

The hardware architecture used for testing our proposal
is a 64-bit NUMA machine, namely an HP ProLiant server,
equipped with four 2GHz AMD Opteron 6128 processors
and 64GB of RAM. Each processor has 8 cores (for a total
of 32 cores) that share a 12MB L3 cache (6 MB per each 4-
cores set), and each core has a 512KB private L2 cache. The
operating system is 64-bit Debian 6, with Linux Kernel ver-
sion 2.6.32.5. The compiling and linking tools used are gcc
4.3.4 and binutils (as and ld) 2.20.0. This hardware archi-
tecture has been used only for simulation (i.e. no other pro-
cess, except for the system ones, where running during the
execution), thus resembling a scenario where the hardware
environment is dedicated to high performance simulation.

In order to evaluate different aspects of the proposed ar-
chitecture, we have conducted experiments on a family of
configurations of Personal Communications Service (PCS),
a GSM wireless communication systems simulation model,
where channels are modeled in high fidelity via explicit sim-
ulation of power regulation/usage and interference/fading
phenomena on the basis of the current state of the corre-
sponding cell. Also, the power regulation model has been
implemented according to the results in [12]. Accurate de-
scriptions of this model can be found in [21]. However, for
the reader’s convenience we report below some details re-
lated to the main features of the model.

Upon the start of a call destined to a mobile device cur-
rently hosted by a given wireless cell, a call-setup record
is instantiated via dynamically-allocated data structures,
which gets linked to a list of already active records within
that same cell. Each record gets released when the corre-
sponding call ends or is handed-off towards an adjacent cell.
In the latter case, a similar call-setup procedure is executed
at the destination cell. Upon call-setup, power regulation is
performed, which involves scanning the aforementioned list
of records for computing the minimum transmission power
allowing the current call-setup to achieve the threshold-level
SIR value. Data structures keeping track of fading coef-

ficients are also updated while scanning the list, accord-
ing to a meteorological model defining climatic conditions
(and related variations). The employed simulation models
have been developed for execution on top of ROOT-Sim in
a way that each LP models a single wireless cell. Hence,
the event-handler callback involves the update of individual
cells’ states, and cross-LP events are essentially related to
hand-offs between different cells.

We have performed a set of experiments where each cell
sustains the same workload of incoming calls, whose inter-
arrival time is exponentially distributed, and whose average
duration is set to 2 min. The expected rate for call inter-
arrival has been set to achieve channel utilization factor on
the order of 30%, while the residence time of an active device
within a cell has a mean value of 5 min and follows the ex-
ponential distribution. For the above scenario, we have run
experiments with 1024 wireless cells, modeled as hexagons
covering a square region, each one managing 1000 wireless
channels. These have been evenly distributed across 32 ker-
nel instances running on the 32-core underlying machine.

For measuring the overall performance of the simulation
runs, we have relied on the measurement of cumulated com-
mitted events over wall clock time advancement, i.e. a mea-
sure of how many events get committed while the simula-
tion’s execution is carried on.

To capture different aspects of the impact on execution
dynamics by the output-management subsystem and the
output daemon, we have modified the PCS benchmark in
order to provide on the terminal statistics regarding the oc-
currence of the hand-off event. In particular, with a certain
frequency f , the execution of the hand-off event entails the
generation of an output string which tells the total amount
of per-cell hand-off events so far, and the average duration
of a handed-off call. We have explicitly varied the value of
f so that, among all the events (not only hand-off events)
executed in the simulation run, in between 1% and 35% of
them involved some output generation (which corresponds,
in our configuration, to a total number of generated string
in between 5 millions and 35 millions).

We note that, for the above deploy/parameterization, the
runs exhibited an efficiency on the order of 80%. Hence
the experimentation has been carried out when consider-
ing well behaving optimistic runs (namely not affected by
thrashing, which would lead the experimentation to be non-
reliable), which however show an amount of rollback that is
expected to provide a good test case for all the functionali-
ties (e.g. output-message discarding functionalities) offered
by our output management subsystem. Further, running the
above model on top of ROOT-Sim (on the same multi-core
machine used in this experimental study) has been already
shown to give rise to super-linear speedup values (see the
experimental data provided in [21]). Hence our experimen-
tation is carried out via competitive parallel runs.

We have compared this execution with two different sce-
narios, one relying on the traditional ROOT-Sim framework
(i.e. without the output subsystem and without the output
daemon), and one with the I/O-management-stub working
within the simulation kernel, but without any daemon lis-
tening on the other side of the logical device (in this case
the device has been configured like a typical /dev/null de-
vice file, by simply discarding the incoming messages). We
consider the former scenario as a good baseline situation,
for assessing the overall overhead introduced by the output
management architecture, while the latter allows us to eval-
uate what is the actual impact of having a separate process
(the daemon) running in time-sharing on a dedicated sim-

ulation environment, for supporting the execution of addi-
tional housekeeping tasks. Further, we have also considered
runs based on a modified version of ROOT-Sim where the
output strings produced by the execution of an event are
logged within the event queue (as a list associated with the
event-buffer), and are then flushed when fossil collecting the
event after GVT computation. This approach has resem-
blances with the solution provided in [10]. We note however
that this approach does not provide global ordering of the
output across the whole set of LPs.

By the results, shown in Figure 3 (obtained as the aver-
age over 10 runs done with different pseudo-random seeds),
we note that the execution with the device configured like
a /dev/null device file exhibits a reduced overhead with
respect to the baseline configuration, showing that the op-
erations internal to the I/O-management-stub (and the in-
teraction between the simulation engine and the stub) do not
impact significantly on the overall simulation performance.
When the output daemon is running, on the other hand,
the simulation throughput decreases when the application-
level software exhibits more output-bound behavior. This is
reasonable, considering that the CPU time required by the
daemon for a timely processing of the messages placed into
the logical device gets increased. However, the worst case
for the overhead is on the order of 22%. Further, the over-
head well scales vs the increase of the frequency of output
production (in fact the overhead is quite similar for the cases
where f is set to 12% and 35%). On the other hand, for very
reduced output-message frequency (say f set to 1% or 7%),
as typical of when the application is configured for primar-
ily matching performance requirements via audit reduction,
the overhead introduced by our output-management archi-
tecture is quite bounded (namely between 2% and 11%).
It is interesting to notice that our proposal shows a better
performance than the scenario with no output architecture
activated, but with I/O calls performed while processing the
events. This phenomenon is due to the fact that the stdio
library is not optimized for integration with high perfor-
mance computing, while our architecture has been oriented
exactly to this scenario. Further, standard I/O calls dur-
ing event processing would even give rise to non-consistent
output, due to the fact that output materialization associ-
ated with rolled back events is finalized as well (in the case
of optimistic synchronization), or should require an addi-
tional post processing to correctly order the output (in case
of the conservative synchronization), thus requiring addi-
tional time for the end user to be able to perform its audit
activities. Similar considerations can be made when consid-
ering I/O management via logging of the strings with the
processed events and flush operations after GVT computa-
tion. Particularly, while this approach introduces negligible
overhead with bounded frequency of output production, the
overhead gets significantly increased for higher frequency of
output message generation.

Another aspect which requires attention regards the over-
head induced by the evaluation of parameters within a for-
mat string being passed to the output subsystem. In Fig-
ure 4, we present three different curves (whose samples are
again computed as the average over 10 runs), one entail-
ing the evaluation of a float, one of an integer, and a case
where no parameters should be evaluated at all. We re-
call that, in our proposal, parameters are evaluated imme-
diately within the I/O-management-stub (directly called by
the application-level code through library call redirection)
via the POSIX-compliant sprintf() library function. By
the results, we can see that the overall execution time is

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 10 20 30 40 50 60 70 80 90

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-clock-time (seconds)

Throughput 1%

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 10 20 30 40 50 60 70 80 90

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-clock-time (seconds)

Throughput 7%

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-clock-time (seconds)

Throughput 12%

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

(c)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 20 40 60 80 100 120 140

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-clock-time (seconds)

Throughput 35%

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

(d)

Figure 3: Throughput for Different Values of f

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-clock-time (seconds)

Throughput - 1 print every 50 handoff events

Integer
Floating Point

No Parameters

Figure 4: Throughput with Different Data Types

not significantly affected by the presence of additional (more
complex) parameters to be evaluated, showing the effective-
ness of our proposal even in the case of relatively complex
outcome-messages from a simulation model.

To show how the CPU-usage/memory tradeoff is addressed
by the output daemon, in Figure 5 we report the total
amount of shared memory allocated for the logical I/O-
devices during the execution of the simulation (these plots
refer to one of the 10 runs, where similar behavior is any-
way observed). As in the case of the throughput discussed
earlier, we note that (as expected) the amount of required
shared memory is increased when the application exhibits a
more output-bound behavior. However, the reached bound
(on the order of 16MB) represents a relatively reduced abso-
lute value (especially when considering that optimistic sim-
ulation is known to be memory consuming on the side of
the engine). Further, being such a memory virtualized by
the underlying Operating System, and thanks to the fact
that the shared memory segments implementing the logical
I/O-device are used according to the circular rule (not in
scattered mode), we may expect a reduced impact on the
actual locality while the frequency of output-message gen-
eration gets increased.

In Figure 6 we present a plot which shows what is the
actual output–materialization delay exhibited by the out-
put daemon (again for one of the ten runs, which is any-
how representative of what observed in the different runs).
Both the x and the y axis represent wall clock time. To
the x axis we associate the time at which a specific commit-
ted output message was produced, while to the y axis we
associate the time at which the same output message was
materialized. For the sake of clarity, we show a 45-degree
curve which represent a (theoretical) instantaneous mate-
rialization time, i.e. a situation where there is no actual
delay between the generation and materialization. In this
plot, the steeper the slope, the higher is the materialization
delay induced by the operations by the output daemon. It
is interesting to notice, by the plots, that the output ma-
terialization advances in steps. This is related to the fact
that the commitment operation of output messages can be
started only after a GVT calculation, which is a periodic
operation. It is interesting to note that in Figures 6 (a), and
(c), the autonomic self-tuning subsystem for CPU/memory
tradeoff optimization is able to capture the best configura-
tion to minimize the materialization delay. In fact, the slope
of the curve, during the simulation execution, tends to get
gentler. The case in Figure 6 (b) is quite different, as the

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80

P
a

g
e

s
 (

4
0

9
6

 b
y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 70 handoff events - 1%

(a)

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

P
a

g
e

s
 (

4
0

9
6

 b
y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 10 handoff events - 7%

(b)

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

P
a

g
e

s
 (

4
0

9
6

 b
y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 6 handoff events - 12%

(c)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80 90

P
a

g
e

s
 (

4
0

9
6

 b
y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 2 handoff events - 35%

(d)

Figure 5: Shared Memory Size

daemon tries to minimize the output materialization delay,
but then the CPU threshold is hit, and the daemon is not
able to increase its computing power usage, in order not
to significantly affect simulation performance, and therefore
the curve diverges. The scenario in Figure 6 (d) shows that,
considering the large amount of output messages, the calen-
dar queue becomes the bottleneck of the system (due to an
upper bound on the number of buckets, as described in [2]),
and the rollbacks which are encountered during the simu-
lation determine an amount of operations on the calendar
queue to delete messages which were already stored. How-
ever, we note that for values of f from 1% to 7% (which, as
said, would represent a case of orientation of the application
layer to performance due to reduced audit on model execu-
tion), we get that upon run termination the output stream
has been already materialized at the 75% or, at least, the
35%, which would enable pipelined treatment of the output
data while the run is still in progress. The careful reader
might notice that with a given generation wall-clock time,
more materialization times are associated. This is related
to the fact that these plots present system-wide material-
ization delays, where different kernel instances at the same
WCT value might generate output messages from LPs run-
ning at different LVT values. This skew is therefore reflected
in the commitment (wall-clock) time at which a set of mes-
sages can be safely materialized on the associated output
stream.

To assess the effects of the autonomic self-tuning mech-
anism for daemon activation, described in Section 3.3, we
present in Figure 7 a scenario where the parameter f (which
describes the frequency of statistics generation on standard
output) is not constant over the simulation run, rather varies
in the range [1%, 30%] in an interleaved fashion. In partic-
ular, f is set to 1% at the beginning of the simulation, and
is then incremented until it reaches the value of 30%, and
then again decreased. The plots show that the autonomic
self-tuning system is able to cope well with the dynamics
variations. In fact there is not any significant skew in the
simulation throughput, despite the output daemon continu-
ously requests for more or less computing power, depending
on the actual load phase on the output architecture.

5. CONCLUSION AND FUTURE WORK
In this work we have presented design indications for the

development of an efficient shared memory based output
streams management subsystem targeted at optimistic sim-
ulations. It allows a simulation model to rely on standard
library calls for producing output on different streams dur-
ing the execution of not-yet-committed events, and to ma-
terialize this output only when the corresponding events
get committed, in a system-wide timestamp ordered man-
ner. Further, reduced overhead is introduced at the side of
the simulation engine, which allows for not hampering the
speedup that is expected to be achieved when executing sim-
ulation models on optimistic PDES systems. Future work
entails the development of ad-hoc policies for limiting the
execution’s optimism in case the simulation environment is
running out of memory. To complement the results of the
experimental study, which has been tailored to the analy-
sis for shared-memory multi-core architectures, we plan to
investigate on the effects of our proposal in the context of
distributed memory systems (e.g. clusters).

6. REFERENCES
[1] B. H. Bloom. Space/time trade-offs in hash coding

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

W
a

ll-
c
lo

c
k
-t

im
e

 (
s
e

c
o

n
d

s
)

-
o

u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 1%

instantaneous print (theoretical)
1 print every 70 handoff events

(a)

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

W
a

ll-
c
lo

c
k
-t

im
e

 (
s
e

c
o

n
d

s
)

-
o

u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 7%

instantaneous print (theoretical)
1 print every 10 handoff events

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

W
a

ll-
c
lo

c
k
-t

im
e

 (
s
e

c
o

n
d

s
)

-
o

u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 12%

instantaneous print (theoretical)
1 print every 6 handoff events

(c)

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90

W
a

ll-
c
lo

c
k
-t

im
e

 (
s
e

c
o

n
d

s
)

-
o

u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 35%

instantaneous print (theoretical)
1 print every 2 handoff events

(d)

Figure 6: Generation/Materialization Delay

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 10 20 30 40 50 60 70

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-clock-time (seconds)

With Daemon
Wihtout printf

Figure 7: Frequency Variation

with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[2] R. Brown. Calendar queues: a fast O(1) priority queue
implementation for the simulation event set problem.
Communications of the ACM, 31:1220–1227, October
1988.

[3] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto.
Efficient optimistic parallel simulations using reverse
computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224–253, july 1999.

[4] S. R. Das, R. M. Fujimoto, K. Panesar, D. Allison,
and M. Hybinette. GTW: a time warp system for
shared memory multiprocessors. In WSC ’94:
Proceedings of the 26th conference on Winter
simulation, pages 1332–1339. Society for Computer
Simulation International, 1994.

[5] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys,
34(3):375–408, sept 2002.

[6] S. Franks, F. Gomes, B. Unger, and J. G. Cleary.
State saving for interactive optimistic simulation. In
Workshop on Parallel and Distributed Simulation,
pages 72–79, 1997.

[7] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, Oct. 1990.

[8] H. R. Group. ROOT-Sim: The ROme OpTimistic
Simulator - v 1.0.
http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/,
Oct. 2012.

[9] D. R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and System, 7(3):404–425,
July 1985.

[10] D. R. Jefferson, B. Beckman, F. Wieland, L. Blume,
M. D. Loreto, P. Hontalas, P. Laroche, K. Sturdevant,
J. Tupman, L. V. Warren, J. J. Wedel, H. Younger,
and S. Bellenot. Distributed simulation and the time
wrap operating system. In SOSP, pages 77–93, 1987.

[11] D. B. Johnson. Efficient transparent optimistic
rollback recovery for distributed application programs.
In Proceedings of the 12th Symposium on Reliable
Distributed Systems, RDS, pages 86–95, Oct. 1993.

[12] S. Kandukuri and S. Boyd. Optimal power control in
interference-limited fading wireless channels with
outage-probability specifications. IEEE Transactions
on Wireless Communications, 1(1):46–55, 2002.

[13] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[14] D. E. Martin, T. J. McBrayer, and P. A. Wilsey.
WARPED: A time warp simulation kernel for analysis
and application development. In HICSS ’96:
Proceedings of the 29th Hawaii International
Conference on System Sciences (HICSS’96) Volume 1:
Software Technology and Architecture, page 383. IEEE
Computer Society, 1996.

[15] A. Pellegrini, R. Vitali, and F. Quaglia. The ROme
OpTimistic Simulator: Core internals and
programming model. In Proceedings of the 4th
International ICST Conference on Simulation Tools
and Techniques, SIMUTools. ICST, 2011.

[16] A. Pellegrini, R. Vitali, and F. Quaglia. Transparent
and efficient shared-state management for optimistic
simulations on multi-core machines. In Proceedings
20th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems, MASCOTS, pages 134–141. IEEE Computer
Society, Aug. 2012.

[17] F. Quaglia. On the construction of committed
consistent global states in optimistic simulation.
International Journal of Simulation and Process
Modelling, 5(2):172–181, 2009.

[18] A. Santoro and F. Quaglia. Transparent optimistic
synchronization in the high-level architecture via
time-management conversion. ACM Trans. Model.
Comput. Simul., 22(4):21, 2012.

[19] SPEEDES. http://www.speedes.com, 2005.
[20] R. Vitali, A. Pellegrini, and F. Quaglia. Autonomic

log/restore for advanced optimistic simulation
systems. In Proceedings of the Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS, pages
319–327. IEEE Computer Society, 2010.

[21] R. Vitali, A. Pellegrini, and F. Quaglia. Towards
symmetric multi-threaded optimistic simulation
kernels. In Proceedings of the 26th International
Workshop on Principles of Advanced and Distributed
Simulation, PADS, pages 211–220. IEEE Computer
Society, Aug. 2012.

[22] A. Welc, B. Saha, and A.-R. Adl-Tabatabai.
Irrevocable transactions and their applications. In
Proceedings of the 20th annual Symposium on
Parallelism in Algorithms and Architectures, SPAA,
pages 285–296. ACM, 2008.

[23] D. West and K. Panesar. Automatic incremental state
saving. In Proceedings of the 10th Workshop on
Parallel and Distributed Simulation, pages 78–85.
IEEE Computer Society, May 1996.

[24] B. Wester, P. M. Chen, and J. Flinn. Operating
system support for application-specific speculation. In
Proceedings of the sixth conference on Computer
systems, EuroSys, pages 229–242. ACM, 2011.

