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Abstract—HPC applications on future exascale systems will
demand for runtime environments able to transparently manage
the complexity of the underlying heterogeneous hardware. In
this abstract, we discuss a computation model for speculative
HPC applications, able to deliver non-minimal performance
increase and significant energy savings. This model can be easily
adapted to multiple heterogeneous hardware families with minor
effort, and it can autonomically and promptly reassign units of
work to different hardware classes. Our design jointly targets
performance and energy efficiency. We also provide a preliminary
experimental evaluation of our design.

Index Terms—Speculative Processing, High Performance Com-
puting, Heterogeneous Computing, Runtime Environments

I. INTRODUCTION

The international effort to target emerging pre-exascale and
future exascale-class HPC systems has already identified fun-
damental aspects to make an effective usage of the computing
resources from an application point of view [1]. Some of
them relate to: i) autonomicity in the management of the
resources provided by HPC systems; ii) the role of runtime
environments, which should understand application workload
to fine tune the usage of the underlying hardware to increase
performance and efficiency; iii) speculation, as a means to
capture the degree of parallelism of applications, and make a
better usage of the available computational power.

Speculation has been shown in the literature to effectively
enable a performance increase of a wide range parallel/
distributed HPC applications. In particular, it has been fruit-
fully used in the contexts of Parallel Discrete Event Simulation
(PDES) [2], Transactional Memory [3], and task-based fine-
grain parallel applications [4]. In these contexts, units of work
(e.g., transactions, events, tasks) are carried out independently
of their safety, i.e. they might temporarily bring the execution
path to an inconsistent state, which is detected a-posteriori and
undone (e.g., by means of transactional aborts or rollbacks).

Future exascale systems are expected to be based upon het-
erogeneous infrastructures, i.e., composed of different families
of hardware such as CPUs, GPUs, FPGAs, and a wide range
of coprocessors. Heterogeneous infrastructures are inherently
asymmetric, in the sense that different hardware shows a differ-
ent performance/energy tradeoff in the execution.Nowadays,
this asymmetry is also present in CPU-only systems where
ISA-diverse cores are employed, or differentiated per-core
voltage and frequency regulations are necessary to keep the
chip temperature in the safe operating range [5].

At the same time, most massively-parallel runtime environ-
ments used to support the execution of HPC applications are
designed to be inherently symmetric (see, e.g., [6], [7]). Sym-
metry in their design refers to the threads of execution which
carry out similar activities, independently of the hardware on
which they run or the load. Given the various performance/
energy trade-offs provided by heterogeneous architectures, this
approach could be sub-optimal.

In particular, there is still no consensus on a viable path to
effectively exploit speculative computation on heterogeneous
architectures, from a performance and energy efficiency stand-
point. This is an important open question, because speculation
creates additional and interesting opportunities to optimize
the execution of HPC applications, especially in the case
of autonomic self-tuning capabilities transparently offered by
runtime environments.

We therefore envisage a completely different design of spec-
ulative runtime environments, able to autonomically capture
and exploit the intrinsic capabilities of these emerging hard-
ware paradigms. We present in this abstract a general software
architecture for speculative applications on heterogeneous sys-
tems, which has been devised with portability as a central goal.
We propose an asymmetric runtime environment inspired by
the intrinsic asymmetrical structure of heterogeneous machines
where threads are specialized to perform different operations.
Housekeeping operations, i.e. those which are necessary only
to enforce correctness in the speculative execution, are moved
off the critical path of threads which carry out units of work
associated with the applications. In this way, coprocessors,
GPUs, and/or FPGAs could be used to carry out tasks as-
sociated with the HPC application in a more efficient way,
while CPUs are dedicated to both the orchestration/autonomic
management, and processing. This scheme allows to fine
tune the allocation of hardware resources to the different
contributors that affect the application progress, allowing to
increase the overall performance, reduce the energy footprint,
or both at the same time. We present preliminary results for
PDES applications, but we plan in the near future to generalize
our design and adapt it also for other application domains.

II. THE PROPOSED SYSTEM MODEL

In the context of speculative runtime environments for HPC,
the de-facto architectural standard uses symmetric threads
which carry out the same activities, yet related to two different
classes of tasks. Class-1 encloses forward mode processing of
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Fig. 1: Asymmetric System Model

application-related units of work, while Class-2 encompasses
all other tasks, related to housekeeping operations and auto-
nomic tuning of the application. In our asymmetric model,
we map different classes to different incarnations of threads.
Fig. 1a shows the overall re-organization of the runtime
environment which we propose. Controller threads (CTs) are
in charge of governing the lifetime of the application (in terms
of scheduling and correctness control), from all perspectives:
energy efficiency, performance, self-tuning, etc. Conversely,
Processing threads (PTs) are much simpler and process units of
work. Their simplicity makes them perfectly suitable to offload
them also on specialized or extremely parallel hardware, such
as FPGAs or GPUs. CTs and PTs can be in any number in
the system, and their rebalancing is in charge of the CTs.
A number of PTs can be bound to a single CT, which will
dispatch to its PTs units of work.

A core aspects is related to the communication between CTs
and PTs. We base our model on the concept of communication
ports (as depicted in Fig. 1b) with multi-priority queues. The
CT uses the low-priority queue to dispatch units of work to
the PTs. The high-priority queue is used to notify PTs of
priority inversions, leading PTs to discard no-longer consistent
units of work. The output queue can be used to notify CTs of
newly-generated units of work, which might be dispatched at
a later time to different PTs. The decoupling between CTs
and PTs based on communication ports make it extremely
easy to migrate PTs to different hardware architectures, while
leaving untouched the logic associated with the management
of computation and resources.

We then enforce a 2-level autonomic reorganization. On
the one hand, we determine the proper number of CTs and
PTs in the system, and the hardware on which PTs are run
(long-term self-tuning). Possibly, we can decide not to use
all the available cores, depending on the current workload.
On the other hand, we control the degree of speculation by
determining the best-suited number of units of work to be
injected in every PT’s port (short-term self-tuning). In this
way, we can maximize performance while minimizing energy
consumption, by identifying the best-suited trade-off between
speculation and efficiency, i.e. minimizing the amount of work
wasted by speculation. Therefore, this approach allows to fine-
tune the amount of speculation based on the peculiarities of
the different hardware families, such as the speed of forward
mode processing or the degree of parallelism.

III. PRELIMINARY EVALUATION AND FUTURE WORK

We present results associated with performance and energy
efficiency when running speculative PDES simulations [2] on
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Fig. 2: Performance under power cap
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Fig. 3: Effect of thread rebalancing

top of heterogeneous (in terms of frequency) CPUs. Exper-
iments have been run using the PHold benchmark on a 10
core machine equipped with Intel Xeon E5-2630 v4 and 256
GB of ECC memory. In Fig. 2 we show the variation of
the execution time with power cap set to 30 Watt for the
classical symmetric architecture, with cores uniformly slowed
to meet the power budget, and our asymmetric architecture.
The CPU frequency ranges from 1.2 GHz at P-state 11 to 2.2
GHz at P-state 1. This test was used to assess the efficiency
gains achievable by the asymmetrical paradigm compared to
a traditional symmetrical system. In Fig. 3 we show the effect
on performance when relying on a different number of CTs,
thus showing the importance of an autonomic rebalancing
strategy to fine tune the resource allocation when running on
heterogeneous systems. In both scenarios, our architecture is
able to reduce the completion time in several configurations,
also being able to meet the imposed power cap. We are
currently finalizing the implementation of PTs on FPGAs and
GPUs.
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