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Abstract—Continuous-Time agent-based models often repre-
sent tightly-coupled systems in which an agent’s state transitions
occur in close interaction with neighboring agents. Without
artificial discretization, the potential for near-instantaneous prop-
agation of effects across the model presents a challenge to
parallelizing their execution. Although existing algorithms can
tackle the largely unpredictable nature of such simulations
through speculative execution, they are subject to trade-offs
concerning the degree of optimism, the probability and cost of
rollbacks, and the exploitation of locality. This paper is aimed at
understanding the suitability of asynchronous and synchronous
parallel simulation algorithms when executing continuous-time
agent-based models with rate-driven stochastic transitions. We
present extensive measurement results comparing optimized im-
plementations under various configurations of a parametrizable
simulation model of the epidemic spread of disease. Our results
show that the amount of locality in the agent interactions is the
decisive factor for the relative performance of the approaches.
Based on profiling results, we identify remaining hurdles for
higher simulation performance with the two classes of algorithms
and outline potential refinements.

I. INTRODUCTION

Many real-world phenomena are naturally described as
memoryless stochastic processes in which transitions occur
with exponentially distributed delays in continuous time. In
Gillespie’s Stochastic Simulation Algorithm (SSA), chemical
reactions occur after delays drawn from exponential distribu-
tions, whose rates depend on physical constants and the vari-
able number of potential reaction partners. Reactions compete
in a stochastic race based on their randomly drawn delays
to determine the next occurring reaction. Several variants of
SSA exist, of which the Next Reaction Method (NRM) [1]
follows a familiar discrete-event mode of execution. Potential
reactions are scheduled in the form of timestamped events. The
simulation proceeds by iteratively selecting and actuating the
reaction with the smallest timestamp, during which dependent
reactions are rescheduled to account for changes in their rates.
In recent years, this approach found its way into individual-
based simulations in domains such as epidemics [2] and de-
mographics [3]. Here, stochastic races decide which potential
agents’ transition takes place next. At each transition, agents
may access arbitrary portions of the simulation state as well
as change other agents’ transition rates.

Applications of SSA in the context of agent-based modeling
inherit the algorithms’ key properties. On the one hand,
SSA allows for an exact, albeit stochastic, execution of a
given model specification. On the other hand, SSA-driven
simulations are expensive to scale to large models. Firstly,

the selection of the next transition from a large number of
potential transitions incurs substantial overhead. Secondly, the
dynamic updates of dependent rates introduce the potential for
tight coupling along the sequence of transitions.

Discrete-event simulations of large systems are commonly
accelerated using methods from parallel and distributed sim-
ulation [4], in which the computation load is distributed to
a set of processors interconnected via shared memory or a
network. A variety of synchronization algorithms exist to
account for the dependencies among model portions referred
to as logical processes (LPs), executed by separate processors.
Conservative synchronization algorithms guarantee that the
temporal ordering of transitions is maintained throughout the
entire execution of a simulation run. To rule out ordering
violations, conservative algorithms rely on lookahead, which
is the ability for processors to predict their effects on other
processors into some quantity of the simulated future. In
contrast, optimistic (also referred to as speculative) algorithms
detect ordering violations, after which the simulation is rolled
back to a previous state.

The stochastic nature and dynamic rate updates of SSA-
driven agent-based simulations and the resulting difficulty in
predicting the times of future transitions render SSA-driven
simulations largely unfit for conservative synchronization.
However, optimistic algorithms also face substantial chal-
lenges. Time Warp [5], arguably the most widely known op-
timistic algorithm, allows processors to advance in simulation
time asynchronously. Each transition may involve instanta-
neous read/write access to agent states located on separate
processors. Correctly serving such accesses couples the source
and destination agents’ progress in simulation time, leading to
rollbacks or idle times. Moreover, Time Warp’s assumption
of a purely event-driven interaction among simulated entities
requires each read/write access among agents to be reflected
by an event exchange, which may incur substantial overhead.

Synchronous Speculative Stochastic Agents (S3A) is an
optimistic algorithm tailored to the challenges of parallelizing
the execution of SSA-driven agent-based simulations [6].
Taking inspiration from the classic Breathing Time Buck-
ets algorithm [7], this synchronous algorithm proceeds in a
window-based manner, allowing each agent to advance at most
by one transition per window. Through this tight coupling
among processors, the algorithm avoids the need to maintain
a state history beyond a single old and new state per agent.
Further, the algorithm aims to limit the scheduling overhead by



allowing agents to access each other’s states directly without
mediation in the form of explicit events.

We previously showed that S3A can substantially accelerate
simulations of a large-scale epidemics model with a highly
dynamic topology. However, due to S3A’s underlying assump-
tions, it cannot benefit from locality in the agent interactions.
For instance, in epidemics models, agents are commonly situ-
ated in compartments, with each agent’s interactions limited to
its current compartment [8]. If communication is sufficiently
local and different model portions are thus sufficiently decou-
pled, the asynchronous execution of Time Warp may better
exploit the model’s inherent concurrency.

This paper explores the suitability of asynchronous and
synchronous speculative algorithms for accelerating agent-
based simulations with rate-driven transitions in continuous
time. We describe the fundamental differences in the synchro-
nization algorithms and their consequences for executing SSA-
driven agent-based simulations. A parametrizable epidemics
model based on an agent-based formulation of the classical
susceptible-infected-recovered model serves as a basis for
extensive performance measurements and profiling. After iden-
tifying the model properties decisive to whether a synchronous
or asynchronous is preferable, we provide profiling results to
identify the remaining potentials for further performance gains.
Finally, we outline an approach to combine the algorithms to
exploit locality while maintaining efficiency with respect to
tightly coupled model portions.

II. ANALYSIS

The challenges for parallel execution of SSA-driven agent-
based simulations are mainly due to the reliance on rate-
based transitions in continuous time. In the following, we
underline the need for continuous-time simulation and its
specific consequences when considering their parallelization.

A. The Case for Continuous-Time Simulation
The continuous nature and lack of lower bounds on tran-

sition delays of the considered type of simulation models
largely prohibits a parallelization using purely conservative
algorithms. One might be tempted to sidestep this issue by
discretizing simulated time and employing existing conserva-
tive methods for time-stepped agent-based simulation [9]–[11].
Nevertheless, tiny time steps would be required to adequately
reproduce the results of even a simple cellular automaton with
rate-driven transitions.

When considering some physics-inspired models initially
defined in terms of ordinary differential equations such as
Social Force [12] or Intelligent Driver Model [13], the time
steps represent numerical integration steps, allowing the error
to be limited by a suitable choice in integration scheme [14]. In
general, however, bounds are not easily available, and the error
can become substantial if the time step size is too large [15].

Importantly, the step size defines a lower bound on the
delay of any effect propagating from one agent to the next.
Assuming that transitions occur at rate r, the time until the
next transition is exponentially distributed with mean 1/r.
While a time-driven simulation can imitate such processes by
carrying out a Bernoulli trial at each time step to determine if a

Fig. 1: Illustration of the cellular simulation on a 50×50 grid.
In this intermediate state, half of the cells are still alive.
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Fig. 2: Ratio of dead cells over time, showing the time-stepped
execution deviation from the continuous reference.

transition takes place, the time step size defines a lower bound
on time between transitions. Since simulations often involve
the propagation of effects across large numbers of simulated
entities, very small time step sizes may be required to represent
the dynamics of a continuous-time reference model adequately.

We illustrate this issue using a simple cellular model on
a 50 × 50-cells grid. Cells carry a binary alive/dead state.
Initially, all cells apart from the top-left one are alive. At a
rate of 1, each dead cell causes all its Moore neighbors to
die simultaneously. The simulation ends once all cells have
died. We compare the simulation end times when executing the
model in continuous time, i.e., as a discrete-event simulation,
and in a time-stepped fashion. Given the rate of 1, the per-
step transition probability in the time-stepped variant with step
size τ is computed via the cumulative distribution function of
the exponential distribution as 1− e−τ . Figure 1 illustrates an
intermediate state of an example run in which half of the cells
are still alive.

Figure 2 shows the evolution of the ratio of dead cells across
simulation time. The data was generated by executing 106

simulation runs for the continuous reference and each step
size. We can see that in the time-stepped simulations, the
sequence of transitions is consistently delayed compared to
the continuous reference simulation, even with the smallest
time step size of 0.03125. The average simulation end times
and their 99% confidence intervals were 17.5 ± 0.004 for
the continuous reference, and 36.7 ± 0.005, 22.0 ± 0.004,
18.6± 0.004 for the step sizes of 0.5, 0.125, and 0.03125.



We can see that the mean simulation end time using the
time-stepped variant always exceeds that of the reference,
reflecting the cumulative delay introduced by the time steps.
Even at a time step size of 0.03125, the deviation was
still 6%. These results demonstrate the substantial deviation
that time-stepped simulation can introduce when compared
to a continuous-time reference simulation. A more thorough
analysis of the effects of discretization in time on continuous-
time simulations is given in [16].

B. Challenges to Parallelization
The considered class of models is characterized by rate-

driven transitions continuous time across dynamic topologies,
wherein each agent transition may be associated with instan-
taneous read and write accesses to neighbor states. These
characteristics severely impede predictions of the times of
future transitions, the agents at which the transitions occur,
and the neighbors to be accessed. However, such predictions
are the basis for lookahead, which is required to apply conser-
vative synchronization algorithms. In the following, we argue
that given the above model characteristics, efforts to extract
lookahead degenerate to a speculative execution of transitions,
suggesting the use of optimistic synchronization instead.

The distributions from which waiting times are drawn
typically allow for transitions with zero or near-zero delay.
This allows cause-and-effect chains to cascade through the
simulated system within very short amounts of time. Even
so, methods to compute lookahead dynamically would still
allow conservative synchronization algorithms to be applied.
By presampling the pseudo-random numbers used to compute
transition delays, the times of future transitions could be
computed ahead of time [17]. With this information, the
propagation of effects throughout the model could be predicted
by following the topology defined by the agents’ neighborhood
relationships [18]. However, since the transitions modify the
topology dynamically, the sequence of agents to undergo tran-
sitions is not known in advance. Consequently, predictions of
future transitions to extract lookahead would require a partial
or full execution of transitions to determine their effects.
In essence, this describes a speculative mode of execution
similar to optimistic synchronization algorithms. However,
while conservative algorithms would use the precomputed
effects of transitions only to determine lookahead and thus
recompute some of the transitions, optimistic algorithms only
discard results if they have been computed in violation of the
correct temporal ordering of events.

However, SSA-driven agent-based simulations pose chal-
lenges even with optimistic synchronization. Classical specu-
lative synchronization algorithms strictly follow the discrete-
event paradigm, which requires any agent interactions to
be reflected by events stored in an event list and possibly
exchanged among processors. This strictly event-driven mode
of execution implies considerable computational and memory
overhead when considering fine-grained and instantaneous
agent interactions. In the next section, we contrast a specializa-
tion of the asynchronous Time Warp to support tightly coupled
agent-based models efficiently, and a synchronous algorithm
tailored explicitly to such models.

III. SYNCHRONIZATION ALGORITHMS

A. Asynchronous Execution using Time Warp

In Time Warp synchronization, events are executed indepen-
dently of their safety. If a causal inconsistency is later detected
(e.g., due to the reception of a straggler message received
in violation of timestamp order), incorrectly-executed events
are rolled back, and execution is resumed from a consistent
snapshot. During rollback execution, inconsistently-generated
events are annihilated by generating so-called antimessages.
An antimessage reception could cause an additional cascading
rollback. This overall scheme is depicted in Figure 3.

SSA-driven simulation of tightly-coupled agents using Time
Warp typically involves two main classes of events: i) agent
state transitions, and ii) access events required to represent
inter-agent accesses across processor boundaries in the event-
driven paradigm. Access events are likely to be fine-grained
to the extent that they might only entail reading a single state
variable. The parallel execution of such fine-grained events
may not amortize the synchronization overhead.

A second challenge is caused by the high degree of coupling
among agents. Classical Time Warp simulations have been
shown to be efficient [19] when the runtime environment can
capture some degree of independence among the different
simulated entities. In the case of tightly-coupled agent-based
models, only limited independence is available since the
agents may access each other’s states instantaneously during a
transition, which typically entails couples of “request”/“reply”
events. The tight temporal coupling among agents in the
presence of large volumes of these events can cause frequent
rollbacks in a Time Warp-based execution. Furthermore, each
access may change the transition rates of the affected agent,
which requires its next pending transition to be rescheduled.

Two main strategies can tackle these hindrances to an
efficient Time Warp-based simulation. The first strategy is
related to exploiting regions of interactions among agents. If
the model can be partitioned into regions so that the intra-
region coupling is higher than the coupling across regions,
each region can be mapped to a logical process (LP) [5].
Within a region, agents can interact via direct accesses to
state variables since the synchronization algorithm guarantees
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that all local agents observe the same simulation time upon
an event’s execution. Agents assigned to separate regions still
interact via message passing.

As a second strategy, we specialize the traditional Time
Warp runtime paradigm by introducing the concept of re-
tractable events. The simulation model developer can mark
an event as tentative. If the model takes no further action,
it will be managed by the runtime environment as a regular
event. However, the model can also remove that event from the
system or associate the same event with a different timestamp.
If, after a timestamp update, the event is still in the future of
the destination LP, that event can be simply moved backwards
without affecting the overall simulation performance. Con-
versely, moving an event in the past of the current simulation
time of the destination LP can be managed as if it were a
regular straggler message.

B. Synchronous Execution using S3A

The S3A algorithm operates under the assumption that
sequences of transitions may swiftly and unpredictably affect
arbitrary agent states throughout the simulation. To account
for this assumption, the algorithm maintains a tight coupling
among processors to limit the frequency and cost of rollbacks.
This is accomplished through a round-based synchronous
approach using global barrier synchronizations in shared mem-
ory. S3A allows all inter-agent accesses both within or across
regions to be carried out by direct accesses to the agents’ state
variables. Since the tight temporal coupling among processors
may severely limit the exploitation of a model’s concurrency,
each round must be as inexpensive as possible. The overhead
of optimistic algorithms lies in the management of the lists
of events, previous states, and antimessages and the cost of
rollbacks. In S3A, state saving is limited to a single old
and current state per agent, similar to synchronous update
schemes for time-stepped cellular automata [20], [21]. Due to
the fine-grained state saving on the level of individual agents,
a rollback involves only the inexpensive operation of copying
the old state to the current state. Further, the algorithm avoids
the need for antimessages by ruling out transitive causality
violations altogether.

We describe the high-level operation of the S3A algorithm
based on the pseudo-code shown in Algorithm 1. For an
in-depth description of the S3A algorithm, see [6]. Agents
are distributed to a set of processors. In each round of the
algorithm, the processors execute local transitions in non-
decreasing timestamp order up to a bound determined as the
sum of the global minimum timestamp among all scheduled
transitions and a tunable initial window size τ0. Each transition
may involve immediate read/write accesses to other agents.
The key idea of the algorithm is to dynamically reduce the
window size so that at the end of the round, the window
contains only those transitions and accesses that can safely be
committed. This is accomplished by guaranteeing that the final
window contains for each agent exactly the earliest transition
or access according to their timestamps, if any. By definition,
these transitions or accesses can never be displaced by another
transition or access.

Algorithm 1: Main loop of the S3A algorithm.
1 while !termination criterion do
2 global bound ← get global min ts() + τ0
3 foreach thread in parallel do
4 execute transitions earlier than global bound, dynamically

reducing global bound according to Algorithm 2
5 barrier()
6 foreach agent in active agents ∪ accessed agents do
7 if agent.min access ts < global bound then
8 commit transition, enqueue new events

9 else
10 roll agent back to previous state

11 barrier()

Algorithm 2: Agent state access in S3A.
1 procedure Agent::access(access ts)
2 agent.lock()
3 if access ts < agent.min access ts then
4 // access is earliest in round so far
5 if agent.min access ts ̸=∞ then
6 roll back agent
7 global bound ←
8 min(global bound, agent.min access ts)

9 carry out agent state access
10 agent.min access timestamp ← access ts

11 else
12 // access is deferred to a subsequent round
13 global bound ← min(global bound, access ts)

14 agent.unlock()

Algorithm 2 shows the dynamic adaptation of the win-
dow size during an agent access as part of a transition.
The variable earliest_access_ts, which is initially set
to ∞, records the earliest timestamp of an access to the
agent. If a new access arrives with a timestamp earlier than
earliest_access_ts, the new access can be carried
out, displacing any previously recorded access with larger
timestamps by immediately rolling back the agent to its old
state. On the hand, if an earlier access has been recorded
previously, the window size is reduced to exclude the current
access and its associated transition from the current round. The
use of a global window rules out transitive effects of displaced
or deferred accesses since any previously computed transitions
and accesses with timestamps above the window bound are
rolled back at the end of the round (Algorithm 1, line 10).
Similarly, any newly scheduled transition within a round is
deferred to a subsequent round by reducing the upper window
bound to its timestamp.

IV. BENCHMARK MODEL AND IMPLEMENTATIONS

We compare the asynchronous and synchronous parallel
simulation algorithms using a simulation model of the epi-
demic spread of a contagion. The model is an extension of
the agent-based formulation [22] of the classical susceptible-
infected-recovered model. We consider the SIRS variant, in



which recovered agents eventually return to the susceptible
state. In our model, each agent is situated in one of a
configurable number of fully connected regions, each initially
populated with the same number of agents. Each agent has 8
neighbors chosen uniformly at random within the same region.
Hence, the number of regions determines the degree of locality
in the agent interactions.

Following the SSA, transition delays are drawn from expo-
nential distributions with static or dynamic rates. For suscepti-
ble agents, the infection rate is equal to the number of infected
neighbors. Hence, agents entering or leaving the infected state
must notify their neighbors so their transition to the infected
state can be rescheduled according to the changed rate. The
transitions to the recovered state and back to the susceptible
state occur with constant rates of 1. Two additional transitions
introduce dynamic changes to the topology defined by the
agents’ neighborhood relations. The first type of transition
changes an agent’s neighbors within its current region uni-
formly at random, potentially changing its infection rate or the
neighbors’ infection rates in the process. The second transition
type migrates an agent to another region chosen uniformly at
random and links the agent to new neighbors in the selected
region. The rates at which these two types of transitions take
place allow us to control the degree of computational load
and agent interaction within each region on the one hand and
the interdependence of transitions across regions on the other
hand. Overall, this system resembles epidemics models as used
in real-world epidemics studies [23], which aim to capture the
effects of the populations’ everyday as well as long-distance
mobility.

A. Sequential Reference Implementation
Our reference sequential implementation in C++ schedules

timestamped transitions using the priority_queue con-
tainer class from the standard template library. If a transition is
rescheduled before being executed, it remains in the container.
Each agent’s current pending transitions are stored as part of
the agent state. When a transition extracted from the container
is identified as outdated, it is discarded. In preliminary ex-
periments, we found this approach to be substantially faster
than explicit event retraction using the set container. Agent
accesses are carried out by direct access to the agent states
without scheduling events. Pseudo-random numbers are drawn
using the Xoroshiro128** generator [24].

B. Time Warp Implementation
The model implementation in Time Warp is based on a

certain number of LPs mapped to regions of the simulated
space. At simulation startup, agents are evenly distributed
among the LPs, forming local groups. Each agent is associated
with three independent chains of events, one for each type of
transition. The transition timestamps are drawn from expo-
nential distributions using the Xoroshiro256** generator. The
transitions with respect to each agent’s susceptible, infected, or
recovered state have been implemented as retractable events.

The agents’ neighborhood relationships are symmetric: ev-
ery time an agent randomly picks a neighbor, the other
agent does the same, if space for additional neighbors is

left. Once an agent receives a migration event, it disconnects
itself from the hosting LPs, and an event is scheduled to a
random LP in the simulation. The destination LP receives a
message piggybacking the agent’s current state, which, upon
the creation of local links with other agents, might trigger the
reevaluation of the next-transition timestamp for all involved
agents. If an agent re-evaluates the next-transition timestamp,
it simply informs the underlying runtime environment that the
timestamp of the retractable event associated with its next state
transition should be updated.

This support has been implemented within the open-source
ROOT-Sim simulation framework [25]. Each worker thread
implements a private queue that handles the retractable events
associated with the agents bound to it. The private queue
is implemented as a k-heap data structure, allowing efficient
priority changes and removal of events. In order to extract a
new event, each thread chooses the lowest timestamp between
the normal events queue and its private retractable events
queue. This strategy increases the next-event extraction cost
only marginally.

C. S3A Implementation

Our S3A implementation is based on the same code as
the sequential reference both for transition scheduling and
the benchmark model. The modifications required were the
introduction of multithreaded execution using pthreads, the
implementation of the main parallel execution loop of Algo-
rithm 1, and the wrapping of agent accesses to update the
window bounds according to Algorithm 2. As in the sequential
implementation, neighbor accesses are carried out in the form
of direct memory accesses and are thus not scheduled as
events. Atomic operations are used to carry out the minimum
operations required to determine the initial window bounds
and update the upper bound throughout each round.

V. EXPERIMENTAL ASSESSMENT

A. Experiment Setup

We executed our implementations on a dual-socket machine,
each socket equipped with an Intel(R) Xeon(R) CPU E5-2683
v4 @ 2.10GHz. The total amount of RAM is 256 GB.

We considered two different values for the migration rate
of 0.01 and 0.16 to mimic highly variable and more stable
scenarios. The total number of agents has been varied between
216 and 224, accounting for medium and large simulation
scenarios, evenly distributed across the available regions at
simulation startup. The number of regions was configured
as 128 and 8192, representing scenarios with low and high
degrees of locality in the agent interactions. We enforced a
minimum region size by discarding configurations with less
than 128 agents.

In the following, we provide performance results comparing
the performance of the S3A and the Time Warp algorithms,
as well as profiling data to highlight the causes of the ob-
served results. Each data point represents the average of three
measurements.
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Fig. 4: Performance results with 128 regions, migration rate 0.01.
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Fig. 5: Profiling results with 128 regions, migration rate 0.01.
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Fig. 6: Performance results with 128 regions, migration rate 0.16.
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Fig. 7: Profiling results with 128 regions, migration rate 0.16.

B. Performance and Profiling Metrics
In our measurements, we employ entirely separate imple-

mentations of Time Warp and S3A. Therefore, it is critical to
identify metrics that permit a fair comparison.

We focus on two principal metrics: the speedup over the
sequential reference and the throughput expressed in terms
of committed transitions per second of wall-clock time. We
include only the actual simulation processing time for both
metrics, i.e., we do not consider the initial model setup
and final cleanup phases. Both the S3A and Time Warp
implementations rely on several data structures and subsystems
that might require non-negligible time before starting the sim-
ulation, but optimizing these phases is outside the objectives
of this paper.

The selected profiling metrics are forward execution time
and event management time. The former accounts for the
total time spent by both simulators running the model’s code,
i.e., not considering any housekeeping operations. The latter

considers all the housekeeping operations related to event
management, such as enqueuing new events, extracting next
events, and executing rollbacks.

For the Time Warp implementation, we also provide clas-
sical measures, namely the efficiency (in terms of commit-
ted events/executed events) and the rollback length (i.e., the
average number of events that are undone every time that
a straggler message is received and a rollback operation is
carried out).

C. Experiment Results

In the configurations with 128 regions, the Time Warp
implementation generally delivers poor performance relative to
the sequential baseline. The migration rate and the number of
agents play an essential role, however: with higher migration
rates (Figure 6), the slowdown is generally more apparent than
with lower rates (Figure 4). Similarly, smaller agent counts
deliver better speedup.
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Fig. 8: Performance results with 8192 regions, migration rate 0.01.
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Fig. 9: Profiling results with 8192 regions, migration rate 0.01.
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Fig. 10: Performance results with 8192 regions, migration rate 0.16.
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Fig. 11: Profiling results with 8192 regions, migration rate 0.16.

This behavior is mainly due to the number of agent migra-
tions being large compared to the number of regions. Migra-
tion frequently causes a large number of expensive rollbacks:
as shown in Figure 12, when the agent count increases, effi-
ciency decreases. In configurations with 32 threads, efficiency
is as low as 20%. At the same time, the rollback length can
reach 350 events per rollback.

We note that the rollback length directly depends on the
checkpoint frequency, which is controlled by an autonomic
agent in ROOT-Sim [26]. This agent takes several internal
parameters into account to tune the checkpoint interval. The
relevant ones for this particular model are the event granularity,
which is fine-grained on average, and the size of the LP state,
which grows with the agent count. Therefore, the autonomic
checkpoint strategy is selecting a large checkpointing interval
in an attempt to spend more time in forward processing, trying
to favor fine-grained events against costly checkpoints.

Overall, rollbacks are expensive in these configurations

exhibiting few and large regions with many region interactions.
As shown in Figures 4 and 6, the percentage of time spent
in event management (which also accounts for rollbacks) is
substantial. Rollbacks further disrupt execution by indirectly
slowing down other LPs, which would be more likely to
generate more straggler events. As again shown in Figures 4
and 6, the percentage of time spent running events is minimal.

Conversely, S3A provides acceptable speedup. The overhead
of synchronous rounds and contention on atomic operations
with lower agent counts becomes apparent. For example, in
Figure 4a, with 216 agents, speedups worsen when increasing
the thread count. With 32 threads, each thread only processes
a maximum of about 2000 agent updates per round. Still, the
results show good scaling in the number of agents, suggesting
that S3A performance could grow with larger agents count
if a sufficient number of processor cores is available. This is
supported by Figure 4, with transitions throughput increasing
with both the thread and agent counts. Increasing the migration



 0

 20

 40

 60

 80

 100

216 217 218 219 220 221 222 223 224

E
ffi

ci
e
n
cy

 (
%

)

Number of Agents

4 threads
8 threads

16 threads
32 threads

(a) Efficiency.

 0

 100

 200

 300

 400

216 217 218 219 220 221 222 223 224

R
o
llb

a
c
k 

L
e
n
g
th

Number of Agents

4 threads
8 threads

16 threads
32 threads

(b) Rollback Length.
Fig. 12: Time Warp performance metrics with 128 regions,
migration rate 0.01.

rates has no impact on the speedup results (see Figure 6),
whereas the transition throughput improves. The results high-
light that migrations in S3A are less computationally demand-
ing than in Time Warp, as expected.

With the larger region count of 8192 the runtime behavior
of S3A is mostly unchanged, as visible in Figures 8 and 10.
Even the profiling results, shown in Figures 9 and 11, are
almost identical. This result indicates the robustness of S3A’s
performance towards changes to the model configuration. Due
to its assumptions, S3A’s performance is largely unaffected by
the amount of locality in the agent’s interactions.

In contrast, Time Warp observes a substantial improve-
ment in performance, delivering substantial speedups and high
transition throughputs. However, as shown in Figure 8, the
trend seems to worsen when increasing in agent count. We
conjecture that an insufficient agent density leads regions to
engage in long incorrect speculative state trajectories, leading
to infrequent but expensive cascading rollbacks. On the other
hand, excessive agent densities approach the pathological
scenario shown earlier with 128 regions.

With the migration rate set at 0.16, the best-performing
results are observed at a large agent count, as shown in Fig-
ure 10. Overall, speedups are lower, but these results suggest
a bell-shaped speedup behavior for Time Warp simulations.
Interestingly, S3A performs similarly to Time Warp in the
densest configuration. The safer and controlled round-based
optimistic execution of S3A pays off when miss-speculations
in Time Warp are either too costly (dense regions states/
expensive rollbacks) or too frequent (high migration rates/
many straggler messages).

VI. DISCUSSION AND RESEARCH DIRECTIONS

The two algorithms compared in this paper operate under
contrasting assumptions. S3A dynamically reduces the local
window size and rolls back transitions and agent accesses so
that transitive errors are avoided entirely. This strict approach
is appropriate if inter-agent communication is unpredictable,
global, and may occur with only small delays in simulation
time. On the other hand, Time Warp allows comparatively

coarse-grained LPs to advance in time asynchronously, which
is appropriate if the degree of coupling among LPs is low.
Following these assumptions, our measurement results have
shown that Time Warp excels if there is a large degree of
locality in the inter-agent communications, splitting the model
into loosely coupled LPs. Conversely, S3A is superior at model
configurations with largely global communication.

Outside of the two extremes of global and localized com-
munication within small regions, neither of the approaches
fully aligns with the properties of the considered model. If
there is only a modest number of regions, Time Warp must
either divide each tightly coupled region into multiple LPs
acting asynchronously or fall back to sequential execution per
region. On the other hand, the synchronous execution of S3A
fails to exploit the locality in the inter-agent communication.

Both algorithms have room for performance improvement
on their own, based on the results shown in Section V-C.
The plain Time Warp algorithm could benefit on shared-
memory machines by different event-management strategies,
e.g., the ones presented in [27], although it should be assessed
experimentally whether the limitations shown in this paper
are inherent to the paradigm or dependent on the specific
implementation. The scaling properties of S3A could be en-
hanced by refinements to the thread synchronization paradigm.
For example, the global minimum may be updated only
periodically, trading an increase in rollbacks for a reduced
rate of atomic writes.

As a further research direction, the algorithms could be
combined in a layered synchronization mechanism to harness
the benefits of both. Figure 13 illustrates the envisioned
synchronization mechanism. Each model region is simulated
using an instance of the S3A algorithm, which would guarantee
that at the end of each window, the local causality constraint
is upheld with respect to transitions within a region. Each S3A

t t+τ0a1

a2

an/2

...

an/2 + 1

an

...

an/2 + 2

Time Warp LP 1

Time Warp LP 2

Sim. time (Time Warp)

Sim. time (Time Warp)

Sim. time (S3A)

Sim. time (S3A)

GVT

t t+τ0

Fig. 13: Envisioned layered execution. The transitions within
each tightly coupled model region are handled by S3A. Each
S3A instance is a Time Warp LP, allowing for causality
violations caused by inter-region interactions to be resolved.



instance is an LP of a Time Warp simulation. On the Time
Warp level, an LP’s simulation time is the lower bound of
its S3A instance’s current window, and an event involves the
advancement of the local S3A instance by one time window.
Since the transitions within a time window processed by an
S3A instance may be invalidated by a straggler event, each
Time Warp LP performs state saving at the granularity of entire
S3A time windows. With this synchronization mechanism,
S3A exploits the per-region concurrency inherent to the model
while accounting for the tight coupling among agents. In
contrast, Time Warp exploits the large degree of decoupling
across regions while still maintaining causality. Similar to
the use of Time Warp on its own, this layered approach
requires the identification of model portions with limited inter-
dependence, putting a key focus on the partitioning scheme.
An implementation and evaluation of this approach is part of
our future work.

VII. RELATED WORK

A variety of approaches have been explored to efficiently
execute simulation models with tightly coupled simulation
entities in parallel. In the following, we discuss works focusing
on algorithms and on runtime environment support for such
models.

A synchronous synchronization algorithm that is closely
related to S3A is Breathing Time Buckets (BTB) [7]. Within
a synchronization cycle, LPs first compute events specula-
tively while withholding new events targeting other LPs. The
timestamp of the earliest new event defines the event horizon
up to which executed events can be committed and their
associated new events delivered. Since this approach rules
out transitive errors, it does not require the generation of
antimessages as in Time Warp. In contrast to BTB, S3A
allows each event to involve instantaneous and direct accesses
to simulation entities at other LPs, while still guaranteeing
correctness of the committed events. BTB would require such
accesses to represented by newly scheduled events, which
would be executed over the course of multiple synchronization
cycles.

In the domain of biochemical systems, a number of algo-
rithms for parallelized execution of SSA-driven simulations
have been explored. In [28] Time Warp is employed to
execute the Next Reaction method, by relying on an event
retraction scheme similar to the one used in our Time Warp
implementation. Time Warp has also been effectively used to
support the Next Subvolume Method [29]–[31] by constraining
the optimism, which is a technique also employed by S3A.

In the context of Time Warp, several works have studied
techniques to allow concurrent access to the simulation state
of remote LPs while executing events speculatively. Some
works [32], [33] rely on the concept of state query, where
LPs can access other LP’s states by explicitly requesting a
copy of the data via message passing. In [33], to reduce
the performance penalty due to repeated queries, a single LP
acts as a centralized data store, which is subject to a custom
rollback procedure, while maintaining multiple versions of
the variables’ data. Multi-versioning of variables is also used
in [34]–[36]. In [34], the model explicitly registers LPs as

readers or writers on the shared variables—in our simulations,
agents can act as both. Theoretical protocols to maintain
replicated instances of variables are provided in [35]. In [36],
substantial performance gains are achieved by avoiding some
of the event exchanges required in traditional implementations.

Several approaches allow for accesses to other LPs’ vari-
ables by constructing groups of LPs [37], [38]. In [37], one
LP group can be active at any time since a single thread can
run it in the system. Portions of the state can be marked
as public and can be accessed by other groups of LPs by
relying on Software Transactional Memory. The work in [38]
has no notion of public attributes, but LPs can be regrouped
dynamically based on runtime information regarding the fre-
quency of mutual accesses. In [39], a mechanism based on
page-fault interception is used to capture memory accesses to
a remote LP at runtime, while a dedicated synchronization
protocol enforces time-consistent access to the data.

Our work is differentiated from the above proposals by
allowing agents to directly access each other’s variables if they
reside in the same region (Time Warp) or globally (S3A).

VIII. CONCLUSIONS

We presented an experimental comparison of an asyn-
chronous and a synchronous speculative simulation algorithms
for tightly-coupled continuous-time agent-based models. Re-
lying on a benchmark model with configurable amounts of
locality in the agent interactions, we showed the scenarios
under which each algorithm’s strengths are observed. The
performance of the synchronous algorithm S3A was shown
to be virtually independent of the amount of locality, allowing
for modest speedup even with largely global interactions. In
contrast, a specialization of the asynchronous Time Warp algo-
rithm requires larger amounts of locality to achieve speedup,
but vastly outperforms S3A in suitable configurations.

As a future research direction, we sketched a layered com-
bination of the two algorithms in which locality is exploited
through Time Warp, whereas local tightly coupled model
portions are parallelized using S3A.
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